首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveInvestigate the effects of dentin pretreatment with 2.5% titanium tetrafluoride (TiF4) aqueous solution followed by two-step self-etching (CLE/Clearfil SE Bond) and one-step self-etching adhesive systems (SBU/Single Bond Universal) on carious lesion inhibition at the tooth-restoration interface using an in situ model.DesignSixty-four cavities at the enamel-dentin junction of dental fragments were randomly distributed according to groups (n = 16): 1) TiF4 + CLE; 2) TiF4 + SBU; 3) CLE; 4) SBU. Cavities were restored using resin composite, and placed in intraoral palatal devices used by 16 volunteers for 21 days, to induce caries formation in situ. The fragments were then ground-flat to perform Knoop microhardness tests. Nine indentations were performed on each enamel and dentin substrate, subjacent to the restoration. Analysis of variance and Tukey’s test were applied.ResultsEnamel: groups receiving TiF4 dentin pretreatment (regardless of adhesive system and tooth-restoration interface distance) presented higher hardness means at a depth of 25 μm from the outer tooth surface (p < 0.0001). Dentin: groups receiving CLE presented higher means when applying TiF4 pretreatment, whereas groups restored with SBU presented higher means without pretreatment (p = 0.0003).ConclusionsDentin pretreatment with TiF4 inhibited demineralization of the enamel interface in situ, regardless of the adhesive, and TiF4 pretreatment followed by CLE application showed higher potential for inhibiting dentin demineralization at the interface.  相似文献   

2.
《Dental materials》2019,35(10):1471-1478
ObjectiveThis study investigated the effects of dentin pretreatment with 2.5% titanium tetrafluoride (TiF4) on nanomechanical properties, and the in situ gelatinolytic activity of the dentin–resin interface, for up to 6 months.MethodsTwenty-four human teeth were prepared by exposing occlusal flat dentin surfaces, and were randomly assigned to experimental groups, according to application or non-application of a TiF4 pretreatment, and to the adhesive systems (Clearfil SE Bond or Scotchbond Universal). Resin composite (Filtek Supreme Ultra) was built up incrementally on the teeth in all the groups. Then, the specimens were sectioned and randomly selected for evaluation at 24 h, 3 months and 6 months of storage time. The reduced modulus of elasticity (Er) and the nanohardness of the underlying dentin, as well as the hybrid layer and the adhesive layer were measured using a nanoindenter. Gelatinolytic activity at the dentin–resin interfaces was assessed by in situ zymography using quenched fluorescein-conjugated gelatin at 24 h and 6 months. Statistical analyses were performed with ANOVA and Tukey’s tests.ResultsThere were no differences in Er and nanohardness values between adhesives systems and pretreatment (p = 0.1250). In situ zymography showed significantly higher gelatinolytic activity after 6 months for all the experimental groups (p = 0.0004), but no differences between the adhesive systems (p = 0.7708) and the surface pretreatment (p = 0.4877). Significance: Dentin pretreatment with 2.5% TiF4 followed by self-etching adhesive systems did not influence nanomechanical properties or gelatinolytic activity of the adhesive–dentin interface layers, over time.  相似文献   

3.
ObjectivesThis study was aimed to evaluate the anti-matrix metalloproteinases (MMPs) ability of active components from citrus fruits (hesperetin: Hst, hesperidin: Hsd and naringenin: Nge).MethodsInactivation effects of citrus flavonoids (Hst, Hsd, Nge) at different concentrations on soluble collagenase were measured using a fluorometric assay. Matrix-bound endogenous MMPs activity was evaluated via dry mass loss and hydroxyproline (HYP) release of demineralized human dentin. Demineralized dentin beams were pretreated with 500 μg/mL citrus flavonoids for 10 min. Chlorhexidine (CHX) was used as inhibitor control. Beams pretreated with distilled water served as blank control. Dentin slabs were used for in situ zymography and evaluated under confocal microscopy. Ultrastructure of demineralized collagen fibers was exhibited by Transmission Electron Microscopy (TEM).ResultsCitrus flavonoids exhibited inactivation function on soluble MMPs and the extent of inactivation increased in a dose-dependent manner. The inactivation percent of citrus flavonoids reached above 90% at the concentration of 500 μg/mL. Compared with control group, citrus flavonoids pretreated demineralized dentin beams exhibited less dry mass loss, lower hydroxyproline release and more intact collagen architecture after 15 days storage. Dentin samples pretreated with citrus flavonoids showed lower enzymes activities in in situ zymography.ConclusionsHst, Hsd or Nge have anti-MMPs ability and can preserve dentin collagen from degradation.Clinical Significance: Hst, Hsd and Nge may have the potential to be used in dentin bonding systems and improve the resin-dentin bonding durability.  相似文献   

4.
《Dental materials》2019,35(11):1630-1636
ObjectiveTo evaluate the protease activity in dentin matrices subjected to lactic acid (LA) in comparison to polyacrylic acid (PAA) challenge model at cathepsin K (CT-K) optimum pH 5.5 to assess effectiveness of inhibitors in dentin collagen degradation.MethodsDentin disks measuring 0.5 mm prepared from human molars were completely demineralized in 10% H3PO4. Demineralized dentin disks were challenged with 0.1 M LA, 1.1 mM PAA, artificial saliva (AS), or deionized water (C) for 24 h or 7-days. Dentin collagen properties were tested by measurement of %dry mass change, and ultimate tensile strength (UTS). Degradation of dentin type I collagen was measured by telopeptide assays measuring the sub-product release of C-terminal cross-linked telopeptides (ICTP) and C-terminal peptide (CTX) in the incubation media in relation to total protein concentration, which correlates with matrix metalloproteinases (MMPs) and CT-K activities.ResultsGravimetric analysis showed statistically significant difference between C and other groups (p < 0.04) at 24 h. LA specimens showed significantly higher weight loss from 24 h to 7-days (p = 0.02). UTS revealed statistically significant difference between AS and LA at 24 h and 7-days. UTS at 24 h and 7-days for C and AS had significantly higher mean values compared to LA and PAA. Telopeptide assays reported that CTXtp results showed that LA at 24 h had significantly higher mean values compared to C and AS.SignificanceLA has the ability to activate endogenous CT-K in dentin as measured by the release of CTX (CT-K specific telopeptide). This LA based model has the potential application for further investigations on the activity and possible inhibitors of CT-K in human dentin.  相似文献   

5.
ObjectivesAcetate and lactate are important cariogenic acids produced by oral bacteria. They produced different residual dentin structures in artificial lesions of similar depth. We evaluated if such lesions responded in the same way to a polymer-induced-liquid-precursor (PILP) remineralization.DesignDentin blocks obtained from human third molars, divided into 6 groups (n = 3). Blocks were demineralized with acetate (66 h) or lactate (168 h) buffer at pH 5.0 to create 140 μm target lesion depths. A-DEM and L-DEM groups received no remineralization. Other groups were remineralized for 14 days. 100 μg/mL polyaspartate was added into the remineralizing buffer for A-PIL and L-PIL, whereas A-CAP and L-CAP were treated with the same solution but without polyaspartate. Cross-sectioned blocks were examined for shrinkage and AFM-topography. Line profiles of reduced elastic modulus (Er) were obtained by AFM-based nanoindentation across the lesion. Ultrastructures were examined with TEM.ResultsA-PIL and L-PIL recovered in shrinkage to the original height of the dentin and it appeared normal with tubules, with increases in Er at both outer flat and inner sloped zones. At the sloped zone, acetate lesions lost more Er but recovery rate after PILP was not statistically different from lactate lesions. A-CAP and L-CAP showed surface precipitates, significantly less recovery in shrinkage or Er as compared to PILP groups. TEM-ultrastructure of PILP groups showed similar structural and mineral components in the sloped zone for lesions produced by either acid.ConclusionsThe PILP process provided significant recovery of both structure and mechanical properties for artificial lesions produced with acetate or lactate.  相似文献   

6.
《Dental materials》2014,30(11):1245-1251
ObjectivesBonding stability of resinous adhesives to dentin is still problematic and may involve regional variations in dentin composition. This study is to evaluate the effect of dentin depth on the stability of resin-dentin bonds under thermocycling challenge.MethodsDentin slabs with two flat surfaces parallel to the tooth axis were obtained from extracted human third molars. The slabs were randomized into eight groups according to the location of dentin [deep dentin (DD) or superficial dentin (SD)], the adhesive treatment (Single Bond 2 or Clearfil S3 Bond), and the storage treatment (thermocycling for 5000 times vs. no). After the adhesive treatment and composite buildup on the dentin slabs, the micro-shear bond strength (μSBS) of each group was detected. The concentrations of cross-linked carboxyterminal telopeptide of type I collagen (ICTP) were also evaluated using an immunoassay to detect the degree of collagen degradation in each group.ResultsDentin depth, adhesive treatment and storage treatment all showed significant effects on both the μSBSs and the ICTP values (P < 0.05). Regardless of the adhesive type, thermocycling decreased the μSBSs and increased the ICTP values (P < 0.05). The DD groups showed significantly lower μSBSs and higher ICTP values than SD groups after thermocycling aging (P < 0.05). The treatment with Single Bond 2 significantly increased the ICTP values (P < 0.05), whereas Clearfil S3 Bond showed no effect on the ICTP values (P > 0.05).SignificanceDeep dentin showed significantly more bond degradation after thermocycling than did superficial dentin.  相似文献   

7.
《Dental materials》2014,30(7):752-758
ObjectiveThe objective of this study was to determine if Gluma dentin desensitizer (5.0% glutaraldehyde and 35% HEMA in water) can inhibit the endogenous MMPs of dentin matrices in 60 s and to evaluate its effect on dentin matrix stiffness and dry mass weight.MethodsDentin beams of 2 mm × 1 mm × 6 mm were obtained from extracted human third molars coronal dentin. To measure the influence of Gluma treatment time on total MMP activity of dentin, beams were dipped in 37% phosphoric acid (PA) for 15 s and rinsed in water. The acid-etched beams were then dipped in Gluma for 5, 15, 30 or 60 s, rinsed in water and incubated into SensoLyte generic MMP substrate (AnaSpec, Inc.) for 60 min. Controls were dipped in water for 60 s. Additional beams of 1 mm × 1 mm × 6 mm were completely demineralized in 37% PA for 18 h, rinsed and used to evaluate changes on the dry weight and modulus of elasticity (E) after 60 s of Gluma treatment followed by incubation in simulated body fluid buffer for 0, 1 or 4 weeks. E was measured by 3-pt flexure.ResultsGluma treatment inhibited total MMP activity of acid-etched dentin by 44, 50, 84, 86% after 5, 15, 30 or 60 s of exposure, respectively. All completely demineralized dentin beams lost stiffness after 1 and 4 weeks, with no significant differences between the control and Gluma-treated dentin. Gluma treatment for 60 s yielded significantly less dry mass loss than the control after 4 weeks.SignificanceThe use of Gluma may contribute to the preservation of adhesive interfaces by its cross-linking and inhibitory properties of endogenous dentin MMPs.  相似文献   

8.
ObjectiveEnterococcus faecalis is a gram-positive facultative anaerobic bacterium, which is present in 30–89% of teeth with postendodontic treatment failures. E. faecalis is capable of penetrating dentinal tubules and surviving as a monoculture after conventional endodontic therapy, indicating that it is resistant to commonly used endodontic disinfection protocols. Different E. faecalis strains have shown resistance to several antibiotics, and have been associated with both dental pathology and systemic infections. The aim of this study was to evaluate the efficacy of a genetically engineered bacteriophage to disinfect dentin infected with antibiotic resistant strains of E. faecalis.MethodsExtracted human dentin root segments were cemented into sealable two-chamber devices, fabricated from syringe needle caps to form in vitro infected-dentin models. The models were inoculated with an overnight suspension of either E. faecalis V583 (vancomycin resistant strain) or E. faecalis JH2-2 (fusidic acid and rifampin resistant, vancomycin sensitive strain). After 7 days of incubation at 37 °C, a suspension of a genetically engineered phage, ϕEf11/ϕFL1C(Δ36)PnisA, was added to the root canal of each infected dentin segment, and the incubation was continued for an additional 72-h. Dentin was harvested from the walls of each root canal and assayed for the residual titer of E. faecalis cells.ResultsThe recovered E. faecalis titer was reduced by 18% for the JH2-2 infected models, and by 99% for the V583 infected models.ConclusionTreatment: of E. faecalis-infected dentin with bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA consistently resulted in a decrease in the residual bacterial population of both vancomycin-sensitive and resistant strains.  相似文献   

9.
ObjectiveThe objective of this eight week, single-center, two-cell, double-blind, and randomized clinical study was to evaluate the dentin hypersensitivity reduction efficacy of a mouthwash using Pro-Argin? Mouthwash Technology containing 0.8% arginine, PVM/MA copolymer, pyrophosphates, and 0.05% sodium fluoride in an alcohol-free base (“Arginine Mouthwash”) compared to an ordinary mouthwash without any active ingredients (“Negative Control”).MethodsQualifying subjects who presented two hypersensitive teeth with a tactile hypersensitivity score between 10 and 50 g of force, and an air blast hypersensitivity score of 2 or 3 participated in this study and were randomized into one of two treatment groups. Subjects brushed with the toothbrush and fluoride toothpaste provided and then rinsed with 20 mL of their assigned mouthwash for 30 s twice daily. Subjects refrained from eating or drinking for 30 min after rinsing. Dentin hypersensitivity assessments, as well as examinations of oral hard and soft tissues, were conducted at the baseline visit and again after two weeks, four weeks and eight weeks of product use.ResultsNinety (90) subjects entered and completed the eight week study. After two weeks, four weeks and eight weeks of product use, subjects in the Arginine Mouthwash group exhibited statistically significant (p < 0.05) improvements in mean tactile and air blast hypersensitivity scores as compared to the Negative Control Mouthwash.ConclusionThe results of this study support the conclusion that the Arginine Mouthwash provides a significant reduction in dentin hypersensitivity after eight weeks of product use as compared to a Negative Control mouthwash.  相似文献   

10.
Objective

This study evaluated the antimicrobial properties, cytotoxicity, and mineralization potential of methylcellulose hydrogels loaded with low concentrations of double antibiotic pastes (DAP).

Materials and methods

The direct and residual antibacterial effects of 1, 5, and 10 mg/mL of DAP loaded into hydrogels as well as calcium hydroxide (Ca(OH)2) were tested against single-species biofilms of Enterococcus faecalis and dual-species biofilms (Enterococcus faecalis and Prevotella intermedia). The effects of DAP hydrogels on proliferation and mineralization of dental pulp stem cells (DPSC) were tested using MTT assays, alkaline phosphate activity (ALP), and alizarin red staining. Fisher’s exact tests, Wilcoxon rank sum tests, and one-way ANOVA were used for statistical analyses (α = 0.05).

Results

All tested concentrations of DAP hydrogels as well as Ca(OH)2 demonstrated significant direct antibacterial effects against single- and dual-species biofilms. However, only 5 and 10 mg/mL of DAP hydrogels exhibited significant residual antibacterial effects against both types of tested biofilms. Only 1 mg/mL of DAP hydrogels did not have significant negative effects on DPSC viability, ALP activity, and mineralization nodule formation. However, 5 and 10 mg/mL of DAP hydrogels caused significant negative effects on cytotoxicity and mineralization nodule formation of DPSC.

Conclusions

Hydrogels containing 1 mg/mL DAP offered significant direct antibacterial effects against single- and dual-species biofilms without causing significant negative effects on viability, ALP activity, and mineralization nodule formation of DPSC.

Clinical relevance

The methylcellulose-based hydrogel proposed in this study can be used clinically as a biocompatible system to deliver controlled low concentrations of DAP.

  相似文献   

11.
ObjectivesThe objectives of this study were to examine the effect of pulpal pressure on the microtensile bond strength (mTBS) of luting resin cements to human dentin and the permeability of dentin surfaces pre-treated with an adhesive and a self-etching primer.MethodsCylindrical composite blocks were luted with resin cements (RelyX ARC, 3M ESPE: ARC; Panavia F, Kuraray Medical Inc.: PF; RelyX Unicem, 3M ESPE: UN) in the absence or presence of simulated pulpal pressure. The application of Adper Single Bond 2 (3M ESPE) and ED primer 2.0 (Kuraray) was performed under 0 cm H2O. After each resin cement was applied, the pulpal pressure group was subjected to 20 cm H2O of hydrostatic pressure for 10 min during the initial setting period. Testing for mTBS was performed on 0.9 mm × 0.9 mm sectioned beams after 24 h water-storage. Scanning electron microscopy was performed to investigate the fractured surfaces after mTBS testing and additional dentin surfaces that were treated by an etchant, ED primer 2.0 and UN. Fluid permeability was measured on dentin surfaces that were applied with Adper Single Bond 2 and ED primer 2.0.ResultsApplication of pulpal pressure reduced mTBS significantly in groups ARC and PF. Porous bonding interfaces due to water permeability through the cured adhesive were observed on fractured surfaces. Dentin surfaces that were applied with the adhesive and the primer were more permeable than smear layer-covered dentin. The mTBS of UN was significantly lower than ARC and PF regardless of the absence/presence of pulpal pressure.SignificanceFluid permeation during the initial setting period deteriorated the bonding quality of resin cements.  相似文献   

12.
ObjectiveTo assess the effect of chitosan, at concentrations of 2.5% and 5.0%, on the wettability of the eroded dentin, followed by analysis of surface morphology by SEM.Methods104 bovine dentin slabs were ground, polished and then immersed in 20 mL of citric acid (pH = 3.2) under continuous stirring for 2 h. Specimens were randomly divided according to the dentin substrate: sound and eroded, and then, subdivided into 4 groups (n = 10): without rewetting (control), 1% acetic acid, 2.5% chitosan and 5.0% chitosan. Then, a drop of the adhesive system Single Bond 2 (3M) was deposited onto surface of each specimen. The contact angle between dentin surface and the adhesive system was measured by using a goniometer. The other 24 specimens were subjected to analysis under SEM. Statistical analysis was performed using the normality test (Kolmogorov-Smirnov) and Analysis of Variance (ANOVA) (p > 0.05).ResultsNo differences were found between the angles produced on the eroded dentin rewetting with chitosan at the concentrations of 2.5% and 5%.ConclusionThe chitosan, regardless of the concentration used, did not influence the eroded dentin wettability. Through SEM analysis, it was found particles of chitosan deposited on the surface and within the dentinal tubules.  相似文献   

13.
《Dental materials》2019,35(10):1479-1489
ObjectivesRoot canal re-infection and weakening of roots are two main challenges in endodontics. The objectives of the study were: (1) to develop a novel root canal sealer containing dimethylaminohexadecyl methacrylate (DMAHDM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to investigate the effects on the physical, anti-biofilm, remineralizing ions, and hardness of human dentin for the first time.MethodsMethacrylate-resin dual-cured root canal sealer contained 5% DMAHDM, 0.15% NAg, and NACP at 10%, 20% and 30% mass fractions. The flow, film thickness, and Ca and P ions release were investigated. The effects of NACP on radicular dentin hardness after treatment with sodium hypochlorite (NaOCL) and ethylenediaminetetraacetic acid (EDTA) were assessed. Antibacterial properties were measured against Enterococcus faecalis (E. faecalis)-impregnated dentin blocks; colony-forming units (CFU) and live/dead assays were measured.ResultsIncorporating DMAHDM, NAg and NACP did not adversely influence the flow and film thickness properties. Sealer with 30% NACP neutralized the acid and increased the solution pH (p < 0.05). Sealer containing 30% NACP regenerated dentin minerals lost due to NaOCL and EDTA treatment, and increased the dentin hardness to match that of sound dentin (p > 0.1). Incorporating 5% DMAHDM and 0.15% NAg reduced biofilm CFU of E. faecalis-impregnated dentin blocks by nearly 3 logs when compared control group (p < 0.05).SignificanceThe novel therapeutic root canal sealer with triple bioactive agents of DMAHDM, NAg and NACP neutralized acid, raised the pH, regenerated dentin minerals, increased root dentin hardness, and reduced dentin-block-impregnated biofilm CFU by 3 logs. This new sealer with highly desirable antibacterial and remineralization properties are promising to increase the success rate of endodontic therapy and strengthen the tooth root structures.  相似文献   

14.
ObjectivesThe purpose of this work was to investigate the effects of layering techniques in resin composite restorations on the micro-tensile bond strength to the dentin of the occlusal cavity.MethodsHuman premolars were extracted and randomly divided into four groups. The occlusal enamel was then removed to expose a flat superficial dentin surface. Cavities 3.5 mm long and 3.5 mm wide were prepared to a depth 3 mm below the dentin surface. The adhesive Single Bond was applied according to the manufacturer's instructions. The teeth were then restored with Z100 resin composite as follows: Group 1 was restored in horizontal increments (three layers). Groups 2 and 3 were restored in different oblique increments (three layers). Group 4 was restored in oblique increments (four layers). After 24 h storage at 37 °C in water, all the teeth were sectioned to obtain bar-shaped specimens with a bonded surface area of approximately 0.9 mm × 0.9 mm. Dentin micro-tensile bond strength was measured at a crosshead speed of 0.5 mm/min. The results obtained were statistically analyzed using one-way ANOVA and SNK test at a significance level of P = 0.05. All fractures were then observed under a scanning electron microscope (SEM).ResultsThe results showed that there is a significant difference between the strength of the micro-tensile bonds to the dentin of occlusal cavities depending on which of the four layering restorative techniques was used (P < 0.01). SEM observation showed that failure patterns were most evidently interfacial cohesive failure.SignificanceLayering techniques in resin composite restorations affected the micro-tensile bond strength between the resin composite and the dentin. But the outcomes related to only Single Bond, as the same using other adhesives might have different outcomes.  相似文献   

15.
《Dental materials》2020,36(10):e316-e328
ObjectiveDentin remineralization at the bonded interface would protect it from external risk factors, therefore, would enhance the longevity of restoration and combat secondary caries. Dental biofilm, as one of the critical biological factors in caries formation, should not be neglected in the assessment of caries preventive agents. In this work, the remineralization effectiveness of demineralized human dentin in a multi-species dental biofilm environment via an adhesive containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) was investigated.MethodsDentin demineralization was promoted by subjecting samples to a three-species acidic biofilm containing Streptococcus mutans, Streptococcus sanguinis, Streptococcus gordonii for 24 h. Samples were divided into a control group, a DMAHDM adhesive group, an NACP group, and an NACP + DMAHDM adhesive group. A bonded model containing a control-bonded group, a DMAHDM-bonded group, an NACP-bonded group, and an NACP + DMAHDM-bonded group was also included in this study. All samples were subjected to a remineralization protocol consisting of 4-h exposure per 24-h period in brain heart infusion broth plus 1% sucrose (BHIS) followed by immersion in artificial saliva for the remaining period. The pH of BHIS after 4-h immersion was measured every other day. After 14 days, the biofilm was assessed for colony-forming unit (CFU) count, lactic acid production, live/dead staining, and calcium and phosphate content. The mineral changes in the demineralized dentin samples were analyzed by transverse microradiography.ResultsThe in vitro experiment results showed that the NACP + DMAHDM adhesive effectively achieved acid neutralization, decreased biofilm colony-forming unit (CFU) count, decreased biofilm lactic acid production, and increased biofilm calcium and phosphate content. The NACP + DMAHDM adhesive group had higher remineralization value than the NACP or DMAHDM alone adhesive group.SignificanceThe NACP + DMAHDM adhesive was effective in remineralizing dentin lesion in a biofilm model. It is promising to use NACP + DMAHDM adhesive to protect bonded interface, inhibit secondary caries, and prolong the longevity of restoration.  相似文献   

16.
ObjectiveThe aim of this study was to induce artificial caries in human sound dentin by means of a microcosm model using human saliva as source of bacteria and to apply a novel dual-energy micro-CT technique to quantify biofilm formation and evaluate its demineralization potential.DesignEight sound third molars had the occlusal enamel removed by cutting with a diamond disk and five cylindrical cavities (±2 mm diameter; ±1.5 mm depth) were prepared over the dentin surface in each specimen (n = 40 cavities). After sterilization, each specimen received the bacterial salivary inoculum obtained from individuals without any systemic diseases presenting dentin caries lesions and were incubated in BHI added of with 5% sucrose for 96 h to allow biofilm formation. After that, two consecutive micro-CT scans were acquired from each specimen (40kv and 70kv). Reconstruction of the images was performed using standardized parameters. After alignment, registration, filtering and image calculations, a final stack of images containing the biofilm volume was obtained from each prepared cavity. Dentin demineralization degree was quantified by comparison with sound dentin areas. All data were analyzed using Shapiro-Wilk test and Spearman correlation using α=5%.ResultsDual-energy micro-CT technique disclosed biofilm formation in all cavities. Biofilm volume inside each cavity varied from 0.30 to 1.57 mm3. A positive correlation between cavity volume and volume of formed biofilm was obtained (0.77, p < 0.01). The mineral decrease obtained in dentin was high (± 90%) for all cavities and all demineralized areas showed mineral density values lower than a defined threshold for dentin caries (1.2 g/cm3).ConclusionDual-energy micro-CT technique was successful in the quantification of a microcosm human bacterial biofilm formation and to quantify its demineralization potential in vitro.  相似文献   

17.
ObjectivesThe purpose of this study was to examine the antibiofilm and the antibacterial activity efficacy of H2O2 alone and combined with silver salts.Materials and methodsWe used standard and innovative methods to assess the antibacterial effects of (i) H2O2 at 300 e 600 ppm (parts per million), and at 3%; (ii) the same H2O2 concentrations with the addition of Ag+ salts at 5 and 10 ppm, against a large number of microorganisms, in planctonic and sessile (biofilm) forms.ResultsAll of the microorganisms tested (including some nosocomial pathogens, such as Legionella pneumophila, Staphylococcus aureus, Pseudomonas aeruginosa) were inhibited at concentrations lower than those commonly used in dental unit waterlines (MIC < 600 ppm)ConclusionsH2O2 with silver salts displayed greater antibiofilm efficacy than the negative control (H2O2 without silver ions).  相似文献   

18.
《Journal of endodontics》2020,46(11):1689-1694
IntroductionThe aim of this study was to evaluate the antibiofilm effectiveness of calcium hydroxide (Ca[OH]2) mixed with 0.02% silver nanoparticles (AgNPs) in comparison with 1 mg/mL triple antibiotic paste (TAP), Ca(OH)2, and 0.02% AgNPs against Enterococcus faecalis using confocal laser scanning microscopy.MethodsNinety dentin disks were prepared, sterilized, and inoculated with E. faecalis to establish a 3-week-old biofilm model. The samples received 1 mg/mL TAP, a mixture of Ca(OH)2 + 0.02% AgNPs, Ca(OH)2, or 0.02% AgNPs (n = 20/group). Specimens in each group were equally subdivided into 2 groups and incubated for 2 and 4 weeks. Untreated dentin disks (n = 10) were exposed to sterile saline solution and acted as a positive control. Sterile dentin disks (n = 10) were incubated anaerobically in brain-heart infusion broth and served as a negative control. At the end of each observation period, the specimens were stained with LIVE/DEAD BacLight dye (Molecular Probes, Eugene, OR) and analyzed with confocal laser scanning microscopy to determine the proportion of dead cells in the biofilm. Statistical analysis was performed using the generalized linear model repeated measure and Tukey tests (P < .05).ResultsA significantly greater proportion of dead cells was observed in the samples treated with 1 mg/mL TAP (90.39% and 99.41%) and a mixture of Ca(OH)2 + AgNPs (90.85% and 98.49%) than those in the samples treated with Ca(OH)2 (76.14% and 91.71%) and AgNPs (62.83% and 88.07%) at 2 and 4 weeks, respectively. A significant difference in the antibiofilm effectiveness was observed among the groups (P < .05), except for 1 mg/mL TAP and the mixture of Ca(OH)2 + AgNPs (P > .05). All medicaments showed a significant difference in antibiofilm efficacy at the 2 time points.ConclusionsThe mixture of Ca(OH)2 + AgNPs showed a high antibiofilm effect and was not significantly different from 1 mg/mL TAP. Furthermore, long-term contact between intracanal medicaments and bacterial cells achieved significant antibiofilm efficacy.  相似文献   

19.

Introduction

Regenerative endodontics is a valuable treatment modality for immature teeth with pulpal necrosis. A common feature in regenerative cases is the use of intracanal medicaments. Although these medicaments are chosen because of their antibacterial properties, their enduring effect on dentin (conditioning) and the subsequent impact on stem cell survival has never been evaluated. In this study, we hypothesized that triple antibiotic paste (TAP), double antibiotic paste (DAP), or Ca(OH)2 has an indirect adverse effect on the survival of stem cells of apical papilla (SCAP) by dentin conditioning.

Methods

Human dentin disks were created with a standardized root canal diameter of 3.2 mm. The disks were then exposed to either TAP or DAP (at concentrations of 1 mg/mL or 1000 mg/mL), Ca(OH)2 (Ultracal), or Hank's balanced salt solution for 7 or 28 days. Next, the medicaments were removed with copious irrigation, followed by placement of SCAP in a Matrigel scaffold in the lumen of the disks. The bioengineered constructs were cultured for 7 days, followed by determination of cellular viability by using the CellTiter-Glo luminescence assay. Data were analyzed using 1-way analysis of variance with Bonferroni post hoc test.

Results

Exposure of dentin to TAP or DAP at 1000 mg/mL resulted in no viable SCAP, whereas the use of these medicaments at 1 mg/mL had no adverse effect on cell viability. In contrast, Ca(OH)2 treatment significantly increased SCAP survival and proliferation when compared with the control group.

Conclusions

Dentin conditioning with TAP and DAP at commonly used clinical concentration (approximately 1000 mg/mL) alters dentin in such a way as to prevent SCAP survival. This lethal indirect effect of both TAP and DAP can be largely avoided if these medicaments are used at the 1 mg/mL concentration. Conversely, dentin conditioning with Ca(OH)2 promotes SCAP survival and proliferation.  相似文献   

20.
ObjectiveThis study evaluated the combined effect of fluoride varnish to Er:YAG or Nd:YAG laser on permeability of eroded root dentine.DesignSixty slabs of bovine root dentine (2 × 2 × 2 mm) were eroded with citric acid 0.3% (pH 3.2) during 2 h and then kept in artificial saliva during 24 h. Specimens were randomly assigned in 6 groups (n = 10), to receive the following treatments: fluoride varnish; fluoride varnish + Er:YAG laser; fluoride varnish + Nd:YAG laser; non-fluoride varnish; non-fluoride varnish + Er:YAG laser; non-fluoride varnish + Nd:YAG laser. The Er:YAG (100 mJ, 3 Hz) and Nd:YAG (70 mJ, 15 Hz) were applied for 10 s. Specimens were subjected to further erosive challenges with citric acid 0.3% 4×/day, during 1 min, for 5 days, remaining in artificial saliva between cycles. Dentin permeability was then assessed. Two-way ANOVA demonstrated no significant interaction between laser and varnish (p = 0.858).ResultsNo effect was also detected for the main factor varnish (p = 0.768), while permeability of eroded root dentin was significantly lower when such substrate was laser-irradiated, no matter the laser source (p < 0.001).ConclusionsThis study concluded that Er:YAG and Nd:YAG lasers can be employed to control the permeability of eroded root dentin, regardless of fluoride varnish application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号