首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decreased functions of astrocytes on carbon nanofiber materials   总被引:4,自引:0,他引:4  
McKenzie JL  Waid MC  Shi R  Webster TJ 《Biomaterials》2004,25(7-8):1309-1317
Carbon nanofibers possess excellent conductivity properties, which may be beneficial in the design of more effective neural prostheses; however, limited evidence on their cytocompatibility properties currently exists. The objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers pertinent to neural implant applications. Substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 100 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Carbon fibers were compacted in a manual hydraulic press via a uniaxial loading cycle. Astrocytes (glial scar tissue-forming cells) were seeded onto the substrates for adhesion, proliferation, and long-term function studies (such as total intracellular protein and alkaline phosphatase activity). Results provided the first evidence that astrocytes preferentially adhered and proliferated on carbon fibers that had the largest diameter and the lowest surface energy. Based on these results, composite substrates were also formed using different weight percentages (0-25 wt%) of the nanophase, high surface energy fibers in a polycarbonate urethane matrix. Results provided the first evidence of decreased adhesion of astrocytes with increasing weight percents of the high surface energy carbon nanofibers in the polymer composite; this further demonstrates that formulations containing carbon fibers in the nanometer regime may limit astrocyte functions leading to decreased glial scar tissue formation. Positive interactions with neurons, and, at the same time, limited astrocyte functions leading to decreased gliotic scar tissue formation are essential for increased neuronal implant efficacy.  相似文献   

2.
采用静电纺丝技术制备胶原/丝素复合微纳米纤维,对其理化性能进行表征并观察其细胞相容性。以六氟异丙醇(HFIP)为溶剂,将胶原和丝素以 100:0.70:30.50:50.30:70.0:100的质量比共混进行电纺。制备的五种材料经戊二醛蒸汽交联12 h。采用扫描电镜、红外光谱、X射线衍射、热重分析和拉伸力学性能测试等方法对其理化性能进行表征。材料种植成纤维细胞后,通过扫描电镜和噻唑兰(MTT)比色法观察其细胞相容性。结果显示制备的纤维平均直径在550~1 100 nm之间,随着丝素含量的增加纤维平均直径增加。交联后纤维的β化程度、结晶度和热稳定性均有一定提高,且随着丝素含量的增加提高越明显;交联后材料的力学性能优于交联前;当丝素含量为70%时,纤维膜的平均断裂强度为(8.70±1.05) MPa,高于其它配比的纤维膜。细胞在材料表面生长状态良好;丝素含量为70%组的细胞粘附和增殖高于其它组,与细胞培养板相比无显著性差异,表明其细胞相容性良好,可望成为一种新型的组织工程支架材料。  相似文献   

3.
Cardiac tissue engineering (TE) is one of the most promising strategies to reconstruct the infarct myocardium and the major challenge involves producing a bioactive scaffold with anisotropic properties that assist in cell guidance to mimic the heart tissue. In this study, random and aligned poly(ε-caprolactone)/gelatin (PG) composite nanofibrous scaffolds were electrospun to structurally mimic the oriented extracellular matrix (ECM). Morphological, chemical and mechanical properties of the electrospun PG nanofibers were evaluated by scanning electron microscopy (SEM), water contact angle, attenuated total reflectance Fourier transform infrared spectroscopy and tensile measurements. Results indicated that PG nanofibrous scaffolds possessed smaller fiber diameters (239 ± 37 nm for random fibers and 269 ± 33 nm for aligned fibers), increased hydrophilicity, and lower stiffness compared to electrospun PCL nanofibers. The aligned PG nanofibers showed anisotropic wetting characteristics and mechanical properties, which closely match the requirements of native cardiac anisotropy. Rabbit cardiomyocytes were cultured on electrospun random and aligned nanofibers to assess the biocompatibility of scaffolds, together with its potential for cell guidance. The SEM and immunocytochemical analysis showed that the aligned PG scaffold greatly promoted cell attachment and alignment because of the biological components and ordered topography of the scaffolds. Moreover, we concluded that the aligned PG nanofibrous scaffolds could be more promising substrates suitable for the regeneration of infarct myocardium and other cardiac defects.  相似文献   

4.
Electrospun nanofibrous scaffolds have received a great deal of attention in tissue engineering in recent years. Bridging larger nerve gaps between proximal and distal ends requires exogenous tubular constructs with uniaxially aligned topographical cues to promote the axonal re-growth due to the lack of fibrin cable formation. In this study, we have designed and developed a collector to obtain aligned nanofibers of PLGA-PCL. The average diameter of the fibers obtained is 230?±?63?nm and the alignment of fibers is quantified by calculating relative angle of each fiber. The tensile strength, porosity, contact angle, and biodegradation of the uniaxial PLGA-PCL nanofibers are measured and compared with the corresponding random fibers. Pore size, Young's modulus, and degradation of the aligned scaffold are significantly lesser than random fibers (p?相似文献   

5.
Choi JS  Lee SJ  Christ GJ  Atala A  Yoo JJ 《Biomaterials》2008,29(19):2899-2906
Current treatment options for restoring large skeletal muscle tissue defects due to trauma or tumor ablation are limited by the host muscle tissue availability and donor site morbidity of muscle flap implantation. Creation of implantable functional muscle tissue that could restore muscle defects may bea possible solution. To engineer functional muscle tissue for reconstruction, scaffolds that mimic native fibers need to be developed. In this study we examined the feasibility of using poly(epsilon-caprolactone) (PCL)/collagen based nanofibers using electrospinning as a scaffold system for implantable engineered muscle. We investigated whether electrospun nanofibers could guide morphogenesis of skeletal muscle cells and enhance cellular organization. Nanofibers with different fiber orientations were fabricated by electrospinning with a blend of PCL and collagen. Human skeletal muscle cells (hSkMCs) were seeded onto the electrospun PCL/collagen nanofiber meshes and analyzed for cell adhesion, proliferation and organization. Our results show that unidirectionally oriented nanofibers significantly induced muscle cell alignment and myotube formation as compared to randomly oriented nanofibers. The aligned composite nanofiber scaffolds seeded with skeletal muscle cells may provide implantable functional muscle tissues for patients with large muscle defects.  相似文献   

6.
7.
One of the biggest challenges in peripheral nerve tissue engineering is to create an artificial nerve graft that could mimic the extracellular matrix (ECM) and assist in nerve regeneration. Bio-composite nanofibrous scaffolds made from synthetic and natural polymeric blends provide suitable substrate for tissue engineering and it can be used as nerve guides eliminating the need of autologous nerve grafts. Nanotopography or orientation of the fibers within the scaffolds greatly influences the nerve cell morphology and outgrowth, and the alignment of the fibers ensures better contact guidance of the cells. In this study, poly (L-lactic acid)-co-poly(ε-caprolactone) or P(LLA-CL), collagen I and collagen III are utilized for the fabrication of nanofibers of different compositions and orientations (random and aligned) by electrospinning. The morphology, mechanical, physical, and chemical properties of the electrospun scaffolds along with their biocompatibility using C17.2 nerve stem cells are studied to identify the suitable material compositions and topography of the electrospun scaffolds required for peripheral nerve regeneration. Aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds with average diameter of 253 ± 102 nm were fabricated and characterized with a tensile strength of 11.59 ± 1.68 MPa. Cell proliferation studies showed 22% increase in cell proliferation on aligned P(LLA-CL)/collagen I/collagen III scaffolds compared with aligned pure P(LLA-CL) scaffolds. Results of our in vitro cell proliferation, cell-scaffold interaction, and neurofilament protein expression studies demonstrated that the electrospun aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds mimic more closely towards the ECM of nerve and have great potential as a substrate for accelerated regeneration of the nerve.  相似文献   

8.
Topographical features, including fiber dimensions and pattern, are important aspects in developing fibrous scaffolds for tissue engineering. In this study aligned poly(l-lactide) (PLLA) fibers with diameters of 307 ± 47, 500 ± 53, 679 ± 72 and 917 ± 84 nm and random fibers with diameters of 327 ± 40, 545 ± 54, 746 ± 82 and 1150 ± 109 nm were obtained by optimizing the electrospinning parameters. We cultured neonatal mouse cerebellum C17.2 cells on the PLLA fibers. These neural stem cells (NSCs) exhibited significantly different growth and differentiation depending upon fiber dimension and pattern. On aligned fibers cell viability and proliferation was best on 500 nm fibers, and reduced on smaller or larger fibers. However, on random fibers cell viability and proliferation was best with the smallest (350 nm) and largest (1150 nm) diameter fibers. Polarized and elongated cells were orientated along the fiber direction on the aligned fibers, with focal contacts bridging the cell body and aligned fibers. Cells of spindle and polygonal morphologies were randomly distributed on the random fibers, with no focal contacts observed. Moreover, longer neurites were obtained on the aligned fibers than random fibers within the same diameter range. Thus, the surface topographic morphologies of fibrous scaffolds, including fiber pattern, dimensions and mesh size, play roles in regulating the viability, proliferation and neurite outgrowth of NSCs. Nevertheless, our results indicated that aligned 500 nm fiber are most promising for fine tuning the design of a nerve scaffold.  相似文献   

9.
A unique biodegradable nanofibrous structure, aligned poly(L-lactid-co-epsilon-caprolactone) [P(LLA-CL)] (75:25) copolymer nanofibrous scaffold was produced by electrospinning. The diameter of the generated fibers was around 500 nm with an aligned topography which mimics the circumferential orientation of cells and fibrils found in the medial layer of a native artery. A favorable interaction between this scaffold with human coronary artery smooth muscle cells (SMCs) was demonstrated via MTS assay, phase contrast light microscopy, scanning electron microscopy, immunohistology assay and laser scanning confocal microscopy separately. Tissue culture polystyrene and plane solvent-cast P(LLA-CL) film were used as controls. The results showed that, the SMCs attached and migrated along the axis of the aligned nanofibers and expressed a spindle-like contractile phenotype; the distribution and organization of smooth muscle cytoskeleton proteins inside SMCs were parallel to the direction of the nanofibers; the adhesion and proliferation rate of SMCs on the aligned nanofibrous scaffold was significantly improved than on the plane polymer films. The above results strongly suggest that this synthetic aligned matrix combines with the advantages of synthetic biodegradable polymers, nanometer-scale dimension mimicking the natural ECM and a defined architecture replicating the in vivo-like vascular structure, may represent an ideal tissue engineering scaffold, especially for blood vessel engineering.  相似文献   

10.
The sensitivity of fibroblast guidance on directional cues provided by aligned nanofibers is studied for scaffolds of successively smaller fiber sizes (740 ± 280, 245 ± 85, 140 ± 40, and 80 ± 10 nm) fabricated using mandrel and electrical alignment methodologies for electrospun nanofibers (~10° angular deviation (AD)), as well as nanoimprint methodologies for perfectly aligned fibers (0° AD). On aligned scaffolds of large fibers (~740 nm) cell directionality closely follows the underlying fibers, irrespective of the alignment method. However, on mandrel aligned scaffolds of successively smaller fibers the cell directionality exhibits greater deviations from the underlying fiber alignment due to the higher likelihood of interaction of cell lamellipodia with multiple, rather than single, nanofibers. Using electrically aligned scaffolds, fibroblast directionality deviations can be maintained in the range of nanofiber alignment deviation for fiber sizes down to ~100 nm. This improvement in cell guidance is attributed to molecular scale directional adhesion cues for cell receptors, which occur within electrically aligned scaffolds due to fiber polarization parallel to the geometric alignment axis of the nanofiber under the modified electric field during electrospinning. While fibroblast directionality is similar on electrically aligned vs. nanoimprinted scaffolds for fiber sizes >100 nm, cell directionality is influenced more strongly by the perfect alignment cues of the latter on ~100 nm fiber scaffolds. The scaffold alignment methodology is hence highly significant, especially for tissue engineering applications requiring sub-100 nm aligned fibers.  相似文献   

11.
12.
Recently, much attention has been given to the fabrication of tissue-engineering scaffolds with nano-scaled structure to stimulate cell adhesion and proliferation in a microenvironment similar to the natural extracellular matrix milieu. In the present study, blends of gelatin and poly(L-lactide-co-epsilon-caprolactone) (PLCL) (blending ratio: 0, 30, 70 and 100 wt% gelatin to PLCL) were electrospun to prepare nano-structured non-woven fibers for the development of mechanically functional engineered skin grafts. The resulting nanofibers demonstrated the uniform and smooth fibers with mean diameters ranging from approx. 50 to 500 nm with interconnected pores, regardless of the composition. The contact angle decreased with increasing amount of gelatin in the blend and the water content of the nanofibers increased concurrently. PLCL nanofibers retained significant levels of recovery following application of uniaxial stress; GP-3 with 70% PLCL blend returned to the original length within less than 10% of deformation following 200% of uniaxial elongation. The overall tensile strength was inversely affected by increase in the gelatin content and degradation rates of the nanofibers were accelerated as the gelatin concentration increased. When seeded with human primary dermal fibroblasts and keratinocytes on the nanofibers, both initial cell adhesion and proliferation rate increased as a function of the gelatin content in the blend. Additionally, the total cell number was significantly greater on the nanofiber scaffolds than on polymer-coated glasses, indicating that nanofibrous structure facilitates cell proliferation. Taken together, gelatin/PLCL blend nanofiber scaffolds may serve as a promising artificial extracellular matrix for regeneration of mechanically functional skin tissue.  相似文献   

13.
Recently, much attention has been given to the fabrication of tissue-engineering scaffolds with nano-scaled structure to stimulate cell adhesion and proliferation in a microenvironment similar to the natural extracellular matrix milieu. In the present study, blends of gelatin and poly(L-lactide-co-ε-caprolactone) (PLCL) (blending ratio: 0, 30, 70 and 100 wt% gelatin to PLCL) were electrospun to prepare nano-structured non-woven fibers for the development of mechanically functional engineered skin grafts. The resulting nanofibers demonstrated the uniform and smooth fibers with mean diameters ranging from approx. 50 to 500 nm with interconnected pores, regardless of the composition. The contact angle decreased with increasing amount of gelatin in the blend and the water content of the nanofibers increased concurrently. PLCL nanofibers retained significant levels of recovery following application of uniaxial stress; GP-3 with 70% PLCL blend returned to the original length within less than 10% of deformation following 200% of uniaxial elongation. The overall tensile strength was inversely affected by increase in the gelatin content and degradation rates of the nanofibers were accelerated as the gelatin concentration increased. When seeded with human primary dermal fibroblasts and keratinocytes on the nanofibers, both initial cell adhesion and proliferation rate increased as a function of the gelatin content in the blend. Additionally, the total cell number was significantly greater on the nanofiber scaffolds than on polymer-coated glasses, indicating that nanofibrous structure facilitates cell proliferation. Taken together, gelatin/PLCL blend nanofiber scaffolds may serve as a promising artificial extracellular matrix for regeneration of mechanically functional skin tissue.  相似文献   

14.
Engineered collagen-PEO nanofibers and fabrics.   总被引:6,自引:0,他引:6  
Type I collagen-PEO fibers and non-woven fiber networks were produced by the electrospinning of a weak acid solution of purified collagen at ambient temperature and pressure. As determined by high-resolution SEM and TEM. fiber morphology was influenced by solution viscosity, conductivity, and flow rate. Uniform fibers with a diameter range of 100-150 nm were produced from a 2-wt% solution of collagen-PEO at a flow rate of 100 microl min(-1). Ultimate tensile strength and elastic modulus of the resulting non-woven fabrics was dependent upon the chosen weight ratio of the collagen-PEO blend. 1H NMR dipolar magnetization transfer analysis suggested that the superior mechanical properties, observed for collagen-PEO blends of weight ratio 1:1, were due to the maximization of intermolecular interactions between the PEO and collagen components. The process outlined herein provides a convenient, non-toxic, non-denaturing approach for the generation collagen-containing nanofibers and non-woven fabrics that have potential application in wound healing, tissue engineering, and as hemostatic agents.  相似文献   

15.
Yang F  Murugan R  Wang S  Ramakrishna S 《Biomaterials》2005,26(15):2603-2610
Efficacy of aligned poly(l-lactic acid) (PLLA) nano/micro fibrous scaffolds for neural tissue engineering is described and their performance with random PLLA scaffolds is compared as well in this study. Perfectly aligned PLLA fibrous scaffolds were fabricated by an electrospinning technique under optimum condition and the diameter of the electrospun fibers can easily be tailored by adjusting the concentration of polymer solution. As the structure of PLLA scaffold was intended for neural tissue engineering, its suitability was evaluated in vitro using neural stem cells (NSCs) as a model cell line. Cell morphology, differentiation and neurite outgrowth were studied by various microscopic techniques. The results show that the direction of NSC elongation and its neurite outgrowth is parallel to the direction of PLLA fibers for aligned scaffolds. No significant changes were observed on the cell orientation with respect to the fiber diameters. However, the rate of NSC differentiation was higher for PLLA nanofibers than that of micro fibers and it was independent of the fiber alignment. Based on the experimental results, the aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering.  相似文献   

16.
Electrospinning is a new method used in tissue engineering. It can spin fibers in nanoscale by electrostatic force. A series of thermoplastic polyurethane (TPU)/collagen blend nanofibrous membranes was prepared with different weight ratios and concentrations via electrospinning. The two biopolymers used 1,1,1,3,3,3,-hexafluoro-2-propanol (HFP) as solvent. The electrospun TPU-contained collagen nanofibers were characterized using scanning electron microscopy (SEM), XPS spectroscopy, atomic force microscopy, apparent density and porosity measurement, contact-angle measurement, mechanical tensile testing and viability of pig iliac endothelial cells (PIECs) on blended nanofiber mats. Our data indicate that fiber diameter was influenced by both polymer concentration and blend weight ratio of collagen to TPU. The average diameter of nanofibers gradually decreases with increasing collagen content in the blend. XPS analysis indicates that collagen is found to be present at the surface of blended nanofiber. The results of porosity and contact-angle measurement suggest that with the collagen content in the blend system, the porosity and hydrophilicity of the nanofiber mats is greatly improved. We have also characterized the molecular interactions in TPU/collagen complex by Fourier transform infrared spectroscopy (FT-IR). The result could demonstrate that there were no intermolecular bonds between the molecules of TPU and collagen. The ultimate tensile stress and strain were carried out and the data confirmed the FT-IR results. The TPU/collagen blend nanofibrous mats were further investigated as promising scaffold for PIEC culture. The cell proliferation and SEM morphology observations showed that the cells could not only favorably grow well on the surface of blend nanofibrous mats, but also able to migrate inside the scaffold within 24 h of culture. These results suggest that the blend nanofibers of TPU/collagen are designed to mimic the native extracellular matrix for tissue engineering and develop functional biomaterials.  相似文献   

17.
Poly(2-hydroxyethyl methacrylate) (pHEMA) has been widely used in many biomedical applications due to its well-known biocompatibility. For tissue engineering applications, porous scaffolds that mimic fibrous structures of natural extracellular matrix and possess high surface-area-to-volume ratios are highly desirable. So far, a systematic approach to control diameter and morphology of pHEMA fibers has not been reported and potential applications of pHEMA fibers have barely been explored. In this work, pHEMA was synthesized and processed into fibrous scaffolds using an electrospinning approach. Fiber diameters from 270 nm to 3.6 μm were achieved by controlling polymer solution concentration and electrospinning flow rate. Post-electrospinning thermal treatment significantly improves integrity of the electrospun membranes in water. The pHEMA microfibrous membranes exhibited water absorption up to 280% (w/w), whereas the pHEMA hydrogel only absorbed 70% water. Fibrinogen adsorption experiments demonstrate that the electrospun pHEMA fibers highly resist nonspecific protein adsorption. Hydroxyl groups on electrospun pHEMA fibers were further activated for protein immobilization. A bovine serum albumin (BSA) binding capacity as high as 120 mg BSA/g membrane was realized at an intermediate fiber diameter. The pHEMA fibrous scaffolds functionalized with collagen I significantly promoted fibroblast adhesion, spreading, and proliferation. We conclude that the electrospun pHEMA fibers are dual functional, that is, they resist nonspecific protein adsorption meanwhile abundant hydroxyl groups on fibers allow effective conjugation of biomolecules in a nonfouling background. High water absorption and dual functionality of the electrospun pHEMA fibers may lead to a number of potential applications such as wound dressings, tissue scaffolds, and affinity membranes.  相似文献   

18.
Electrospun chitosan-based nanofibers and their cellular compatibility   总被引:22,自引:0,他引:22  
Chitosan-based nanofibers with an average fiber diameter controllable from a few microns down to approximately 40 nm and a narrow size distribution were fabricated by electrospinning solutions containing chitosan, polyethylene oxide (PEO), and Triton X-100. Rheological study showed a strong dependence of spinnability and fiber morphology on solution viscosity and thus on chitosan-to-PEO ratio. The nanofibers can be deposited either as a nonwoven mat or as a highly aligned bundle of controllable size. Potential use of this nanofibrous matrix for tissue engineering was studied by examining its integrity in water and cellular compatibility. It was found that the matrix with a chitosan/PEO ratio of 90/10 retained excellent integrity of the fibrous structure in water. Experimental results from cell stain assay and SEM imaging showed that the nanofibrous structure promoted the attachment of human osteoblasts and chondrocytes and maintained characteristic cell morphology and viability throughout the period of study. This nanofibrous matrix is of particular interest in tissue engineering for controlled drug release and tissue remodeling.  相似文献   

19.
Rho KS  Jeong L  Lee G  Seo BM  Park YJ  Hong SD  Roh S  Cho JJ  Park WH  Min BM 《Biomaterials》2006,27(8):1452-1461
Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460 nm (range of 100-1200 nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.  相似文献   

20.
This study used a rat model to investigate the microstructural organization of collagen through the transition from scar to intact residual segments of a healing medial collateral ligament (MCL). Twenty-two male retired breeder Sprague-Dawley rats were randomly separated into two groups. Eleven underwent surgical transections of both MCLs and were allowed unrestricted cage activity until euthanized two weeks post surgery. The remaining eleven rats were used as normal controls. All 44 MCLs were harvested including intact femoral and tibial insertions and prepared for scanning electron microscopy (SEM) imaging. At harvest the scar region in the healing ligaments was more translucent than the normal tissue. Ligaments were viewed from femoral to tibial insertions at magnifications of 100X through 20,000X. Tissue away from the scar region in the transected MCLs was indistinguishable from normal tissue in uninjured ligaments. Collagen fibers and fibrils in these tissues were more aligned along the longitudinal axis of the ligament than in the scar tissue. Continuity of collagen fibers and fibrils were consistently observed from the residual portions of the transected ligament through the scar region. Bifurcations/fusions, but no anastomoses, in fibers and fibrils were observed in both normal and scar tissues of ligaments. Qualitatively, bifurcations were encountered more frequently in scar tissue. In the transition region, larger diameter fibers from the residual tissue bifurcated into smaller diameter fibrils in the scar. This connection between larger diameter and smaller diameter fibers and fibrils indicates that bifurcations/fusions are likely to be the dominant way in which force is transmitted from a region with larger fibrils (residual ligament) into and through a region with smaller fibrils (scar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号