首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new furostanol glycosides, 26-O-β-D-glucopyranosyl-3β,26-dihydroxy-23(S)-methoxyl-25(R)-furosta-5,20(22)-dien-3-O-α-L-rhamnopyranosyl(1→2)-[β-D-glucopyranosyl(1→3)]-β-D-glucopyranoside (dioscoreside E, 1) and 26-O-β-D-glucopyranosyl-3β,26-dihydroxy-25(R)-furosta-5,20(22)-dien-3-O-α-L-rhamnopyranosyl(1→2)-[β-D-glucopyranosyl (1→3)]-β-D-glucopyranoside (prtotogracillin, 2), together with 11 known furostanol glycosides were isolated from the rhizomes of Dioscorea futshauensis R. Kunth. Their structures were elucidated on the basis of spectroscopic analysis (NMR and FABMS). Their anti-fungal activity against the plant pathogenic fungus Pyricularia oryzae and cytotoxic activity on K562 cancer cell line were evaluated in vitro.  相似文献   

2.
Four new oleanane type saponins, monepalosides G–J (14), were isolated from the water-soluble part of the whole plant of Morina nepalensis var. alba Hand-Mazz. On the basis of chemical and spectroscopic evidence, their structures were determined as 3-O-α-L-arabinopyranosyl-(1→3)-α-L-arabinopyranosyl oleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (monepaloside G, 1), 3-O-α-L-arabinopyranosyl-(1→3)-β-D-xylopyranosyl oleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (monepaloside H, 2), 3-O-α-L-arabinopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl oleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (monepaloside I, 3), 3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosy-(1→3)]-α-L-arabinopyranosyl oleanolic acid 28-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside (monepaloside J, 4), respectively. Two-dimensional NMR spectra, including H–H COSY, HMQC, 2D HMQC–TOCSY, HMBC and ROESY were utilized in the structure elucidation and complete assignments of 1H and 13C NMR spectra.  相似文献   

3.
Three new triterpenoid saponins, polygonoides C (1), D (2), and E (3), were obtained from the ethanolic extract of the rhizome of Polygonatum sibiricum Redoute. On the basis of NMR and ESI-MS spectra, and chemical evidence, the structures of the three new compounds were elucidated as 3-O-α-L-rhamnopyranosyl-(1 → 2)-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-3β,7β,22β-trihydroxy-oleanolic acid (1), 3-O-α-L-rhamnopyranosyl-(1 → 2)-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-3β,7β,22β-trihydroxy-oleanolic acid methyl ester (2), and 3-O-β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranosyl-(1 → 4)-[α-L-rhamno-pyranosyl-(1 → 2)]-β-D-glucopyranosyl-3β,21β-dihydroxy-oleanolic acid 28-O-β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranoside (3).  相似文献   

4.
Two new triterpenoid saponins, named sarcandroside A and B, have been isolated from Sarcandra glabra (Thunb) Nakai. Their structures have been established as 3β,19α,20β-trihydroxyurs-11,13 (18)-diene-28,20β-lactone-3-O-β-d-glucopyranosyl (1 → 3)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-xylopyranoside (1) and 3-O-β-d-glucopyranosyl (1 → 3)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-xylopyranosyl-pomolic acid 28-O-β-d-glucopyranosyl ester (2) by means of spectral and chemical methods.  相似文献   

5.
Three new steroidal saponins, pallidiflosides A (1), B (2), and C (3), have been isolated from the dry bulbs of Fritillaria pallidiflora Schrenk. Their structures were elucidated as 26-O-β-d-glucopyranosyl-(25R)-furost-5,20(22)-dien-3β,26-diol-3-O-β-d-xylopyranosyl(1 → 4)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-glucopyranoside (1); 26-O-β-d-glucopyranosyl-3β,26-dihydroxyl-20,22-seco-25(R)-furost-5-en-20,22-dione-3-O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside (2); and (25R)-spirost-5-ene-3β,17α-diol-3-O-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (3) by spectroscopic techniques and chemical means.  相似文献   

6.
Two new isoflavone triglycosides, genistein 4′-O-(6″-O-α-l-rhamnopyranosyl)-β-sophoroside (1), and genistein 4′-O-(6?-O-α-l-rhamnopyranosyl)-β-sophoroside (2), together with five known compounds, namely, sophorabioside, genistin, rutin, quercetin 3-O-β-d-glucopyranoside, and kaempferol 3-O-β-d-glucopyranoside, were isolated from the small branches of Sophora japonica L. Their structures were elucidated on the basis of spectroscopic analyses and chemical evidence.  相似文献   

7.
Two new furostanol glycosides, ophiopogonins H (1) and I (2), were isolated from the fibrous root of Ophiopogon japonicus. The structures of 1 and 2 were established as (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-22α-hydroxyfurost-5-ene-3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside and (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-20α-hydroxyfurost-5,22-diene-3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside on the basis of spectroscopic means including HR-ESI-MS, 1D and 2D NMR experiments.  相似文献   

8.
Two new dammarane-type triterpenoid saponins, namely ginsenosides Rb4 (1) and Rb5 (2), were isolated from ginseng medicinal fungal substance. The structures of 1 and 2 were established as 3β,12β,20(S)-trihydroxydammar-24(25)-ene-3-O-[α-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranoside and 3β,12β,20(S)-trihydroxydammar-24(25)-ene-3-O-[α-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranoside on the basis of spectroscopic analysis and chemical analysis, respectively.  相似文献   

9.
Two new lignan glycosides, 2′-hydroxyl asarinin 2′-O-β-D-glucopyranoside (cuscutoside C, 1) and 2′-hydroxyl asarinin 2′-O-β-D-apiofuranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranoside (cuscutoside D, 2), were isolated from the seeds of Cuscuta chinensis Lam., along with six known compounds, 2′-hydroxyl asarinin 2′-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (3), 2′-hydroxyl asarinin 2′-O-β-D-apiofuranosyl-(1 → 2)-β-D-glucopyranoside (cuscutoside A, 4), kaempferol 3,7-di-O-β-D-glucopyranoside (5), 5-caffeoyl quinic acid (6), 4-caffeoyl quinic acid (7), and cinnamic acid (8). Their structures were elucidated on the basis of spectroscopic analyses including HR-ESI-MS, ESI-MS/MS, 1H and 13C NMR, HSQC, HMBC, and TOCSY.  相似文献   

10.
Three new flavone C-glycosides, paraquinins A–C, were isolated from the aerial parts of Paraquilegia microphylla (Royle) Dromm. et Hutch, a Tibetan medicine distributed in the Qinghai-Tibet plateau. On the basis of 1D and 2D NMR evidence, their structures were elucidated as acacetin-6-C-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (1), acacetin-6-C- l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (2), and acacetin-6-C-α-l-rhamnopyranosyl-(1 → 2)-(6?-O-E-feruloyl)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (3).  相似文献   

11.
Two new glycosides, 1,6-di-O-syringoyl-β-d-glucopyranose (1) and quercetin 3-O-[(3-O-syringoyl-α-l-rhamnopyranosyl)-(1 → 6)-β-d-glucopyranoside] (2), along with seven known compounds were isolated from the MeOH extract of Leonurus japonicus. The structures of these compounds were elucidated by spectral analysis.  相似文献   

12.
A new sesquiterpenoid glycoside, cryptomeridiol 11-O-β-d-xylopyranosyl-(1→6)-β-d- glucopyranoside (1), two new phenylpropanoid glycosides, 3,4-dihydroxy-allylbenzene 3-O-β-d-glucopyranosyl-4-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (2), and 3,4,5-trihydroxy-allylbenzene 3-O-β-d-glucopyranosyl-4-O-β-d-glucopyranoside (3), along with four known phenylpropanoid glycosides (4–7), were isolated from the tuber of Ophiopogon japonicus. Compounds 4–7 were obtained from the genus Ophiopogon for the first time. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR and HR-ESI-MS.  相似文献   

13.
A new triterpenoid saponin acylated with monoterpenic acid, together with two known triterpenoid saponins, has been isolated from the fruit of Gymnocladus chinensis Baill. Their structures were elucidated as 2β,23-dihydroxy-3-O-α-L-rhamnopyranosyl-21-O-{(6S)-2-trans-2,6-dimethyl-6-O-[3-O-(β-D-glucopyranosyl)-4-O-((6S)-2-trans-2,6-dimethyl-6-hydroxy-2,7-octadienoyl)-β-L-arabinopyranosyl]-2,7-octadienoyl}-acacic acid 28-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-[α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranosyl ester (1), gymnocladus saponin E (2), and gymnocladus saponin F2 (3).  相似文献   

14.
Three new cycloartane glycosides were isolated from the whole herbs of Camptosorus sibiricus Rupr. By means of chemical and spectroscopic methods (IR, 1D, and 2D NMR, HR-MS, ESI-MS), the structures were established as (24R)-3β,7β,24,25, 30-pentahydroxycycloartane-3-O-β-d-glucopyranosyl-(1 → 4)-[α-l-arabinopyranosyl-(1 → 2)-β-d-glucopyranosyl]-24-O-β-d-glucopyranoside (1), (24R)-3β,7β,24,25,30-pentahydroxycycloartane-3-O-β-d-glucopyranosyl-(1 → 4)-[β-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl]-24-O-β-d-glucopyranoside (2), (24R)-3β,7β,24,25,30-pentahydroxycycloartane-30-O-coumaroyl-3-O-β-d-glucopyranosyl-24-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (3). At the same time, the new compounds were tested for their cytotoxicities in vitro against human tumor cell lines (A375-S2, Hela) using MTT method.  相似文献   

15.
An investigation of Leptadenia pyrotechnica (Forsk.) Decne (Asclepiadaceace) chemical constituents led to the isolation of six flavonoids, kaempferol-3-O-α-l-rhamnopyranosyl (1′″→6″)-O-β-d-glucopyranoside (E-I.1), kaempferol-3-O-β-d-rhamnopyranosyl (1′″→6″)-O-β-d-glucopyranoside (E-I.2), texasin-7-O-β-d-glucopyranoside E-II.2, kaempferol-3-O-β-d-glucopyranoside (E-III.1), kaempferol (E-IV.1) and kaempferide-3-O-α-l-rhamnopyranosyl (1′″→6″)-O-β-d-glucopyranoside (E-I.1a). The isolation of these compounds was carried out using Sephadex LH-20 low pressure liquid chromatography (LPLC), preparative paper chromatography (PC), and high performance liquid chromatography (HPLC). The chemical structures of the isolated compounds were established by mass spectrometry (FAB- and EI- techniques), nuclear magnetic resonance NMR (1H-, 13C- and COSY) spectral data and ultraviolet (UV) spectroscopic techniques. The acute toxicity of total alcoholic and total flavonoid extracts were examined by brine shrimp. The LC50 values were 11.89 and 84.14 ppm for the total alcoholic and total flavonoid extracts, respectively. The mortality rates of the isolated flavonoid fractions of E-I, E-I.1, E-I.2 represent the higher percentages of mortality compared with the rest of the flavonoid fractions. The plant exhibited activity as an antitumor agent in the initial potato disc screen.  相似文献   

16.
Five new phenolic glycosides, 2-hydroxy-(2′E)-prenyl benzoate-2,4′-di-O-β-d-glucopyranoside (1), 2-hydroxy-(2′E)-prenyl benzoate-2-O-α-l-arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (2), 4-methylphenol-1-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside (3), 4-methylphenol-1-O-α-l-arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (4), and 3,5-dimethoxyphenol-1-O-β-d-apiofuranosyl-(1 → 2)-β-d-glucopyranoside (5), together with six known glycosides (611), were isolated from the n-BuOH fraction of the EtOH extract of Pilea cavaleriei Levl subsp. cavaleriei. Their structures were elucidated by extensive spectroscopic analysis, including 1D and 2D NMR spectroscopy as well as HR-ESI-MS, and chemical evidences. All these compounds were isolated from the genus Pilea for the first time.  相似文献   

17.
Three new furostanol oligoglycosides, named aspacochioside A (1), B (2) and C (3), together with the known compound 3-O-[{α-l-rhamnopyranosyl-(1→4)}{β-d-glucopyranosyl}]-26-O-[β-d-glucopyranosyl]-(25S)-5β-spirostane-3β-ol were isolated from the roots of Asparagus cochinchinensis. Their structures were elucidated by spectroscopic techniques (IR, HR-ESIMS, ESIMS/MS, 1D and 2D NMR) and chemical methods as 3-O-[{α-l-rhamnopyranosyl-(1→4)}{β-d-glucopyranosyl}]-26-O-[β-d-glucopyranosyl]-(25S)-5β-furostane-3β,22α,26-triol (1), 3-O-[{α-l-rhamnopyranosyl-(1→4)}{β-d-glucopyranosyl}]-26-O-[β-d-glucopyranosyl]-22α-methoxy-(25S)-5β-furostane-3β,26-diol (2), and 3-O-[{α-l-rhamnopyranosyl-(1→4)}{β-d-glucopyranosyl}]-26-O-[β-d-glucopyranosyl]-(25S)-5β-furost-20(22)-en-3β,26-diol (3).  相似文献   

18.
Two new and six known steroidal glucosides were isolated from the tuber of Ophiopogon japonicus. The new steroidal glucosides were established as (20R,25R)-26-O-β-d-glucopyranosyl-3β,26-dihydroxycholest-5-en-16,22-dioxo-3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranoside (1) and 26-O-β-d-glucopyranosyl-(25R)-furost-5-en-3β,14α,17α,22α,26-pentaol-3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranoside (3) on the basis of spectroscopic data as well as chemical evidence.  相似文献   

19.
Microbial transformation of oleanolic acid (1) was carried out. Six transformed products (27) from 1 by Alternaria longipes and three transformed products (810) from 1 by Penicillium adametzi were isolated. Their structures were elucidated as 2α,3α,19α-trihydroxy-ursolic acid-28-O-β-d-glucopyranoside (2), 2α,3β,19α-trihydroxy-ursolic acid-28-O-β-d-glucopyranoside (3), oleanolic acid 28-O-β-d-glucopyranosyl ester (4), oleanolic acid-3-O-β-d-glucopyranoside (5), 3-O-(β-d-glucopyranosyl)-oleanolic acid-28-O-β-d-glucopyranoside (6), 2α,3β,19a-trihydroxy-oleanolic acid-28-O-β-d-glucopyranoside (7), 21β-hydroxyl oleanolic acid-28-O-β-d-glucopyranoside (8), 21β-hydroxyl oleanolic acid (9), and 7α,21β-dihydroxyl oleanolic acid (10) based on the extensive NMR studies. Among them, 10 was a new compound and compounds 5 and 810 had stronger cytotoxic activities against Hela cell lines than the substrate. At the same time, it was reported for the first time in this paper that the skeletons of compounds 2 and 3 were changed from oleanane to uranane and seven glycosidation products were obtained by biotransformation.  相似文献   

20.
Two new flavone glycosides were isolated from the seeds of Impatiens balsamina L. and their structures were determined as quercetin-3-O-[α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (1), and quercetin-3-O-[(6?-O-caffeoyl)-α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (2) on the basis of various spectral and chemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号