首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《Autoimmunity》2013,46(6):460-469
Maintaining an appropriate balance between subsets of CD4+ helper T cells and T regulatory cells (Tregs) is a critical process in immune homeostasis and a protective mechanism against autoimmunity and inflammation. To identify the role of vitamin A-related compounds, we investigated the regulation of interleukin (IL)-17-producing helper T cells (Th17 cells) and Tregs treated with all-trans-retinal (retinal). CD4+T cells or total cells from the spleens of C57BL/6 mice were stimulated under Treg-polarizing (anti-CD3/CD28 and TGF-β) or Th17-polarizing (anti-CD3/CD28, TGF-β, and IL-6) conditions in the presence or absence of retinal. To analyze their suppressive abilities, retinal-induced Tregs or TGF-β-induced Tregs were co-cultured with responder T cells. Collagen-induced arthritis (CIA) was established in interferon (IFN)-γ knockout mice. On day 13, retinal-induced Tregs were adoptively transferred to mice with established CIA after second immunizations. Compared with TGF-β-induced Treg cells, retinal-induced Tregs showed increased Foxp3 expression and mediated stronger suppressive activity. Under Th17-polarizing conditions, retinal inhibited the production of IL-17 and increased the expression of Foxp3.Retinal-induced Tregs showed therapeutic effects in IFN-γ knockout CIA mice. Thus, we demonstrated that retinal reciprocally regulates Foxp3+ Tregs and Th17 cells. These findings suggest that retinal, a vitamin A metabolite, can regulate the balance between pro- and anti-inflammatory immunity. A better understanding of the manipulation of Foxp3 and Tregs may enable the application of this tremendous therapeutic potential in various autoimmune diseases.  相似文献   

2.
The identification of T-helper 9 (Th9), Th17, Th22 cells as distinct subsets of CD4+ T cells has extended the Th1/Th2 paradigm in the adaptive immunity. In the past decade, many studies in animal models and clinical transplantation have demonstrated that interleukin-17 (IL-17) is involved in allograft rejection. It appears that Th17 cells together with Th1 and Th2 cells play an important role in mediating allograft rejection. Here, we summarize our current knowledge on the contribution of Th1, Th2, Th9, Th17, Th22, and follicular T-helper (Tfh) cells in allograft rejection. We also discuss the regulation of CD4+ T-cell subsets by CD4+Foxp3+ regulatory T cells (Tregs) in the context of transplantation tolerance.  相似文献   

3.
Immune disorders are linked to the development of type 2 diabetes (T2D) and its complications. The relationship of CD4+CD25hi T regulatory cells (Treg) and pro-inflammatory Th17 and Th1 subsets in T2D patients with metabolic disorders and complications need to be determined. The ratios of CD4+CD25hi Treg/Th17 cells and CD4+CD25hi Treg/Th1 cells, but not Th17/Th1 cells, were significantly decreased in T2D patients. The thymic output CD4+Foxp3+Helios+ Tregs were normal but peripheral induced CD4+Foxp3+Helios Tregs were decreased in T2D patients. The Bcl-2/Bax ratio decreased in CD4+CD25hi Tregs in T2D patients, supporting the increased sensitivity to cell death of these cells in T2D. CD4+CD25hiCD127 Tregs in T2D patients with microvascular complications were significantly less than T2D patients with macrovascular complications. Importantly, CD4+CD25hiCD127 Tregs were positively correlated with plasma IL-6, whereas IL-17+CD4+cells were negatively related to high-density lipoprotein (HDL). Our data offered evidence for the skewed balance of anti- and pro-inflammatory T cell subsets in T2D patients and identified that HDL closely modulate T cell polarization. These results opened an alternative explanation for the substantial activation of immune cells as well as the development of T2D and complications, which may have significant impacts on the prevention and treatment of T2D patients.  相似文献   

4.
5.
Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible chronic inflammatory disease associated with the accumulation of activated T cells. To date, there is little information concerning the intrinsic association among Th17, Tc17, and regulatory T (Treg) cells in COPD. The objective of this study was to investigate the variation of lungs CD4+Foxp3+ Treg cells and IL-17-producing CD4 and CD8 (Th17 and Tc17) lymphocytes in mice with cigarette-induced emphysema. Groups of mice were exposed to cigarette smoke or room air. At weeks 12 and 24, mice were sacrificed to observe histological changes by HE stain. The frequencies of Th17 (CD4+IL-17+T), Tc17 (CD8+IL-17+T), and Treg (CD4+Foxp3+T) cells in lungs from these mice were analyzed by flow cytometry. The mRNA levels of orphan nuclear receptor ROR γt and Foxp3 were performed by real-time quantitative polymerase chain reaction. The protein levels of interleukin-17 (IL-17), IL-6, IL-10, and transforming growth factor-beta (TGF-β1) were measured by enzyme-linked immunosorbent assay. Cigarette smoke caused substantial enlargement of the air spaces accompanied by the destruction of the normal alveolar architecture and led to emphysema. The frequencies of Th17 and Tc17 cells, as well as the expressions of IL-6, IL-17, TGF-β1, and ROR γt were greater in the lungs of cigarette smoke (CS)-exposed mice, particularly in the 24-week CS-exposed mice. The frequencies of Treg cells and the expressions of IL-10 and Foxp3 were lower in CS-exposed mice compared to control group. More important, the frequencies of Tregs were negatively correlated with Th17 cells and with Tc17 cells. Interestingly, a significant portion of the cells that infiltrate the lungs was skewed towards a Tc17 phenotype. Our findings suggest the contribution of Th17, Tc17, and Treg cells in the pathogenesis of COPD. Rebalance of these cells will be helpful for developing and refining the new immunological therapies for COPD.  相似文献   

6.
The vast majority of Foxp3+ regulatory T cells (Tregs) are generated in the thymus, and several factors, such as cytokines and unique thymic antigen-presenting cells, are known to contribute to the development of these thymus-derived Tregs (tTregs). Here, we report the existence of a specific subset of Foxp3+ Tregs within the thymus that is characterized by the expression of IL-1R2, which is a decoy receptor for the inflammatory cytokine IL-1. Detailed flow cytometric analysis of the thymocytes from Foxp3hCD2xRAG1GFP reporter mice revealed that the IL-1R2+ Tregs are mainly RAG1GFP– and CCR6+CCR7, demonstrating that these Tregs are recirculating cells entering the thymus from the periphery and that they have an activated phenotype. In the spleen, the majority of IL-1R2+ Tregs express neuropilin-1 (Nrp-1) and Helios, suggesting a thymic origin for these Tregs. Interestingly, among all tissues studied, the highest frequency of IL-1R2+ Tregs was observed in the thymus, indicating preferential recruitment of this Treg subset by the thymus. Using fetal thymic organ cultures (FTOCs), we demonstrated that increased concentrations of exogenous IL-1β blocked intrathymic Treg development, resulting in a decreased frequency of CD25+Foxp3+ tTregs and an accumulation of CD25+Foxp3 Treg precursors. Interestingly, the addition of IL-1R2+ Tregs, but not IL-1R2 Tregs, to reaggregated thymic organ cultures (RTOCs) abrogated the IL-1β-mediated blockade, demonstrating that these recirculating IL-1R2+ Tregs can quench IL-1 signaling in the thymus and thereby maintain thymic Treg development even under inflammatory conditions.  相似文献   

7.
《Mucosal immunology》2020,13(3):460-470
The human nasopharynx is frequently exposed to microbial pathogens, including superantigen-producing Staphylococcus aureus (SAg-Sau), which activates potent pro-inflammatory T cell responses. However, cellular mechanisms that control SAg-Sau-driven T cell activation are poorly understood. Using human nasopharynx-associated lymphoid tissue (NALT), we show that SAg-Sau drove a strong Th17 activation, which was associated with an impaired CD4+ T cell-mediated immune regulation. This impairment of immune control correlated with a significant downregulation of interleukin-35 (IL-35) expression in tonsillar CD4+ T cells by SAg-Sau. Supplementing recombinant IL-35 suppressed SAg-Sau-activated Th17 responses, and this IL-35-mediated suppression positively correlated with the level of Th17 activation. Interestingly, SAg-Sau stimulation induced Foxp3+ Treg expansion and interleukin-10 (IL-10) production, which effectively suppressed the Th1 response, but failed to control the activation of Th17 cells. Overall, our results reveal an aberrant T cell regulation on SAg-Sau-driven Th17 activation and identify IL-35 as a critical cytokine to control superantigenic S.aureus-activated Th17 responses.  相似文献   

8.
The chemokine receptor CCR9 and its only known ligand CCL25 play an important role in gut inflammation and autoimmune colitis. The function of CCR9-CCL25 in the migration of immune cells is well characterized. However, its role in the immune cell differentiation is mostly not known. Using dextran sodium sulfate (DSS)-induced gut inflammation model, we showed that CCR9+ dendritic cells (DCs) specifically CD11bCD103+ DCs were significantly increased in the gut-associated lymphoid tissues (GALT) compared to control mice. These CCR9+ DCs express lower MHC II and CD86 molecules and had regulatory surface markers (FasL and latency-associated peptide, LAP) in the GALT. In the presence of CCL25, CCR9+ DCs promoted in vitro differentiation of Foxp3+ regulatory CD4+ T cells (Tregs). CCL25-induced differentiation of Tregs was due to intrinsic signaling in the DCs but not through CD4+ T cells, which was driven by the production of thymic stromal lymphopoietin (TSLP) and not IL-10. Furthermore, adoptive transfer of CCR9+ DCs in C57BL/6 mice promoted Tregs but reduced the Th17 cells in the GALT, and also suppressed the OVA-specific gut-allergic response. Our results suggest CCR9+ DCs have a regulatory function and may provide a new cellular therapeutic strategy to control gut inflammation and allergic immune reaction.  相似文献   

9.
《Mucosal immunology》2017,10(3):743-756
In both humans and animal models, the development of Sjögren syndrome (SS) and non-SS keratoconjunctivitis sicca (KCS) increases with age. Here, we investigated the ocular surface and lacrimal gland (LG) phenotype of NOD.B10.H2b mice at 7–14, 45–50, and 96–100 weeks. Aged mice develop increased corneal permeability, CD4+ T-cell infiltration, and conjunctival goblet cell loss. Aged mice have LG atrophy with increased lymphocyte infiltration and inflammatory cytokine levels. An increase in the frequency of CD4+Foxp3+ T regulatory cells (Tregs) was observed with age in the cervical lymph node (CLN), spleen, and LG. These CD4+CD25+ cells lose suppressive ability, while maintaining expression of Foxp3 (forkhead box P3) and producing interleukin-17 (IL-17) and interferon-γ (IFN-γ). An increase of Foxp3+IL-17+ or Foxp3+IFN-γ+ cells was observed in the LG and LG-draining CLN. In adoptive transfer experiments, recipients of either purified Tregs or purified T effector cells from aged donors developed lacrimal keratoconjunctivitis, whereas recipients of young Tregs or young T effector cells failed to develop disease. Overall, these results suggest inflammatory cytokine-producing CD4+Foxp3+ cells participate in the pathogenesis of age-related ocular surface disease.  相似文献   

10.
Thymosin alpha 1 (Tα1) has been shown to have beneficial effects on numerous immune system parameters, but little is known about the effects of Tα1 on patients with gastric carcinoma. The objective of this study was to determine the effect of Tα1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro, and to evaluate its efficacy as an immunoregulatory factor in patients with gastric carcinoma. We compared the effect of Tα1 on the frequency of CD4+ and CD8+ T cells, especially the CD4+CD25+Foxp3+ Tregs in peripheral blood mononuclear cells (PBMCs) from gastric carcinoma patients (N = 35) and healthy donors (N = 22). We also analyzed the changes in the proliferation of PBMCs in response to treatment with Tα1, and examined the production of Th1, Th2, and Th17 cytokines by PBMCs and tumor-infiltrating lymphocytes. The treatment of PBMCs from gastric cancer patients, with Tα1 (50 µg/mL) alone increased the percentage of CD4+CD25+Foxp3+ (suppressive antitumor-specific Tregs) from 1.68 ± 0.697 to 2.19 ± 0.795% (P < 0.05). Our results indicate that Tα1 increases the percentage of Tregs and IL-1β, TNF-α, and IL-6 in vitro.  相似文献   

11.
《Mucosal immunology》2013,6(3):535-546
The B subunit of E. coli heat-labile enterotoxin (EtxB) protects against the development of T helper type 1 (Th1)-mediated autoimmune pathologies in mice. Protection was transferable with splenic CD4+ T cells and was less effective following CD25 depletion; implying a T regulatory cell (Treg)-mediated process. We hypothesized that if this were the case, then EtxB would also control a Th2-mediated disorder. We tested the effect of EtxB treatment on asthma development in ovalbumin (OVA)-sensitized mice. EtxB treatment diminished eosinophilia in bronchoalveolar lavage samples, reduced OVA-specific immunoglobulin E and interleukin 4 production locally and systemically, and reduced airway hyper-reactivity. EtxB induced a dose-dependent increase in Foxp3+CD4+ T cells, and adoptive transfer of splenic CD4+ T cells partially suppressed lung pathology. Importantly, EtxB treatment increased OVA-specific CD4+Foxp3+ T cells in the lung and systemically. These data demonstrate that EtxB modulates the differentiation of allergen-specific T cells causing inducible Treg induction and preventing disease.  相似文献   

12.
Both T helper interleukin 17 (IL-17)-producing cells (Th17 cells) and regulatory T cells (Tregs) have been found to be increased in human tuberculous pleural effusion (TPE); however, the possible interaction between Th17 cells and Tregs in TPE remains to be elucidated. The objective of the present study was to investigate the distribution of Th17 cells in relation to Tregs, as well as the mechanism of Tregs in regulating generation and differentiation of Th17 cells in TPE. In the present study, the numbers of Th17 cells and Tregs in TPE and blood were determined by flow cytometry. The regulation and mechanism of CD39+ Tregs on generation and differentiation of Th17 cells were explored. Our data demonstrated that the numbers of Th17 cells and CD39+ Tregs were both increased in TPE compared with blood. Th17 cell numbers were correlated negatively with Tregs in TPE but not in blood. When naïve CD4+ T cells were cultured with CD39+ Tregs, Th17 cell numbers decreased as CD39+ Treg numbers increased, and the addition of the anti-latency-associated peptide monoclonal antibody to the coculture reversed the inhibitory effect exerted by CD39+ Tregs. This study shows that Th17/Treg imbalance exists in TPE and that pleural CD39+ Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

13.
Antigen-specific therapies are possibly the safest approach to prevent type 1 diabetes (T1D). However their clinical translation has yielded poor results and greater efforts need to be put into the development of novel strategies to ameliorate their clinical outcome. OX40 is a costimulatory molecule expressed by T cells after antigen recognition and has been implicated in the control effector but also regulatory T cells (Tregs) function in vivo. The activity of OX40 signal on Tregs function has been controversial. In this context we investigated whether an anti-OX40 agonist antibody treatment can ameliorate antigen-specific immune intervention for the prevention of T1D. We show that treatment of non-obese diabetic (NOD) mice with an OX40 agonistic antibody (OX86) reduced type 1 diabetes (T1D) incidence by inducing both CD4+CD25+Foxp3+ Tregs and CD4+Foxp3 T cells expressing the latency-associated peptide (LAP). These OX86-induced CD4+Foxp3LAP+ T cells also demonstrated suppressive activity in vitro. A significant increase in protection was observed when OX86 was combined with insulin B9:23 (insB9:23) peptide immunizations. Synergy resulted from an expansion of IL-10-expressing insB9:23-reactive Tregs which augmented the proportion of CD4+ T cells with in vivo suppressive activity. Consequently, CD4+ T cells purified from OX86/insB9:23 combination treatment prevented T1D development when adoptively transferred into recipient mice. These findings suggest that the requirement for OX40 signaling by antigen-induced Tregs can be dominant over its well-documented need for effector memory cell function and may have potentially important implications for improving the clinical translation of antigen-specific prevention of T1D and possibly other autoimmune disorders.  相似文献   

14.
The etiology of cancer is unclear. Recent studies indicate that some cytokines, such as interleukin (IL)-17, and regulatory T cells are involved in the development of cancer. This study aims to detect a subset of T cell, IL17+Foxp3+ T cell, in the pathogenesis of esophageal cancer (Eca). Twelve patients with squamous Eca were recruited in this study. The surgically removed Eca tissue was collected. Cells isolated from Eca tissue were analyzed by flow cytometry. The results showed that 2–10% Eca tissue-derived CD4+ T cells expressed Foxp3; only 0.2–0.8% non-ca tissue-derived CD4+ T cells expressed Foxp3. Further analysis showed that 3–15% Eca-isolated CD4+ T cells were also IL-17 positive whereas only 0.4–1.5% non-ca tissue-isolated CD4+ T cells were IL-17 positive. We also found that about 4.8–11.2% Foxp3+ IL-17+ T cells in isolated CD4+ T cells from Eca tissue that were significantly less than in non-ca tissue derived CD4+ T cells. Less than 1% Foxp3+ IL-17+ T cells in isolated CD4+ T cells in both Eca patients and healthy controls. Treatment with hypoxia markedly increased the expression of IL-6 in peripheral CD68+ cells. Coculturing CD68+ cells and Foxp3+ T cells under hypoxic environment resulted in abundant expression of IL-17 in Foxp3+ T cells that could be blocked by pretreatment with either anti-IL-17 or anti-transforming growth factor beta antibodies. We conclude that IL-17+Foxp3+ T cells may contribute to the development of Eca.  相似文献   

15.
《Mucosal immunology》2013,6(2):309-323
The FVB.mdr1a−/− mouse, lacking the small molecule pump P-glycoprotein (P-gp), is a commonly used model for the study of spontaneous T cell–mediated colitis. In addition, MDR1 polymorphisms and P-gp deficiency in humans have been linked to the development of ulcerative colitis. We now demonstrate that mice with P-gp deficiency have decreased levels of Foxp3+ regulatory T cells (Tregs) in the intestinal lamina propria. This decrease is not due to either increased Treg apoptosis, altered Treg trafficking, or enhanced Treg plasticity to become Foxp3+IL-17+ cells. Instead, P-gp deficiency appears to restrict the development of induced Treg cells (iTregs), as fewer Foxp3+ iTregs developed from naive FVB.mdr1a−/− T cells both upon transforming growth factor-β (TGF-β) treatment in vitro and after adoptive transfer into FVB.rag2−/− recipients. Rather, in vitro TGF-β treatment results in a IL-17+CD4+ T cell. This failure of iTregs to develop explains the decrease in Foxp3+ Tregs in the FVB.mdr1a−/− intestine, representing a need to investigate this novel disease mechanism in human inflammatory bowel disease patients with MDR1 polymorphisms.  相似文献   

16.
17.
《Mucosal immunology》2014,7(2):428-439
Although elevated CD4+Foxp3+ regulatory T cell (Treg) frequencies within tumors are well documented, the functional and phenotypic characteristics of CD4+Foxp3+ and CD4+Foxp3 T cell subsets from matched blood, healthy colon, and colorectal cancer require in-depth investigation. Flow cytometry revealed that the majority of intratumoral CD4+Foxp3+ T cells (Tregs) were Helios+ and expressed higher levels of cytotoxic T-lymphocyte antigen 4 (CTLA-4) and CD39 than Tregs from colon and blood. Moreover, ∼30% of intratumoral CD4+Foxp3 T cells expressed markers associated with regulatory functions, including latency-associated peptide (LAP), lymphocyte activation gene-3 (LAG-3), and CD25. This unique population of cells produced interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), and was ∼50-fold more suppressive than Foxp3+ Tregs. Thus, intratumoral Tregs are diverse, posing multiple obstacles to immunotherapeutic intervention in colorectal malignancies.  相似文献   

18.
《Mucosal immunology》2015,8(2):265-278
The vitamin A metabolite all-trans retinoic acid (RA) is an important determinant of intestinal immunity. RA primes dendritic cells (DCs) to express CD103 and produce RA themselves, which induces the gut-homing receptors α4β7 and CCR9 on T cells and amplifies transforming growth factor (TGF)-β-mediated development of Foxp3+ regulatory T (Treg) cells. Here we investigated the effect of RA on human DCs and subsequent development of T cells. We report a novel role of RA in immune regulation by showing that RA-conditioned human DCs did not substantially enhance Foxp3 but induced α4β7+ CCR9+ T cells expressing high levels of interleukin (IL)-10, which were functional suppressive Treg cells. IL-10 production was dependent on DC-derived RA and was maintained when DCs were stimulated with toll-like receptor ligands. Furthermore, the presence of TGF-β during RA-DC-driven T-cell priming favored the induction of Foxp3+ Treg cells over IL-10+ Treg cells. Experiments with naive CD4+ T cells stimulated by anti-CD3 and anti-CD28 antibodies in the absence of DCs emphasized that RA induces IL-10 in face of inflammatory mediators. The data thus show for the first time that RA induces IL-10-producing Treg cells and postulates a novel mechanism for IL-10 in maintaining tolerance to the intestinal microbiome.  相似文献   

19.
20.
Within the population of regulatory T cells (Tregs) natural Tregs (nTregs) and inducible Tregs (iTregs) can be distinguished. Although information about Tregs in swine exists, porcine iTregs were not under investigation yet. In this study, Foxp3+ iTregs were generated from CD4+Foxp3 T cells by in vitro stimulation in the presence of IL-2 and TGF-β. In comparison to ex vivo Tregs these iTregs had a similar suppressive capacity on the proliferation of CD3-stimulated PBMC, caused higher levels of IL-10 in PBMC/Treg co-cultures, but did not suppress IFN-γ levels. The Ikaros family member Helios is currently discussed to distinguish iTregs and nTregs or to serve as an activation marker of Tregs. In this study, we demonstrate the cross-reactivity of an anti-mouse/human Helios mAb with porcine Helios. Flow cytometric analyses with this antibody showed that porcine iTregs do not express Helios after in vitro iTreg induction. Nevertheless, thymic Foxp3+ T cells, which arise at the CD4/CD8α single-positive stage of T-cell development and are defined as nTregs, entirely expressed Helios. Although this might suggest the suitability of Helios as an nTreg–iTreg differentiation marker we also found that Helios Tregs displayed a phenotype of naive CD4+ T cells in vivo. Since iTregs are by definition activated/differentiated Tregs, this finding precludes that all Helios Tregs are iTregs and thus also the use of Helios as a selection marker for porcine nTregs. Furthermore, Helios+ Tregs displayed a more differentiated phenotype indicating that Helios might rather serve as a Treg activation/differentiation marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号