首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurogenesis occurs in the adult mammalian brain in discrete regions related to olfactory sensory signaling and integration. The olfactory receptor cell population is in constant turn-over through local progenitor cells. Also, newborn neurons are added to the olfactory bulbs through a major migratory route from the subventricular zone, the rostral migratory stream. The olfactory bulbs project to different brain structures, including: piriform cortex, amygdala, entorhinal cortex, striatum and hippocampus. These structures play important roles in odor identification, feeding behavior, social interactions, reproductive behavior, behavioral reinforcement, emotional responses, learning and memory. In all of these regions neurogenesis has been described in normal and in manipulated mammalian brain. These data are reviewed in the context of a sensory-behavioral hypothesis on adult neurogenesis that olfactory input modulates neurogenesis in many different regions of the brain.  相似文献   

2.
Doublecortin expression in the adult rat telencephalon   总被引:12,自引:0,他引:12  
Doublecortin (DCX) is a protein required for normal neuronal migration in the developing cerebral cortex, where it is widely expressed in both radially and tangentially migrating neuroblasts. Moreover, it has been observed in the adult rostral migratory stream, which contains the neuronal precursors traveling to the olfactory bulb. We have performed DCX immunocytochemistry in the adult rat brain to identify precisely the neuronal populations expressing this protein. Our observations confirm the presence of DCX immunoreactive cells with the characteristic morphology of migrating neuroblasts in the subventricular zone, rostral migratory stream and the main and accessory olfactory bulbs. We have also found putative migratory cells expressing DCX in regions were no adult neuronal migration has been described, as the corpus callosum, the piriform cortex layer III/endopiriform nucleus and the striatum. Surprisingly, many cells with the phenotype of differentiated neurons were DCX immunoreactive; e.g. certain granule neurons in the hilar border of the granular layer of the dentate gyrus, some neuronal types in the piriform cortex layer II, granule and periglomerular neurons in the main and accessory olfactory bulbs, and isolated cells in the striatum. Almost all DCX immunoreactive cells also express the polysialylated form of neural cell adhesion molecule and have a similar distribution to rat collapsin receptor-mediated protein-4, two molecules involved in neuronal structural plasticity. Given these results, we hypothesize that DCX expression in differentiated neurons could be related to its capacity for microtubule reorganization and that this fact could be linked to axonal outgrowth or synaptogenesis.  相似文献   

3.
Previous studies have shown that the vomeronasal and, possibly, olfactory systems are functional in newborn garter snakes. However, little is known about neurogenesis in these chemosensory pathways. In the companion paper, we describe the embryonic growth of the sensory epithelia for both the vomeronasal and olfactory systems. In the present study, we examine neurogenesis in the telencephalic structures of these chemosensory systems by using 3H-thymidine autoradiography (ARG). The majority of neurogenesis appears to occur before birth in the accessory and main olfactory bulbs and their principal projection sites, the nucleus sphericus and lateral cortex, respectively. The data suggest that some postnatal neurogenesis may occur in the accessory and main olfactory bulbs and in the nucleus sphericus. Although the neuronal constituents of the accessory and main olfactory bulbs appear to mature concurrently, those of the lateral cortex appear to mature before those of the nucleus sphericus. Along with previous findings, this latter result supports the hypothesis that the olfactory system develops before the vomeronasal system in garter snakes. There appears to be a rostral to caudal gradient of neurogenesis within the mural layer of the nucleus sphericus. However, an "outside to inside" gradient of neurogenesis was not observed in the mantle layer of the lateral cortex, as described for other reptiles. Similarities and differences observed by other investigators in other reptilian species and mammals are discussed.  相似文献   

4.
It has been shown that homing pigeons rely on olfactory cues to navigate over unfamiliar areas and that any kind of olfactory impairment produces a dramatic reduction of navigational performance from unfamiliar sites. The avian piriform cortex is the main projection field of olfactory bulbs and it is supposed to process olfactory information; not surprisingly bilateral lesions to this telencephalic region disrupt homing pigeon navigation. In the present study, we attempted to assess whether the left and right piriform cortex are differentially involved in the use of the olfactory navigational map. Therefore, we released from unfamiliar locations pigeons subjected, when adult, to unilateral ablation of the piriform cortex. After being released, the pigeons lesioned to the right piriform cortex orientated similarly to the intact controls. On the contrary, the left lesioned birds were significantly more scattered than controls, showing a crucial role of the left piriform cortex in processing the olfactory cues needed for determining the direction of displacement. However, both lesioned groups were significantly slower than controls in flying back to the home loft, showing that the integrity of both sides of the piriform cortex is necessary to accomplish the whole homing process.  相似文献   

5.
Epileptic seizure has been reported to enhance adult neurogenesis and induce aberrant synaptic reorganization in the human dentate gyrus in the hippocampal formation. However, adult neurogenesis in the extrahippocampal regions has not been well studied. To investigate seizure‐enhanced neurogenesis in the extrahippocampal regions, we performed histological and immunohistochemical as well as western blot analyses on the cerebrum of Sprague–Dawley rats (n = 51, male, 7 weeks old, body weight 250–300 g) treated with intraperitoneal injection of kainic acid (KA, 10 mg/kg) to induce status epilepticus (SE) (n = 36) or normal saline solution (n = 15) followed by 5′‐bromo‐2‐deoxyuridine (BrdU) injection to label newborn cells. Even though severe neuronal damage was found in the piriform cortex of rats having SE, immunohistochemistry for double cortin (DCX) revealed an increase in the number of immature neurons in the piriform cortex. Double immunofluorescence staining demonstrated that DCX‐positive cells in the piriform cortex were positive for both BrdU and neuronal nuclear antigen. Immunohistochemistry and western blotting revealed increased expressions of synaptophysin and postsynaptic density protein 95 in the piriform cortex of rat having SE. These results suggested the enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of the KA‐treated rat.  相似文献   

6.
Cerebral hypometabolism and amyloid accumulation are principal neuropathological manifestations of Alzheimer’s disease (AD). Whether and how brain/neuronal activity might modulate certain pathological processes of AD are interesting topics of recent clinical and basic research in the field, and may be of potential medical relevance in regard to both the disease etiology and intervention. Using the Tg2576 transgenic mouse model of AD, this study characterized a promotive effect of neuronal hypoactivity associated with functional deprivation on amyloid plaque pathogenesis in the olfactory pathway. Unilateral naris‐occlusion caused β‐secretase‐1 (BACE1) elevation in neuronal terminals in the deprived relative to the non‐deprived bulb and piriform cortex in young adult mice. In parallel with the overall age‐related plaque development in the forebrain, locally increased BACE1 immunoreactivity co‐occurred with amyloid deposition first in the piriform cortex then within the bulb, more prominent on the deprived relative to the non‐deprived side. Biochemical analyses confirmed elevated BACE1 protein levels, enzymatic activity and products in the deprived relative to non‐deprived bulbs. Plaque‐associated BACE1 immunoreactivity in the bulb and piriform cortex was localized preferentially to swollen/sprouting glutamatergic axonal terminals, with Aβ immunoreactivity occurring inside as well as around these terminals. Together, these findings suggest that functional deprivation or neuronal hypoactivity facilitates amyloid plaque formation in the forebrain in a transgenic model of AD, which operates synergistically with age effect. The data also implicate an intrinsic association of amyloid accumulation and plaque formation with progressive axonal pathology.  相似文献   

7.
Neurogenesis and neuronal regeneration in the adult reptilian brain   总被引:1,自引:0,他引:1  
Evidence accumulated over the last few decades demonstrates that all reptiles examined thus far continue to add neurons at a high rate and in many regions of the adult brain. This so-called adult neurogenesis has been described in the olfactory bulbs, rostral forebrain, all cortical areas, anterior dorsal ventricular ridge, septum, striatum, nucleus sphericus, and cerebellum. The rate of neuronal production varies greatly among these brain areas. Moreover, striking differences in the rate and distribution of adult neurogenesis have been noted among species. In addition to producing new neurons in the adult brain, lizards, and possibly other reptiles as well, are capable of regenerating large portions of their telencephalon damaged as a result of experimentally-induced injuries, thus exhibiting an enormous potential for neuronal regeneration. Adult neurogenesis and neuronal regeneration take advantage of the same mechanisms that are present during embryonic neurogenesis. New neurons are born in the ependyma lining the ventricles and migrate radially through the brain parenchyma along processes of radial glial cells. Several lines of evidence suggest that radial glial cells also act as stem cells for adult neurogenesis. Once they reach their final destination, the young neurons extend axons that reach appropriate target areas. Tangential migration of neurons alongside the ventricular ependyma has also been reported. Most of these tangentially migrating neurons seem to be destined for the olfactory bulbs and are, thus, part of a system similar to the mammalian rostral migratory stream. The proliferation and recruitment of new neurons appear to result in continuous growth of most areas showing adult neurogenesis. The functional consequences of this continuous generation and integration of new neurons into existing circuits is largely conjectural, but involvement of these phenomena in learning and memory is one likely possibility.  相似文献   

8.
The current study examined the effects of pheromonal exposure on adult neurogenesis and revealed the role of the olfactory pathways on adult neurogenesis and behavior in the socially monogamous prairie vole (Microtus ochrogaster). Subjects were injected with a cell proliferation marker [5‐bromo‐2′‐deoxyuridine (BrdU)] and then exposed to their own soiled bedding or bedding soiled by a same‐ or opposite‐sex conspecific. Exposure to opposite‐sex bedding increased BrdU labeling in the amygdala (AMY), but not the dentate gyrus (DG), of female, but not male, voles, indicating a sex‐, stimulus‐, and brain region‐specific effect. The removal of the main olfactory bulbs or lesioning of the vomeronasal organ (VNOX) in females reduced BrdU labeling in the AMY and DG, and inhibited the male bedding‐induced BrdU labeling in the AMY, revealing the importance of an intact olfactory pathway for amygdaloid neurogenesis. VNOX increased anxiety‐like behavior and altered social preference, but it did not affect social recognition memory in female voles. VNOX also reduced the percentage of BrdU‐labeled cells that co‐expressed the neuronal marker TuJ1 in the AMY, but not the DG. Together, our data indicate the importance of the olfactory pathway in mediating brain plasticity in the limbic system as well as its role in behavior.  相似文献   

9.
Subventricular zone neuroblasts emigrate toward cortical lesions   总被引:6,自引:0,他引:6  
Adult subventricular zone (SVZ) neuroblasts migrate in the rostral migratory stream to the olfactory bulbs. Brain lesions generally increase SVZ neurogenesis or gliogenesis and cause SVZ cell emigration to ectopic locations. We showed previously that glia emigrate from the SVZ toward mechanical injuries of the somatosensory cerebral cortex in mice. Here we tested the hypotheses that SVZ neurogenesis increases, that neuroblasts emigrate, and that epidermal growth factor expression increases after cortical injuries. Using immunohistochemistry for phenotypic markers and BrdU, we show that newborn doublecortin-positive SVZ neuroblasts emigrated toward cerebral cortex lesions. However, the number of doublecortin-positive cells in the olfactory bulbs remained constant, suggesting that dorsal emigration was not at the expense of rostral migration. Although newborn neuroblasts emigrated, rates of SVZ neurogenesis did not increase after cortical lesions. Finally, we examined molecules that may regulate emigration and neurogenesis after cortical lesions and found that epidermal growth factor was increased in the SVZ, corpus callosum, and cerebral cortex. These results suggest that after injuries to the cerebral cortex, neuroblasts emigrate from the SVZ, that emigration does not depend either on redirection of SVZ cells or on increased neurogenesis, and that epidermal growth factor may induce SVZ emigration.  相似文献   

10.
It has been shown that homing pigeons (Columba livia) rely on olfactory cues to navigate from unfamiliar locations. In fact, the integrity of the olfactory system, from the olfactory mucosa to the piriform cortex, is required for pigeons to navigate over unfamiliar areas. Recently it has been shown that there is a functional asymmetry in the piriform cortex, with the left piriform cortex more involved in the use of the olfactory navigational map than the right piriform cortex. To investigate further the lateralization of the olfactory system in relation to navigational processes in carrier pigeons, we compared their homing performance after either their left or the right nostril was plugged. Contrary to our expectations, we observed an impairment in the initial orientation of the pigeons with their right nostril plugged. However, both groups released with one nostril plugged tended to be poorer than control pigeons in their homing performance. The observed asymmetry in favour of the right nostril might be due to projections from the olfactory bulbs to the contralateral globus pallidum, a structure involved in motor responses.  相似文献   

11.
We have characterized the expression of doublecortin-like (DCL), a microtubule-associated protein involved in embryonic neurogenesis that is highly homologous to doublecortin (DCX), in the adult mouse brain. To this end, we developed a DCL-specific antibody and used this to compare DCL expression with DCX. In the neurogenic regions of the adult brain like the subventricular zone (SVZ), the rostral migratory stream (RMS), the olfactory bulb (OB), and the hippocampus, DCL colocalizes with DCX in immature neuronal cell populations. In contrast to DCX, we also found high DCL expression in three other brain regions with suspected neurogenesis or neuronal plasticity. First, the radial glia-like, hypothalamic tanycytes show high DCL expression that partly colocalizes with the neural stem cell marker vimentin. Second, DCL expression is found in cells of the suprachiasmatic nucleus (SCN), which lacks expression of the adult neuron marker NeuN. Third, a novel region exhibiting DCL expression is part of the olfactory tubercle where DCL is found in the neuropil of the islands of Calleja (ICj). Our findings define DCL as a novel marker for specific aspects of adult neurogenesis, which partly overlap with DCX. In addition, we propose unique roles for DCL in adult neurogenesis and we suggest high levels of neuronal plasticity in tanycytes, SCN, and ICj.  相似文献   

12.
Adult neurogenesis persists in the subventricular zone and is decreased in Parkinson disease (PD). The therapeutic potential of neurogenesis in PD requires understanding of mechanisms of 1) neural stem cell generation; 2) their guidance to the lesion site; and 3) the environment that enables neuronal differentiation, survival, and functional integration. We examined the combined intraventricular infusion of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF-2) in a 6-hydroxydopamine-induced rodent model of PD. Epidermal growth factor and FGF-2 induced a massive increase in cell proliferation and in numbers of doublecortin-expressing neuroblasts in the subventricular zone. These growth factors also increased dopaminergic neurogenesis in the olfactory bulb and promoted the migration of newly generated neuroblasts from the subventricular zone into the adjacent striatum. The effects of EGF and FGF-2 were present in unlesioned animals but were dramatically enhanced in 6-hydroxydopamine-lesioned animals.These findings suggest that newly generated neuroblasts may be redirected to the region of dopaminergic deficit, and that EGF and FGF-2 can enhance dopaminergic neurogenesis in the olfactory bulb but not in the striatum. Similar mechanisms may be involved in the increased numbers of dopaminergic neurons observed in the olfactory bulbs of PD patients and their functional olfactory deficits.  相似文献   

13.
14.
The orbitofrontal cortex (OFC) has been characterized as a higher-order, multimodal sensory cortex. Evidence from electrophysiological and behavioral studies in the rat has suggested that OFC plays a role in modulating olfactory guided behavior, and a significant projection to OFC arises from piriform cortex, the traditional primary olfactory cortex. To discern how OFC interacts with primary olfactory structures, the anterograde tracer Phaseolus vulgaris leucoagglutinin was injected into orbitofrontal cortical areas in adult male rats. Labeled fibers were found in the piriform cortex and olfactory bulb on the side ipsilateral to the injection. Notably, the projection to piriform cortex was predominantly from ventrolateral orbital cortex, and was not uniform; rostrally, the projection to the ventral portion of the anterior piriform cortex (APC) was substantial, while the dorsal APC was virtually free of labeled fibers. Labeled fibers were found in both the dorsal and ventral portions in more caudal regions of APC. Most labeled fibers were found in layer III, although a substantial number of fibers were observed in layers Ib and II. Labeled fibers in posterior piriform cortex also were seen after injection into orbitofrontal areas. Taken together with previous reports, these findings suggest that piriform cortex includes multiple subdivisions, which may perform separate, parallel functions in olfactory information processing. Further, these results suggest that the OFC, in addition to its putative role in encoding information about the significance of olfactory stimuli, may play a role in modulating odor response properties of neurons in piriform cortex.  相似文献   

15.
Evidence of newly generated neurons in the human olfactory bulb   总被引:15,自引:0,他引:15  
The subventricular zone (SVZ) is known to be the major source of neural stem cells in the adult brain. In rodents and nonhuman primates, many neuroblasts generated in the SVZ migrate in chains along the rostral migratory stream (RMS) to populate the olfactory bulb (OB) with new granular and periglomerular interneurons. In order to know if such a phenomenon exists in the adult human brain, we applied single and double immunostaining procedures to olfactory bulbs obtained following brain necropsy in normal adult human subjects. Double immunofluorescence labelling with a confocal microscope served to visualize cells that express markers of proliferation and immature neuronal state as well as markers that are specific to olfactory interneurons. Newborn cells that express cell cycle proteins [Ki-67, proliferating cell nuclear antigen (PCNA)] were detected in the granular and glomerular layers (GLs) of the human olfactory bulb; these cells coexpressed markers of immature neuronal state, such as Doublecortin (DCX), NeuroD and Nestin. Numerous differentiating cells expressed molecular markers of early committed neurons [beta-tubulin class III (TuJ1)] and were also immunoreactive for glutamic acid decarboxylase (GAD), a marker of GABAergic neurons, or tyrosine hydroxylase (TH), a marker of dopaminergic neurons. Other early committed neurons expressed the calcium-binding proteins calretinin (CR) or parvalbumin (PV). These results provide strong evidence for the existence of adult neurogenesis in the human olfactory system. Despite its relatively small size compared to that in rodents and nonhuman primates, the olfactory bulb in humans appears to be populated, throughout life, by new granular and periglomerular neurons that express a wide variety of chemical phenotypes.  相似文献   

16.
We have reported that alpha6beta1 integrin regulates the directed migration of neuroblasts from the adult rodent subventricular zone (SVZ) through the rostral migratory stream (RMS). ADAM (a disintegrin and metalloprotease) proteins bind integrins. Here, we show that ADAM21, but not ADAM2, -3, -9, -10, -12, -15, or -17, is expressed in adult rats and mice by ependyma and SVZ cells with long basal processes, and in radial glia at early postnatal times. ADAM21-positive processes projected into the RMS, contacted blood vessels, and were present within the RMS intermingled with neuroblasts up to where neuroblasts start their radial migration and differentiation in the olfactory bulb. Tissue inhibitors of metalloproteases (TIMPs) 1, 2, and 3 are present in the ependymal layer but not in the SVZ and RMS. Thus, ADAM21 could regulate neurogenesis and guide neuroblast migration through cleavage-dependent activation of proteins and integrin binding. ADAM21 is also present in growing axonal tracts during postnatal development and in growing primary olfactory axons in adults. In the olfactory nerve layer, ADAM21 often, but not always, colocalizes with OMP, a marker of mature olfactory neurons, but is not colocalized with the immature marker betaIII-tubulin. This suggests that ADAM21 is involved in the final axonal outgrowth phase and/or synapse formation. TIMP3 is present in periglomerular neurons, where it could restrict ADAM21-mediated axonal growth to the glomeruli. ADAM21's unique disintegrin and metalloprotease sequences and its restricted expression suggest that it might be a good target for influencing neurogenesis and neuronal plasticity.  相似文献   

17.
We investigated adult neurogenesis in two species of mammals belonging to the superorder Laurasiatheria, the southern white-breasted hedgehog (order Erinaceomorpha, species Erinaceus concolor) from Armenia and the European mole (order Soricomorpha, species Talpa europaea) from Poland. Neurogenesis in the brain of these species was examined immunohistochemically, using the endogenous markers doublecortin (DCX) and Ki-67, which are highly conserved among species. We found that in both the hedgehog and mole, like in the majority of earlier investigated mammals, neurogenesis continues in the subventricular zone (SVZ) of the lateral ventricles and in the dentate gyrus (DG). In the DG of both species, DCX-expressing cells and Ki-67-labeled cells were present in the subgranular and granular layers. In the mole, a strong bundle of DCX-labeled processes, presumably axons of granule cells, was observed in the center of the hilus. Proliferating cells (expressing Ki-67) were identified in the SVZ of lateral ventricles of both species, but neuronal precursor cells (expressing DCX) were also observed in the olfactory bulb (OB). In both species, the vast majority of cells expressing DCX in the OB were granule cells with radially orientated dendrites, although some periglomerular cells surrounding the glomeruli were also labeled. In addition, this paper is the first to show DCX-labeled fibers in the anterior commissure of the hedgehog and mole. These fibers must be axons of new neurons making interhemispheric connections between the two OB or piriform (olfactory) cortices. DCX-expressing neurons were observed in the striatum and piriform cortex of both hedgehog and mole. We postulate that in both species a fraction of cells newly generated in the SVZ migrates along the rostral migratory stream to the piriform cortex. This pattern of migration resembles that of the 'second-wave neurons' generated during embryonal development of the neocortex rather than the pattern observed during development of the allocortex. In spite of the presence of glial cells alongside DCX-expressing cells, we never found colocalization of DCX protein with a glial marker (vimentin or glial fibrillary acidic protein).  相似文献   

18.
19.
After unilateral bulbectomy in neonatal (P1-P5) rats, autoradiographically prelabeled presumptive olfactory bulbs from E15 and E17 embryos were transplanted in place of the removed tissue. After 2-7 months, the animals received injections of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) into the piriform cortex. Nine of the twenty animals revealed WGA-HRP-positive neurons among neurons autoradiographically labeled, providing thus evidence that the axons of the output neurons from the homotopically transplanted olfactory bulb reconnect with the host piriform cortex.  相似文献   

20.
It is now known that removal of the olfactory bulbs increases basal gonadotropin secretion and prevents short-photoperiod-induced testicular regression in Syrian hamsters. The experiments described in the present paper were an attempt to determine which neuronal systems associated with the olfactory bulbs are responsible for this influence on the reproductive neuroendocrine axis. In the first experiment, removal of the vomeronasal organ failed to influence gonadotropin secretion or testes weight in hamsters on long or short photoperiod, suggesting that the vomeronasal-accessory olfactory pathway is not individually responsible for the effect of the olfactory bulbs on gonadotropin secretion. In the second experiment, bilateral transection of the lateral olfactory tracts (LOT) did prevent short-photoperiod-induced testicular regression and the associated decrease in gonadotropin secretion. Since the nervus terminalis is confined to the surface of the medical olfactory bulb pathway, the results of LOT transection indicate that the nervus terminalis, which itself contains gonadotropin releasing hormone, does not mediate the influence of the olfactory bulbs on gonadotropin secretion. These results further suggest that the olfactory bulb influence on gonadotropin secretion is due to neural connections to the pyriform cortex, entorhinal cortex or amygdala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号