首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMPs) are implicated in diverse processes, such as neuroinflammation, leakiness of the blood-brain barrier (BBB) and direct cellular damage in neurodegenerative and other CNS diseases. Tissue destruction by MMPs is regulated by their endogenous tissue inhibitors (TIMPs). TIMPs prevent excessive MMP-related degradation of extracellular matrix components. In a rat model of human immunodeficiency virus (HIV)-related encephalopathy, we described MMP-2 and MMP-9 upregulation by HIV-1 envelope gp120, probably via gp120-induced reactive oxygen species. Antioxidant gene delivery blunted gp120-induced MMP production. We also studied the effect of gp120 on TIMP-1 and TIMP-2 production. TIMP-1 and TIMP-2 levels increased 6 h after gp120 injection into rat caudate-putamen (CP). TIMP-1 and TIMP-2 colocalized mainly with neurons (92 and 95%, respectively). By 24 h, expression of these protease inhibitors diverged, as TIMP-1 levels remained high but TIMP-2 subsided. Gene delivery of the antioxidant enzymes Cu/Zn superoxide dismutase or glutathione peroxidase into the CP before injecting gp120 there reduced levels of gp120-induced TIMP-1 and TIMP-2, recapitulating the effect of antioxidant enzymes on gp120-induced MMP-2 and MMP-9. A significant correlation was observed between MMP/TIMP upregulation and BBB leakiness. Thus, HIV-1 gp120 upregulated TIMP-1 and TIMP-2 in the CP. Prior antioxidant enzyme treatment mitigated production of these TIMPs, probably by reducing MMP expression.  相似文献   

2.
HIV-1 gp120 neurotoxicity and oxidant injury are well documented, but consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with 100-500 ng HIV-1BaL gp120, with or without prior rSV40-delivered superoxide dismutase or glutathione peroxidase. CD11b-positive microglia were increased 1 day post-challenge; Iba-1- and ED1-positive cells peaked at 7 days and 14 days. Astrocyte infiltration was maximal at 7-14 days. MIP-1alpha was produced immediately, mainly by neurons. ED1- and GFAP-positive cells correlated with neuron loss and gp120 dose. We also tested the effect of more chronic gp120 exposure on neuroinflammation using an experimental model of continuing gp120 exposure. SV(gp120), a recombinant SV40-derived gene transfer vector was inoculated into the rat CP, leading to chronic expression of gp120, ongoing apoptosis in microglia and neurons, and oxidative stress. Increase in microglia and astrocytes was seen following intra-CP SV(gp120) injection, suggesting that continuing gp120 production increased neuroinflammation. SV(SOD1) or SV(GPx1) significantly reduced MIP-1alpha and limited neuroinflammation following gp120 administration into the CP, as well as microglia and astrocytes proliferation after injection of SV(gp120) in the striatum. Thus, gp120-induced CNS injury, neuron loss and inflammation may be mitigated by antioxidant gene delivery.  相似文献   

3.
Quercetin(QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.  相似文献   

4.
HIV-associated neurocognitive disorder (HAND) is an increasingly common, progressive disease characterized by neuronal loss and progressively deteriorating CNS function. HIV-1 gene products, particularly gp120 and Tat elicit reactive oxygen species (ROS) that lead to oxidant injury and cause neuron apoptosis. Understanding of, and developing therapies for, HAND requires accessible models of the disease. We have devised experimental approaches to studying the acute and chronic effects of Tat on the CNS. We studied acute exposure by injecting recombinant Tat protein into the caudate-putamen (CP). Ongoing Tat expression, which more closely mimics HIV-1 infection of the brain, was studied by delivering Tat-expression over time using an SV40-derived gene delivery vector, SV(Tat). Both acute and chronic Tat exposure induced lipid peroxidation and neuronal apoptosis. Finally, prior administration of recombinant SV40 vectors carrying antioxidant enzymes, copper/zinc superoxide dismutase (SOD1) or glutathione peroxidase (GPx1), protected from Tat-induced apoptosis and oxidative injury. Thus, injection of recombinant HIV-1 Tat and the expression vector, SV(Tat), into the rat CP cause respectively acute or ongoing apoptosis and oxidative stress in neurons and may represent useful animal models for studying the pathogenesis and, potentially, treatment of HIV-1 Tat-related damage.  相似文献   

5.
目的探索一肌萎缩侧索硬化(ALS)家系基因突变位点并进行文献复习。方法对已知常见的ALS致病基因进行检测,进而对国内铜/锌超氧化物岐化物1(SOD1)基因突变型ALS进行文献复习。结果该家系患者平均起病年龄为(37.8±11.6)岁,均以肢体症状起病,平均病程约1.3年,死于呼吸衰竭。该家系SOD1基因4号外显子第305位存在AG突变(D102G)。目前国内报道的SOD1突变基因有26种。起病年龄最早者20岁,最晚者67岁;病程最短者仅1月,最长者达14年。86.4%的患者以肢体症状起病,4.5%以延髓症状起病,7.7%的患者以肢体和延髓症状起病。SOD1基因可表现为完全外显或不完全外显。结论 D102 G为国内首次报道的ALS疾病相关突变。不同SOD1基因突变位点临床症状具有异质性。  相似文献   

6.
目的探讨Cu/Zn SOD1基因表达对Aβ产生的影响.方法建立APP-C100和G93A SOD1基因共表达的转双基因小鼠,应用免疫细胞化学方法测定不同鼠龄转基因鼠海马神经元Aβ表达,Westem blot定量测定转基因鼠脑SCD1、APP、APP-C100和Aβ表达水平.结果低龄转双基因鼠与转单基因鼠之间Aβ水平无差异,与年龄匹配的转单基因鼠比较,高龄转双基因鼠脑Aβ水平升高,经统计处理差异无显著性意义(P>O.05).但高龄转双基因鼠Aβ水平比低龄转双基因鼠明显升高(P<0.05).结论转双基因鼠脑APP-C100和G93A SOD1基因共表达虽然未导致老年斑形成,但引起Aβ含量增加,推测其机制可能与SOD1基因突变子引起的氧化应激反应有关.  相似文献   

7.
We used triple-labeling immunohistochemistry in rat midbrain sections to identify dopaminergic neurons that contain either one or both of the calcium-binding proteins, calretinin (CR) and calbindin-D28k (CB). Midbrain dopaminergic neurons were immunohistochemically labeled for tyrosine hydroxylase (TH), CR, and CB. In the substantia nigra pars compacta (SNC), TH+/CR+/CB+ cells were clustered in two regions: the dorsal tier of the rostral SNC and the medial part of the intermediate SNC. The ventral tier of the rostral SNC mainly comprised both TH+/CR+/CB- and TH+/CR-/CB- cells. The lateral part of the intermediate SNC and the caudal SNC primarily consisted of TH+/CR-/CB- cells. Throughout the extent of the SNC, approximately half of the TH+ neurons were stained for neither CR nor CB, while the remaining TH+ populations were labeled for CR and/or CB. Throughout the ventral tegmental area, TH+/CR+/CB+ cells, TH+/CR+/CB- cells, TH+/CR-/CB+ cells, and TH+/CR-/CB- cells were found generally scattered, though the TH+/CR-/CB- cells were dominant in number. In the substantia nigra pars lateralis, interfascicular nucleus, and caudal linear nucleus, more than half of the TH+ cells were stained for both CR and CB. In the retrorubral field, two-thirds of the TH+ neurons contained neither protein. The present findings suggest that the SNC can be divided into subcompartments based on the distribution of dopaminergic neurons that contain calcium-binding proteins. Furthermore, because CR and CB likely contribute to calcium homeostasis by buffering intracellular calcium concentrations, midbrain dopaminergic neurons containing one or both of these calcium-binding proteins may have a higher calcium-buffering capacity than those lacking the two proteins.  相似文献   

8.
GM1 ganglioside is believed to be important in promoting the recovery of neurons from injury. The present study assesses the ability of GM1 to repair or prevent the damage of dopamine neurons caused by the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Treatment of mesencephalic cell cultures with 2.5 μM MPP+ resulted in the loss of 30% of tyrosine hydoxylase (TH) immunoreactive neurons. In contrast, cultures administered 100 μM GM1 ganglioside for 3 days after toxin treatment contained nearly control numbers of TH+ neurons (97%). This reparative effect of GM1 was reflected in parallel increases in TH enzyme activity, dopamine and dopac levels. Cultures sustaining greater insult from higher doses of MPP+ (5.0–10.0 μM) did not benefit from ganglioside treatment, suggesting that rescue by GM1 depended on the degree of initial damage to cells. Moreover, the timing of ganglioside treatment was critical; pretreatment with GM1 alone did not prevent or attenuate the damage caused by subsequent incubation in 2.5 μM MPP+.  相似文献   

9.
We report a Japanese family with autosomal dominant adult-onset amyotrophic lateral sclerosis (FALS) with onset in the bulbar musculature, clinically benign course, absence of the Cu/Zn superoxide dismutase-1 (SOD 1) gene mutation, and many Bunina bodies, in addition to involvement of the upper and lower motor neurons. The proband was a Japanese woman who was 66 years old at the time of death. Family history disclosed five patients with FALS over three generations. She developed dysarthria at age 57, followed by dysphagia, muscle weakness of the upper extremities, and difficulty in respiration. She could walk without support until her death. The elder sister of the proband developed dysarthria at age 48 and died at age 58. A genetic study of the nephew of the proband showed the absence of a mutation in the SOD 1 gene. Neuropathological examination of the proband disclosed neuronal loss in the upper and lower motor neurons, and numerous Bunina bodies in the lower motor neurons without Lewy body-like inclusions or ubiquitin-immunoreactive neuronal inclusions. No degeneration of the Clarke’s column, middle root zone of the posterior column, or posterior spinocerebellar tract was present. Review of the literature revealed that only patients with FALS with a long survival period of over 5 years had pathological findings consistent with FALS with posterior column involvement. This study contributes to the elucidation of the clinicopathological heterogeneity of FALS. Received: 8 November 1999 / Accepted: 7 March 2000  相似文献   

10.
We previously demonstrated that kainic acid (KA)-mediated mitochondrial oxidative stress contributed to hippocampal degeneration and that ginsenosides attenuated KA-induced neurotoxicity and neuronal degeneration. Here, we examined whether ginsenosides affected KA-induced mitochondrial dysfunction and oxidative stress in the rat hippocampus. Treatment with ginsenosides attenuated KA-induced convulsive behavior dose-dependently. KA treatment increased lipid peroxidation and protein oxidation and decreased the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio to a greater degree in the mitochondrial fraction than in the hippocampal homogenate. KA treatment resulted in decreased Mn-superoxide dismutase expression and diminished the mitochondrial membrane potential. Furthermore, KA treatment increased intramitochondrial Ca(2+) and promoted ultrastructural degeneration in hippocampal mitochondria. Treatment with ginsenosides dose-dependently attenuated convulsive behavior and the KA-induced mitochondrial effects. Protection appeared to be more evident in mitochondria than in tissue homogenates. Collectively, the results suggest that ginsenosides prevent KA-induced neurotoxicity by attenuating mitochondrial oxidative stress and mitochondrial dysfunction.  相似文献   

11.
Detailed molecular pathology studies and clinicopathological phenotyping of familial amyotrophic lateral sclerosis (FALS) with characterised mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) will yield important insights into the pathogenesis of motor neuron degeneration. An autopsy case is described with the mutation E100G (exon 4) of the SOD1 gene in which full neuropathological examinaton including immunocytochemistry of ubiquitin and neurofilament epitopes was performed. The case falls into the category of “amyotrophic lateral sclerosis (ALS) with posterior column involvement.” Critical analysis of the findings indicates a truly multisystem disorder in which ascending sensory pathways and components of the efferent cerebellar pathways are at least as severely affected as the motor system. Abnormal neurofilament phosphorylation was not a prominent feature. Ubiquitinated neuronal inclusions were infrequent except in the hippocampal denate granule cells where they were indistinguishable from sporadic cases of ALS-dementia. The motor cortex was preserved despite severe distal axonal loss in the corticospinal tract. These findings suggest a primary failure of axonal maintainance affecting several neuronal groups with long projecting axons. The differences and similarities compared to previously reported case with I113T (exon 4) and A4T (exon 1) mutations are discussed. Findings related to inflammatory cell infiltration, ubiquitination and neurofilament phosphorylation are discussed with reference to the pathogenesis of sporadic ALS. Received: 22 January 1996 / Revised, accepted: 27 February 1996  相似文献   

12.
Two new mutations in the gene encoding cytoplasmic Cu,Zn superoxide dismutase (SOD1) have been discovered in patients with familial amyotrophic lateral sclerosis (FALS). These mutations result in the truncation of most of the polypeptide segment encoded by exon 5, one by the formation of a stop codon in codon 126 (L126Z) and the other by inducing alternative splicing in the mRNA (splicing junction mutation). These two mutants of SOD1 result in a FALS phenotype similar to that observed in patients with missense mutations in the SOD1 gene, establishing that exon 5 is not required for the novel toxic functions of mutant SOD1 associated with ALS. These mutant enzymes are present at very low levels in FALS patients, suggesting elevated toxicity compared to mutant enzymes with single site substitutions. This increased toxicity likely arises from the extreme structural and functional changes in the active site channel, β-barrel fold, and dimer interface observed in the mutant enzymes, including the loss of native dismutase activity. In particular, the truncation of the polypeptide chain dramatically opens the active site channel, resulting in a marked increase in the accessibility and flexibility of the metal ions and side chain ligands of the enzyme active site. These structural changes are proposed to cause a decrease in substrate specificity and an increase in the catalysis of harmful chemical reactions such as peroxidation. Received February 17, 1997; Revised and Accepted March 5, 1997  相似文献   

13.
We describe a new family with adult onset amyotrophic lateral sclerosis (FALS), in which the disease was characterized clinically by relatively rapid progression of bulbar symptoms. Gene analysis of Cu/Zn superoxide dismutase (SOD1) performed in one patient showed no mutations. Autopsy of another patient demonstrated degenerative changes restricted to the upper and lower motor neuron systems; no evident changes were observed in the posterior column, Clarke’s column or spinocerebellar tracts. The presence of Bunina bodies and ubiquitin-positive skein-like inclusions in the lower motor neuron was of considerable interest. Cases of FALS with such pathological features are quite rare in the literature. Identification of the gene responsible for the disease is desirable in order to shed further light on the molecular pathology of not only familial, but also sporadic, ALS.  相似文献   

14.
The primary objective of this study was to map the normal distribution of the base excision enzyme oxyguanosine glycosylase (OGG1) across mouse-brain regions as a prelude to assessing the effects of various neurotoxicants, ranging from highly selective molecules like MPTP to more global toxic agents. This research is based on the hypothesis that regional brain vulnerability to a toxicant is determined, in part, by variation in the intrinsic capacity of cellular populations to successfully repair oxidative DNA damage. After mapping the normal distributions of OGG1 and superoxide dismutase (SOD) across 44 loci dissected from mouse brain, MPTP, a mitochondrial toxicant with selective dopamine (DA) neuron cytotoxicity was used to elicit focal oxidative stress and DNA repair responses. A single dose of MPTP (20mg/kg, i.p.) elicited time- and region-dependent changes in both SOD and OGG1, with early increases in DNA repair and anti-oxidant activities throughout all regions of brain. In some sampled loci, notably the substantia nigra (SN) and hippocampus, the heightened DNA repair and antioxidant responses were not maintained beyond 48h. Other loci from cerebellum, cerebral cortex and pons maintained high levels of activity up to 72h. Levels of dopamine (DA) were decreased significantly at all time points and remained below control levels in nigro-striatal and mesolimbic systems (ventral tegmental area and nucleus accumbens). Assessment of apoptosis by TUNEL staining revealed a significant increase in number of apoptotic nuclei in the substantia nigra at 72h and not in other loci. The marked degree of apoptosis that became evident in SN at 72h was associated with large decreases in SOD and DNA repair activity at that locus. In conclusion, MPTP elicited global effects on DNA repair and antioxidant activity in all regions of brain, but the most vulnerable loci were unable to maintain elevated DNA repair and antioxidant responses.  相似文献   

15.
Chronic brain inflammation is the common final pathway in the majority of neurodegenerative diseases and central to this phenomenon is the immunological activation of brain mononuclear phagocyte cells, called microglia. This inflammatory mechanism is a central component of HIV-associated dementia (HAD). In the healthy state, there are endogenous signals from neurons and astrocytes, which limit excessive central nervous system (CNS) inflammation. However, the signals controlling this process have not been fully elucidated. Studies on the peripheral nervous system suggest that a cholinergic anti-inflammatory pathway regulates systemic inflammatory response by way of acetylcholine acting at the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) found on blood-borne macrophages. Recent data from our laboratory indicates that cultured microglial cells also express this same receptor and that microglial anti-inflammatory properties are mediated through it and the p44/42 mitogen-activated protein kinase (MAPK) system. Here we report for the first time the creation of an in vitro model of HAD composed of cultured microglial cells synergistically activated by the addition of IFN-gamma and the HIV-1 coat glycoprotein, gp120. Furthermore, this activation, as measured by TNF-alpha and nitric oxide (NO) release, is synergistically attenuated through the alpha7 nAChR and p44/42 MAPK system by pretreatment with nicotine, and the cholinesterase inhibitor, galantamine. Our findings suggest a novel therapeutic combination to treat or prevent the onset of HAD through this modulation of the microglia inflammatory mechanism.  相似文献   

16.
Human immunodeficiency virus (HIV)-1 infection of the central nervous system occurs in the vast majority of HIV-infected patients. HIV-associated dementia (HAD) represents the most severe form of HIV-related neuropsychiatric impairment and is associated with neuropathology involving HIV proteins and activation of proinflammatory cytokine circuits. Interferon-gamma (IFN-gamma) activates the JAK/STAT1 pathway, a key regulator of inflammatory and apoptotic signaling, and is elevated in HIV-1-infected brains progressing to HAD. Recent reports suggest green tea-derived (-)-epigallocatechin-3-gallate (EGCG) can attenuate neuronal damage mediated by this pathway in conditions such as brain ischemia. In order to investigate the therapeutic potential of EGCG to mitigate the neuronal damage characteristic of HAD, IFN-gamma was evaluated for its ability to enhance well-known neurotoxic properties of HIV-1 proteins gp120 and Tat in primary neurons and mice. Indeed, IFN-gamma enhanced the neurotoxicity of gp120 and Tat via increased JAK/STAT signaling. Additionally, primary neurons pretreated with a JAK1 inhibitor, or those derived from STAT1-deficient mice, were largely resistant to the IFN-gamma-enhanced neurotoxicity of gp120 and Tat. Moreover, EGCG treatment of primary neurons from normal mice reduced IFN-gamma-enhanced neurotoxicity of gp120 and Tat by inhibiting JAK/STAT1 pathway activation. EGCG was also found to mitigate the neurotoxic properties of HIV-1 proteins in the presence of IFN-gamma in vivo. Taken together, these data suggest EGCG attenuates the neurotoxicity of IFN-gamma augmented neuronal damage from HIV-1 proteins gp120 and Tat both in vitro and in vivo. Thus EGCG may represent a novel natural copound for the prevention and treatment of HAD.  相似文献   

17.
The novel naphtoxazine derivative and preferential D(3) vs D(2) receptor agonist, S32504, restores perturbed motor function in rodent and primate models of antiparkinsonian activity with a potency superior to those of two further, preferential D(3) receptor agonists, pramipexole and ropinirole. However, potential neuroprotective properties of S32054 have not, to date, been evaluated. Herein, employing several measures of cellular integrity, we demonstrate that S32504 robustly, concentration-dependently and completely protects terminally differentiated SH-SY5Y cells against 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in vitro. Further, S32504 was substantially more potent than pramipexole and ropinirole, the latter of which was neurotoxic at high concentrations. In vivo, subchronic treatment with low (0.25 mg/kg) and high (2.5 mg/kg) doses of S32504 prior to and during treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP, provided complete protection against MPTP-induced tyrosine hydroxylase immunoreactive (TH-IR) neuronal death in the substantia nigra pars compacta and ventral tegmental area. A high dose of ropinirole (2.5 mg/kg) provided some protection but statistical significance was not attained, and a low dose (0.25 mg/kg) was ineffective. Neither drug afforded protection against the MPTP-induced loss of DA fibers in the striatum, as measured by TH-IR and dopamine transporter immunoreactive fiber counts. In conclusion, the novel naphotoxazine and dopaminergic agonist, S32504, robustly protects dopaminergic neurones against the neurotoxic effects of MPP(+) and MPTP in in vitro and in vivo models, respectively. The underlying mechanisms and therapeutic pertinence of these actions will be of interest to further evaluate in view of its potent actions in behavioral models of antiparkinson activity.  相似文献   

18.
Information concerning striatal levels of noradrenaline (NA) remains inconsistent. Here we have addressed this issue using a sensitive method of HPLC coupled to amperometric detection. The NA reuptake-inhibitor, reboxetine, selectively elevated levels of NA versus dopamine (DA), and NA levels were also selectively elevated by the α2-adrenoceptor (AR) antagonist, atipamezole. The actions of atipamezole were mimicked by the preferential α2A-AR antagonist, BRL44408, while JO-1 and prazosin, preferential antagonists at α2C-ARs, caused less marked elevations in NA levels. In contrast to antagonists, the α2-AR agonist, S18616, decreased NA levels and likewise suppressed those of DA. Unilateral lesions of the substantia nigra with 6-hydroxydopamine depleted DA levels without affecting those of NA. Further, the D3/D2 receptor agonist, quinelorane, decreased levels of DA without modifying those of NA. However, the D3/D2 receptor antagonists, haloperidol and raclopride, and the DA reuptake-inhibitor, GBR12935, elevated levels of both DA and NA. Levels of 5-HT (but not of NA or DA) were increased only by the 5-HT reuptake-inhibitor, citalopram. They were decreased by S18616 and prazosin, reflecting the inhibitory and excitatory influence of α2- and α1-ARs, respectively, upon serotonergic pathways. In conclusion, NA in the striatum is derived from adrenergic terminals. Its release is subject to tonic, inhibitory control by α2-ARs, possibly involving both α2A- and α2C-AR subtypes, though their respective contribution requires clarification. A role of dopaminergic terminals in the reuptake of NA likely explains the elevation in its levels elicited by DA reuptake-inhibitors and D3/D2 receptor antagonists.  相似文献   

19.
Changes in the expression of somatostatin (SRIF) have been observed in the brains of HIV encephalitis. Since gp120 is thought to play a major role in AIDS-associated abnormalities in the brain, we addressed the question: Does gp120 alter the functional expression of human fetal SRIF neurons in culture and if so, is this effect fetal-age dependent? Aggregate cultures, obtained from cortices of nine fetuses (14.9–20.7 weeks), were exposed for 7 days to BDNF or BDNF+gp120; BDNF induced production of SRIF during the subsequent 24–48 h was assessed. Similar effects of BDNF and gp120 were observed in the 9 brain-cultures. A 7-day exposure to BDNF alone led to a significant increase in SRIF production (p=0.014), whereas exposure to gp120 alone did not. Co-exposure to BDNF and gp120 led to an increase in BDNF-induced SRIF production which was significantly greater than that after BDNF alone (p=0.006). These effects were BDNF- and gp120-dose dependent and they were not accompanied by changes in DNA content of the aggregates nor in lactate dehydrogenase activity in the medium; indicating that gp120 did not lead to a major loss of cell integrity. These results are consistent with a synergistic effect of BDNF and gp120 leading to enhanced functional expression of the signalling pathway(s) mediating BDNF induction of SRIF production; an effect expressed by fetal brains throughout the 2nd trimester of gestation. Thus, this culture system can serve as a model to study the mechanism(s) underlying the early interactions between gp120 BDNF in the developing human brain.  相似文献   

20.
Transgenic mice expressing a mutated human Cu/Zn superoxide dismutase (SOD1) gene develop a motor neuron disease similar to familial amyotrophic lateral sclerosis (FALS). While the histopathology and the inflammatory reactions in the spinal cord of these mice are well described, their spatiotemporal extension into brain areas and the relationship between degenerative and inflammatory events remain obscure. In the present study, we investigated the time course and extent of degenerative changes and inflammatory reactions in the CNS during progression of the disease in a transgenic FALS model, the SOD1-G93A mouse with histological and immunohistochemical methods. Compared to non-transgenic littermates, the SOD1-G93A transgenics developed widespread degeneration in both motor and extra-motor regions up to telencephalic regions, including the cerebral cortex but sparing distinct regions like the striatum and hippocampus. We provide evidence that these degenerative processes are accompanied by intense inflammatory reactions in the brain, which spatiotemporally correlate with degeneration and comprise besides strong astro- and microgliotic reactions also an influx of peripheral immune cells such as T-lymphocytes and dendritic cells. Both degeneration and inflammatory reactions spread caudocranially, starting at 2 months in the spinal cord and reaching the telencephalon at 5 months of age. Since the corticospinal tract lacked any signs of degeneration, we conclude that the upper and the lower motor neurons degenerate independently of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号