首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new triterpenoid saponins (14) were isolated from the seed residue of Hippophae rhamnoides subsp. sinensis, named 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-13-ene-19-one-28-oic acid 28-O-β-d-glucopyranosyl ester (1), 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-d-glucopyranosyl ester (2), 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranosyl-13-ene-19-one-28-oic acid 28-O-β-d-glucopyranosyl ester (3), and 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-d-glucopyranosyl ester (4), and their structures were elucidated on the basis of spectroscopic and chemical methods.  相似文献   

2.
Two new furostanol glycosides, ophiopogonins H (1) and I (2), were isolated from the fibrous root of Ophiopogon japonicus. The structures of 1 and 2 were established as (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-22α-hydroxyfurost-5-ene-3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside and (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-20α-hydroxyfurost-5,22-diene-3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside on the basis of spectroscopic means including HR-ESI-MS, 1D and 2D NMR experiments.  相似文献   

3.
Two novel furostanol saponins were isolated from the fresh tubers of Ophiopogon japonicus. Comprehensive spectroscopic analysis allowed the chemical structures of the compounds to be assigned as (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-22α-hydroxyfurost-5-ene-3-O-β-d-xylopyranosyl-(1 → 4)-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside (1, ophiopogonin F) and (25R)-26-[(O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl)]-22α-hydroxyfurost-5-ene-3-O-β-d-xylopyranosyl-(1 → 4)-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside (2, ophiopogonin G). The rare furostanol saponins with two glucosyl residues at C-26 position were isolated from the natural source for the first time.  相似文献   

4.
Two new furostanol saponins ophiopogonins J (1) and K (2) were isolated from the fibrous roots of Ophiopogon japonicus. The structures of 1 and 2 were established as (25R)-26-O-[(β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-14-hydroxy-furost-5,20(22)-diene 3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside (1), and (25R)-26-O-[(β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-furost-5,20(22)-diene 3-O-α-l-rhamnopyranosyl-(1 → 2)[(β-d-xylopyranosyl-(1 → 4)-β-d-glucopyranoside)] (2) on the basis of spectroscopic means including HRESIMS, 1D, and 2D NMR experiments.  相似文献   

5.
Two new steroidal saponins and two known flavonoid glycosides were isolated from the fruits of Tribulus terrestris. Their structures were assigned by spectroscopic analysis and chemical reaction as 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-12-one-3β,22α,26-triol-3-O-β-d-glucopyranosyl (1 → 2)-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (1), 26-O-β-d-glucopyranosyl-(25S)-5α-furostan-22-methoxy-2α,3β,26-triol-3-O-β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (2), kaempferol-3-gentiobioside (3), and isorhamnetin-3-gentiobioside (4).  相似文献   

6.
Three new oleanane-type triterpenoid saponins named celosins H (1), I (2), and J (3) were isolated from the seeds of Celosia argentea L. Their structures were characterized as 3-O-β-d-xylopyranosyl-(1 → 3)-β-d-glucuronopyranosyl-polygalagenin 28-O-β-d-glucopyranosyl ester, 3-O-β-d-glucuronopyranosyl-medicagenic acid 28-O-β-d-xylcopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-β-d-fucopyranosyl ester, and 3-O-β-d-glucuronopyranosyl-medicagenic acid 28-O-α-l-arabinopyranosyl-(1 → 3)-[β-d-xylcopyranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-d-fucopyranosyl ester by NMR, MS, and chemical evidences, respectively. In our opinion, celosins H–J could be used as chemical markers for the quality control of C. argentea seeds.  相似文献   

7.
Three new alkaloids together with two known compounds have been isolated from the roots of Clematis manshurica. On the basis of their spectroscopic and chemical evidence, the new compounds were elucidated as methyl 7-ethoxy-3-indolecarbonate (2), methyl 7-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranosyl 3-indolecarbonate (3) and α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranosyl 3-indolecarbonate (4).  相似文献   

8.
Two new and six known steroidal glucosides were isolated from the tuber of Ophiopogon japonicus. The new steroidal glucosides were established as (20R,25R)-26-O-β-d-glucopyranosyl-3β,26-dihydroxycholest-5-en-16,22-dioxo-3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranoside (1) and 26-O-β-d-glucopyranosyl-(25R)-furost-5-en-3β,14α,17α,22α,26-pentaol-3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranoside (3) on the basis of spectroscopic data as well as chemical evidence.  相似文献   

9.
A new xanthone glycoside (1) has been isolated from Swertia franchetiana together with five known xanthone glycosides. Their structures were elucidated as 7-O-[β-d-xylopyranosyl-(1→2)-β-d-xylopyranosyl]-1,7,8-trihydroxy-3-methoxyxanthone (1), 7-O-[α-l-rhamnopyranosyl-(1→2)-β-d-xylopyranosyl]-1,7,8-trihydroxy-3-methoxyxanthone (2), 8-O-β-d-glucopyranosyl-1,3,5,8-tetrahydroxyxanthone (3), 1-O-β-d-glucopyranosyl-1-hydroxy-3,7,8-trimethoxyxanthone (4), 1-O-[β-d-xylopyranosyl-(1→6)-β-d-glucopyranosyl]-1-hydroxy-2,3,5-trimethoxyxanthone (5) and 1-O-[β-d-xylopyranosyl-(1→6)-β-d-glucopyranosyl]-1-hydroxy-3,5-dimethoxyxanthone (6) on the basis of spectroscopic evidence.  相似文献   

10.
A new bidesmoside triterpenoid saponin, named stauntoside C1 (1), along with three known saponins (24) was isolated from Stauntonia chinensis DC. (Lardizabalaceae). Their structures were established by means of spectral and chemical methods as 3-O-β-d-xylopyranosyl-(1 → 2)-O-β-d-xylopyranosyl-(1 → 3)-O-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl oleanolic acid 28-O-α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl ester (1), scabiosaponin E (2), sieboldianoside B (3), and kizutasaponin K12 (4).  相似文献   

11.
Four new furostanol glycosides were isolated from the flowers of Hosta plantaginea (Lam.) Aschers. On the basis of spectroscopic methods including 1D and 2D NMR experiments, their structures were elucidated as 26-O-β-d-glucopyranosyl-(25R)-22-O-methyl-5α-furostan-2α,3β,22ξ,26-tetrol 3-O-α-l-rhamnopyranosyl-(1 → 4)-O-β-d-xylopyranosyl-(1 → 3)-[O-β-d-glucopyranosyl-(1 → 2)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (hostaplantagineoside A, 1), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-20(22)-ene-2α,3β,26-triol-3-O-β-d-glucopyranosyl-(1 → 2)-[O-β-d-xylopyranosyl-(1 → 3)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (hostaplantagineoside B, 2), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-22(23)-ene-2α,3β,20α,26-tetraol-3-O-β-d-glucopyranosyl-(1 → 2)-[O-β-d-xylopyranosyl-(1 → 3)]-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-galactopyranoside (hostaplantagineoside C, 3), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-20(22)-ene-2α,3β,26-triol-3-O-α-l-rhamnopyranosyl-(1 → 4)-O-β-d-xylopyranosyl-(1 → 3)-[O-β-d-glucopyranosyl-(1 → 2)]-O-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (hostaplantagineoside D, 4).  相似文献   

12.
Two new furostanol saponins, together with two known steroidal saponins, were isolated from the seeds of Trigonella foenum-graecum L. The structures of the new compounds were determined by detailed analysis of 1D NMR, 2D NMR, MS spectra and chemical evidences as 26-O-β-d-glucopyranosyl-(25S)-5-en-furost-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 4)]-β-d-glucopyranoside (1) and 26-O-β-d-glucopyranosyl-(25R)-5-en-furost-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 6)]-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 4)]-β-d-glucopyranoside (2).  相似文献   

13.
Two new furostanol saponins were isolated from the fruits of Tribulus terrestris L. Their structures were established as 26-O-β-d-glucopyranosyl-(25S)-5α-furost-20(22)-en-3β,26-diol-3-O-α-l-rhamnopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 4)]-β-d-galactopyranoside (1) and 26-O-β-d-glucopyranosyl-(25S)-5α-furost-20(22)-en-12-one-3β,26-diol-3-O-β-d-galactopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-galactopyranoside (2) on the basis of spectroscopic data as well as chemical evidence.  相似文献   

14.
A new triterpenoid saponin named clematichinenoside AR2, along with the six known compounds, was isolated and characterized from Clematis chinensis Osbeck (Ranunculaceae), a commonly used traditional Chinese medicine with anti-inflammatory and anti-rheumatoid activities. The structure of the new saponin was elucidated as 3-O-β-[(O-α-l-rhamnopyranosyl-(1 → 6)-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-ribopyranosyl-(1 → 3)-O-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl)oxy]olean-12-en-21α-hydroxy-28-oic acid-O-α-l-rhamnopyranosyl-(1 → 4)-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl ester (1) by spectral analysis and chemical methods. The effects of two major saponins (clematichinenosides AR and AR2) on the secretion of TNF-α in murine peritoneal macrophages induced by lipopolysaccharides were further investigated. The result indicated that a majority of triterpenoid saponins of this herb may be useful in the exploration of lead compounds for the treatment of some autoimmune diseases.  相似文献   

15.
Two new saponins have been isolated from the stem barks of Albizzia julibrissin Durazz, and their structures identified as 3-O-[β-d-xylopyranosyl-(1 → 2)-β-d-fucopyranosyl-(1 → 6)-β-d-2-deoxy-2-acetoamidoglucopyranosyl]-21-O-{(6S)-2- trans -2-hydroxymethyl-6-methyl-6-O-[4-O-((6S )-2- trans -2-hydroxymethyl-6-hydroxy-6-methyl-2,7-octadienoyl)-β-d-quinovopyranosyl]-2,7-octadienoyl}-acacic acid-28-O-β-d-glucopyranosyl-(1 → 3)-[α-l-arabinofuranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl ester (1) and 3-O-[β-d-xylopyranosyl-(1 → 2)-β-d-fucopyranosyl-(1 → 6)-β-d-2-deoxy-2-acetoamidoglucopyranosyl]-21-O-{(6S)-2-trans-2-hydroxymethyl-6-methyl-6-O-[3-O-((6S)-2-trans-2-hydroxymethyl-6-hydroxy-6-methyl-2,7-octadienoyl)-β-d-quinovopyranosyl]-2,7-octadienoyl}acacic acid 28-O-β-d-glucopyranosyl-(1 → 3)-[α-l-arabinofuranosyl-(1 → 4)]-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl ester (2), based on chemical and spectral evidences, named as julibroside J19 and julibroside J18, respectively. Both compounds show significant inhibition action against HeLa, Bel-7402 and MDA-MB-435 cancer cell lines in vitro.  相似文献   

16.
Two new triterpenoid saponins, named sarcandroside A and B, have been isolated from Sarcandra glabra (Thunb) Nakai. Their structures have been established as 3β,19α,20β-trihydroxyurs-11,13 (18)-diene-28,20β-lactone-3-O-β-d-glucopyranosyl (1 → 3)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-xylopyranoside (1) and 3-O-β-d-glucopyranosyl (1 → 3)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-xylopyranosyl-pomolic acid 28-O-β-d-glucopyranosyl ester (2) by means of spectral and chemical methods.  相似文献   

17.
A new triterpenoid saponin, tenuifoside A, was isolated together with three known triterpenoid saponins 2, 3, and 4 from the roots of Polygala tenuifolia Willd. With the help of chemical and spectral analyses (IR, MS, 1D-NMR, and 2D-NMR), the structure of the new saponin was elucidated as 3-O-β-d-glucopyranosyl presenegenin 28-O-β-d-xylopyranosyl-(1 → 3)-β-d-xylopyranosyl-(1 → 4)-[β-d-apiofuranosyl-(1 → 3)]-α-l-rhamnopyranosyl-(1 → 2)-[4-O-p-methoxycinnamoyl]-[α-l-rhamnopyranosyl-(1 → 3)]-β-d-fucopyranosyl ester (1). Three known triterpenoid saponins (24) were identified on the basis of spectroscopic data.  相似文献   

18.
A new triterpenoid saponin acylated with monoterpenic acid, together with two known triterpenoid saponins, has been isolated from the fruit of Gymnocladus chinensis Baill. Their structures were elucidated as 2β,23-dihydroxy-3-O-α-L-rhamnopyranosyl-21-O-{(6S)-2-trans-2,6-dimethyl-6-O-[3-O-(β-D-glucopyranosyl)-4-O-((6S)-2-trans-2,6-dimethyl-6-hydroxy-2,7-octadienoyl)-β-L-arabinopyranosyl]-2,7-octadienoyl}-acacic acid 28-O-β-D-xylopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-[α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranosyl ester (1), gymnocladus saponin E (2), and gymnocladus saponin F2 (3).  相似文献   

19.
Three new steroidal saponins, pallidiflosides A (1), B (2), and C (3), have been isolated from the dry bulbs of Fritillaria pallidiflora Schrenk. Their structures were elucidated as 26-O-β-d-glucopyranosyl-(25R)-furost-5,20(22)-dien-3β,26-diol-3-O-β-d-xylopyranosyl(1 → 4)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-glucopyranoside (1); 26-O-β-d-glucopyranosyl-3β,26-dihydroxyl-20,22-seco-25(R)-furost-5-en-20,22-dione-3-O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside (2); and (25R)-spirost-5-ene-3β,17α-diol-3-O-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (3) by spectroscopic techniques and chemical means.  相似文献   

20.
Two new flavone glycosides were isolated from the seeds of Impatiens balsamina L. and their structures were determined as quercetin-3-O-[α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (1), and quercetin-3-O-[(6?-O-caffeoyl)-α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (2) on the basis of various spectral and chemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号