首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver dysfunction, and its prevalence has markedly increased. We previously evaluated the expression of fatty acid metabolism-related genes in NAFLD and reported changes in expression that could contribute to increased fatty acid synthesis. In the present study, we evaluated the expression of additional fatty acid metabolism-related genes in larger groups of NAFLD (n=26) and normal liver (n=10) samples. The target genes for real-time PCR analysis were as follows: acetyl-CoA carboxylase (ACC) 1, ACC2, fatty acid synthase (FAS), sterol regulatory element-binding protein 1c (SREBP-1c), and adipose differentiation-related protein (ADRP) for evaluation of de novo synthesis and uptake of fatty acids; carnitine palmitoyltransferase 1a; (CPT1a), long-chain acyl-CoA dehydrogenase (LCAD), long-chain L-3-hydroxyacylcoenzyme A dehydrogenase alpha (HADHalpha), uncoupling protein 2 (UCP2), straight-chain acyl-CoA oxidase (ACOX), branched-chain acyl-CoA oxidase (BOX), cytochrome P450 2E1 (CYP2E1), CYP4A11, and peroxisome proliferator-activated receptor (PPAR)alpha for oxidation in the mitochondria, peroxisomes and microsomes; superoxide dismutase (SOD), catalase, and glutathione synthetase (GSS) for antioxidant pathways; and diacylglycerol O-acyltransferase 1 (DGAT1), PPARgamma, and hormone-sensitive lipase (HSL) for triglyceride synthesis and catalysis. In NAFLD, although fatty acids accumulated in hepatocytes, their de novo synthesis and uptake were up-regulated in association with increased expression of ACC1, FAS, SREBP-1c, and ADRP. Fatty acid oxidation-related genes, LCAD, HADHalpha, UCP2, ACOX, BOX, CYP2E1, and CYP4A11, were all overexpressed, indicating that oxidation was enhanced in NAFLD, whereas the expression of CTP1a and PPARalpha was decreased. Furthermore, SOD and catalase were also overexpressed, indicating that antioxidant pathways are activated to neutralize reactive oxygen species (ROS), which are overproduced during oxidative processes. The expression of DGAT1 was up-regulated without increased PPARgamma expression, whereas the expression of HSL was decreased. Our data indicated the following regarding NAFLD: i) increased de novo synthesis and uptake of fatty acids lead to further fatty acid accumulation in hepatocytes; ii) mitochondrial fatty acid oxidation is decreased or fully activated; iii) in order to complement the function of mitochondria (beta-oxidation), peroxisomal (beta-oxidation) and microsomal (omega-oxidation) oxidation is up-regulated to decrease fatty acid accumulation; iv) antioxidant pathways including SOD and catalase are enhanced to neutralize ROS overproduced during mitochondrial, peroxisomal, and microsomal oxidation; and v) lipid droplet formation is enhanced due to increased DGAT expression and decreased HSL expression. Further studies will be needed to clarify how fatty acid synthesis is increased by SREBP-1c, which is under the control of insulin and AMP-activated protein kinase.  相似文献   

2.
We have used mice with inborn errors of mitochondrial fatty acid beta-oxidation to test the concept of synergistic heterozygosity. We postulated that clinical disease can result from heterozygous mutations in more than one gene in single or related metabolic pathways. Mice with combinations of mutations in mitochondrial fatty acid beta-oxidation genes were cold challenged to test their ability to maintain normal body temperature, a sensitive indicator of overall beta-oxidation function. This included mice of the following genotypes: triple heterozygosity for mutations in very-long-chain acyl CoA dehydrogenase, long-chain acyl CoA dehydrogenase, and short-chain acyl CoA dehydrogenase genes (VLCAD+/-//LCAD+/-//SCAD+/-); double heterozygosity for mutations in VLCAD and LCAD genes (VLCAD+/-//LCAD+/-); double heterozygosity for mutations in LCAD and SCAD genes (LCAD+/-//SCAD+/-); single heterozygous mice (VLCAD+/-, LCAD+/-, SCAD+/-) and wild-type. We found that approximately 33% of mice with any of the combined mutant genotypes tested became hypothermic during a cold challenge. All wild-type and single heterozygous mice maintained normal body temperature throughout a cold challenge. Despite development of hypothermia in some double heterozygous mice, blood glucose concentrations remained normal. Biochemical screening by acylcarnitine and fatty acid analyses demonstrated results that varied by genotype. Thus, physiologic reduction of the beta-oxidation pathway, characterized as cold intolerance, occurred in mice with double or triple heterozygosity; however, the derangement was milder than in mice homozygous for any of these mutations. These results substantiate the concept of synergistic heterozygosity and illustrate the potential complexity involved in diagnosis and characterization of inborn errors of fatty acid metabolism in humans.  相似文献   

3.
Several data indicate that hypothalamic fatty acid synthesis pathway plays an important role in the control of food intake and energy expenditure in rodents. However, the confirmation of its physiological relevance in regulation of feeding in human remains incomplete. For fatty acid synthesis pathway to function as regulator of energy balance in human hypothalamus, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and other lipogenic enzymes activities must be present. The presence of FAS in human hypothalamic neurons has been shown by immunohistochemistry, but quantitative studies on FAS activity there has not been performed so far. There is no available data concerning ACC activity in human hypothalamus. Thus, we investigated ACC and FAS (as well as other lipogenic enzymes) activities in human hypothalamus of subjects who died in car accidents. The results presented in this paper indicate that ACC and FAS activities are present in human hypothalamus and that these activities are 2- to 3-fold lower than in rat hypothalamus. Moreover, our data presented in this paper indicate that other lipogenic enzymes activities are also present in human hypothalamus. The activity of FAS, ACC and other lipogenic enzymes in human hypothalamus suggests that fatty acid synthesis actively occurs there. Therefore, it is likely, that in human this pathway may be relevant to hypothalamic functioning as food intake and energy expenditure regulator, similarly as it was suggested in rodents.  相似文献   

4.
Non-alcoholic fatty liver disease (NAFLD) is considered to be associated with metabolic syndrome; however, a number of NAFLD patients are not obese. To explore any differences in lipid metabolism between obese and non-obese patients, we determined the expression of fatty acid metabolism-related genes. Expression levels of target genes were quantified by real-time PCR using liver biopsy samples from NAFLD patients and normal controls. Serum adipocytokine levels were also determined. The expression of genes related to fatty acid synthesis and uptake was generally up-regulated in NAFLD patients; however, no significant difference was seen between obese and non-obese groups. Most of the genes tested related to fatty acid and reactive oxygen species (ROS) elimination, were overexpressed in NAFLD and the levels were significantly higher in non-obese patients. As an exception, peroxisome proliferator-activated receptor alpha expression was suppressed in NAFLD and the levels were lower in the obese group. Triglyceride synthesis-related genes were up-regulated and lipolytic enzymes were decreased in NAFLD, but there was no significant difference between the obese and non-obese groups. In NAFLD, increased de novo synthesis and uptake of fatty acids led to further hepatocyte accumulation of fatty acids. The up-regulation of fatty acid oxidation and the antioxidant pathway and the suppression of lipolysis seemed to be involved in this process. Expression of genes related to fatty acid oxidation and ROS elimination were higher in the non-obese group than in the obese group, which contributes to the trend of more severe liver injury, insulin resistance and steatosis in obese patients.  相似文献   

5.
Although metabolites and energy balance have long been known to play roles in the regulation of food intake, the potential role of fatty acid metabolism in this process has been considered only recently. Fatty acid synthase (FAS) catalyzes the condensation of acetyl-CoA and malonyl-CoA to generate long-chain fatty acids in the cytoplasm, while the breakdown of fatty acids (beta-oxidation) occurs in mitochondria and is regulated by carnitine palmitoyltransferase-1 (CPT-1), the rate-limiting step for the entry of fatty acids into the mitochondria. Inhibition of FAS using cerulenin or synthetic FAS inhibitors such as C75 reduces food intake and induces profound reversible weight loss. Subsequent studies reveal that C75 also stimulates CPT-1 and increases beta-oxidation. Hypotheses as to the mechanisms by which C75 and cerulenin mediate their effects have been proposed. Centrally, these compounds alter the expression profiles of feeding-related neuropeptides, often inhibiting the expression of orexigenic peptides. Whether through centrally mediated or peripheral mechanisms, C75 also increases energy consumption, which contributes to weight loss. In vitro and in vivo studies demonstrate that at least part of C75's effects is mediated by modulation of AMP-activated protein kinase (AMPK), a known peripheral energy-sensing kinase. Collectively, these data suggest a role for fatty acid metabolism in the perception and regulation of energy balance.  相似文献   

6.
7.
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease whose prevalence has increased markedly. We reported previously that fatty acid synthesis was enhanced in NAFLD with the accumulation of fatty acids. To clarify the disorder, we evaluated the expression of genes regulating fatty acid synthesis by real-time PCR using samples from NAFLD (n=22) and normal liver (control; n=10). A major regulator of fatty acids synthesis is sterol regulatory element-binding protein-1c (SREBP-1c). Its expression was significantly higher in NAFLD, nearly 5-fold greater than the controls. SREBP-1c is positively regulated by insulin signaling pathways, including insulin receptor substrate (IRS)-1 and -2. In NAFLD, IRS-1 expression was enhanced and correlated positively with SREBP-1c expression. In contrast, IRS-2 expression decreased by 50% and was not correlated with SREBP-1c. Forkhead box protein A2 (Foxa2) is a positive regulator of fatty acid oxidation and is itself negatively regulated by IRSs. Foxa2 expression increased in NAFLD and showed a negative correlation with IRS-2, but not with IRS-1, expression. It is known that SREBP-1c is negatively regulated by AMP-activated protein kinase (AMPK) but expression levels of AMPK in NAFLD were almost equal to those of the controls. These data indicate that, in NAFLD, insulin signaling via IRS-1 causes the up-regulation of SREBP1-c, leading to the increased synthesis of fatty acids by the hepatocytes; negative feedback regulation via AMPK does not occur and the activation of Foxa2, following a decrease of IRS-2, up-regulates fatty acid oxidation.  相似文献   

8.
Long chain acyl-CoA dehydrogenase (LCAD) has recently been shown to be the mitochondrial enzyme responsible for the beta-oxidation of branched chain and unsaturated fatty acids [Biochim. Biophys. Acta 1393 (1998) 35; Biochim. Biophys. Acta 1485 (2000) 121]. Whilst disorders of short, medium and very long chain acyl dehydrogenases are known, there is no known disorder of LCAD deficiency in humans. Experimental LCAD deficiency in mice shows an acyl-carnitine profile with prominent elevations of unsaturated fatty acid metabolites C14:1 and C14:2 [Hum. Mol. Genet. 10 (2001) 2069]. A child with autism whose acyl-carnitine profile also shows these abnormalities is presented, and it is hypothesized that the child may have LCAD deficiency. Additional metabolic abnormalities seen in this patient include alterations of TCA energy production, ammonia detoxification, reduced synthesis of omega-3 DHA, and abnormal cholesterol metabolism. These metabolic changes are also seen as secondary abnormalities in dysfunction of fatty acid beta-oxidation, and have also been reported in autism. It is hypothesized that LCAD deficiency may be a cause of autism. Similarities between metabolic disturbances in autism, and those of disorders of fatty acid beta-oxidation are discussed.  相似文献   

9.
OBJECTIVE: The expression of fatty acid synthase (FAS), an enzyme necessary for de novo fatty acid synthesis, has been examined in several types of tumours so far, but not in oesophageal cancer and dysplasia. METHODS: We examined the immunohistochemical reactivity of FAS in 4 normal adult oesophagi, 14 dysplastic oesophageal lesions, and 80 squamous cell carcinomas and 6 cases with 4 special types of malignancies of the oesophagus. We also analysed the correlation between FAS expression and various clinicopathological features and long-term survival in patients with oesophageal cancer. RESULTS: In the normal oesophagus, only faint cytoplasmic FAS expression was observed in cells of the basal layer. In contrast, FAS-positive cells were found in 92.9% of cases of dysplasia and 96.5% of cases of carcinoma including 6 cases with a specific histological subtype. However, high expression of FAS did not correlate with either clinicopathological features or prognosis of patients with oesophageal cancer. CONCLUSION: Our results demonstrate that FAS is expressed in almost all oesophageal carcinomas of both usual and special types and dysplastic lesions, suggesting that FAS may be upregulated continuously from the early stage of oesophageal squamous cell carcinogenesis to established carcinoma.  相似文献   

10.
Recent studies have shown that marine oils rich in long-chain (C20 and C22) fatty acids (i.e. certain natural marine oils and partially hydrogenated fish oil) may affect the haemostatic balance in a favourable way with regard to coronary heart disease. Such fats have also been found to increase the content of EPA (eicosapentaenoic ACID = C20:5 n-3) and to decrease the content of arachidonic acid (C20:4 n-6) in blood lipids, thus affecting the ratio of C20:4 n-6 to C20:5 n-3 in a favourable way with regard to eicosanoid production. It is therefore likely that the positive effects of long-chain monoenoic fatty acids on haemostasis are due to increased synthesis of long-chain essential n-3 fatty acids. According to recent theories the final steps in the synthesis of long-chain essential fatty acids occur in the peroxisomes, which also have a controlling function in essential fatty acid synthesis. Long-chain monoenoic fatty acids are known to enhance peroxisomal beta-oxidation. An hypothesis is therefore advanced that marine oils rich in long-chain monoenoic fatty acids improve haemostasis in a favourable way with regard to coronary heart disease through increased peroxisomal beta-oxidation and increased synthesis of long-chain n-3 fatty acids.  相似文献   

11.
Expression of the primary enzyme catalyzing the synthesis of fatty acids, ie, fatty acid synthase (FAS), and ex vivo fatty acid synthetic activity were examined in colorectal epithelium and neoplasms, including the relationship to tumor progression and prognosis. Immunohistochemistry for FAS showed only faint staining of native colorectal mucosa, but increased expression was found in all sporadic adenomas (n = 18), adenomas associated with familial adenomatous polyposis (n = 7), hyperplastic polyps (n = 3), dysplasias arising in ulcerative colitis (n = 17), and colorectal carcinomas (n = 130) including 11 with contiguous adenomas. The intensity of staining was strong in 53% of carcinomas, intermediate in 38%, and weak in 9%. Activity of the fatty acid synthetic pathway measured by labeling of six surgical specimens with [U-14C]acetate was 2- to 7-fold higher in colorectal carcinomas than adjacent native mucosa (P = 0.006) and 6- to 16-fold higher than serosal fat (P = 0.01). Activity correlated with immunohistochemical expression (Spearman's rank correlation coefficient = 0.85; P < 0.001). There was no statistically significant association between patient survival and FAS staining intensity of carcinomas. Our study shows that FAS is expressed in all colorectal neoplasms and there is a concomitant increase in fatty acid synthesis. FAS may therefore represent a potential therapeutic target.  相似文献   

12.
Fatty acid synthase (FAS) is the key enzyme of de novo fatty acid synthesis and has been shown to be involved in carcinogenesis of numerous human malignancies, including breast, colorectal, and prostate carcinomas, often associated with a worse prognosis. Although FAS is mainly expressed in the liver, an implication of FAS in hepatocarcinogenesis, has not yet been investigated. FAS expression is stimulated by insulin and glucose, and insulin is also the primary trigger of hepatocarcinogenesis in an endocrine experimental model, which is induced by low-number transplantation of islets of Langerhans into the livers of diabetic rats. We therefore investigated, whether FAS is implicated in hepatocarcinogenesis in this model and in comparison to chemically induced hepatocarcinogenesis after N-nitrosomorpholine (NNM) treatment in diabetic and normoglycemic rats. Preneoplastic clear-cell foci of altered hepatocytes (FAH), harvested after laser-microdissection of kryostat sections, showed an overexpression of FAS messenger RNA in gene expression profiles, done by array-hybridization, and in quantitative RT-PCR (Light-Cycler). Virtually, all (96-98%) of the subsequently investigated FAH and the glycogenotic hepatocellular adenomas and carcinomas showed an additional strong FAS protein overexpression. In the NNM-model, FAS protein was also overexpressed in the vast majority (87%) of glycogenotic FAH and neoplasms, in particular in the diabetic animals. Also two spontaneous glycogenotic FAH in control animals displayed strong FAS overexpression. Basophilic lesions and neoplasms, which occasionally develop out of the primary clear-cell FAH at later stages of carcinogenesis, however, lost FAS overexpression. In conclusion, FAS overexpression is an early phenonemon in spontaneous, hormonally and chemically induced rat hepatocarcinogenesis, demonstrable in early clear-cell (glycogenotic) FAH and hepatocellular neoplasms. FAS overexpression can be attributed to the local hyperinsulinemia in the transplantation model and belongs to cellular and metabolic alterations in the chemical model, which are induced by an insulinomimetic but yet unknown mechanism.  相似文献   

13.
14.
In 1994, Kuhajda and colleagues unambiguously identified the oncogenic antigen-519, a prognostic molecule found in breast cancer patients with markedly worsened prognosis, as fatty acid synthase (FAS),the key enzyme for the de novo fatty acid biosynthesis. It now appears that human carcinomas and their pre-neoplastic lesions constitutively over express FAS and undergo significant endogenous fatty acid biosynthesis. Moreover, FAS blockade specifically induces apoptotic cancer cell death and prolongs survival of cancer xenograft hosts. Therefore, FAS signaling seems to play a central role in the maintenance of the malignant phenotype by enhancing cancer cell survival and proliferation. This review documents the rapidly changing perspectives on the function of FAS in cancer biology. First, we describe molecular mechanism by which aberrant transduction cascades driven by oncogenic changes subvert the down-regulatory effects of dietary fatty acids, resulting in tumor-associated FAS insensitivity to nutritional signals. Second, we speculate von the putative function that hypoxia can play as the epigenetic factor that triggers and maintains FAS overexpression in cancer cells by inducing changes in gene expression and in metabolism for survival. Third, we explore the role that FAS exhibits in cancer evolution by specifically regulating cancer-related proteins such as Her-2/neu oncogene and estrogen receptor. Finally, we reveal previously unrecognized functions of FAS on the response of cancer cells to chemo-,endocrine-,and immuno therapies. These findings, all together, should ultimately enhance our understanding of how FAS-dependent endogenous fatty acid metabolism, once considered a minor anabolic-energy-storage pathway in normal cells, has become a jack-of-all-trades in cancer cells.  相似文献   

15.
gamma-Linolenic acid (GLA), an essential omega-6 polyunsaturated fatty acid (FA) is an attractive concept as anticancer agent because it exerts selective cytotoxic on human breast cancer cells without affecting normal cells. This selective toxicity has been identified to be due, at least in part, to the production of lipid peroxides and free radicals. Interestingly, a novel hypothesis for GLA-induced tumor cell toxicity has recently been proposed. GLA, through a molecular mechanism involving the lipogenic enzyme fatty acid synthase (FAS), coordinately interrupts the pathways that replenish the pools of metabolic intermediates in the citric acid cycle (cellular anaplerosis). First, supraphysiological concentrations of GLA inhibit glycolysis, while a cytochrome P450-dependent epoxidation of GLA generates epoxides metabolites for GLA that would mimic the inhibitory action of standard FAS inhibitors such as cerulenin and C75. Second, GLA-epoxide inhibits FAS activity, thus resulting in the accumulation of cytosolic malonyl-CoA which, in turn, inhibits carnitine palmitoyl transferase I (CPT-I) and prevents FA oxidation. The recent characterization of GLA as a novel regulator of FAS expression in breast cancer cells supports and further expands this hypothesis, and directly involves FAS-dependent de novo fatty acid synthesis as the mechanism of GLA-induced toxicity to tumor cells. We hypothesize that, at low (physiological) concentrations, the inhibitory effect of GLA on FAS-regulated breast cancer cell survival is not specific and is due to cell toxicity caused by lipid peroxidation. Taking into account that the inhibitory effect of FAs on the expression of FAS in cultured hepatocytes has been shown to be related to a non-specific peroxidative mechanism, a similar GLA-dependent FAS regulatory mechanism involving peroxidative products may occur in normal and neoplastic tissues. At high (supraphysiological) concentrations of GLA, the specific downregulation of FAS gene expression leads to accumulation of the substrate for FAS, malonyl-CoA, that, as a result of FAS blockade, continue to be generated by the rate-limiting enzyme of the fatty acid biosynthetic pathway acetyl-CoA carboxilase, which is not inhibited in the absence of FAS-catalyzed long chain endogenous fatty acids. Physiologically, the elevated levels of malonyl-CoA occurring during FA biosynthesis reduce FA oxidation to prevent a futile cycle of simultaneous FA synthesis and degradation. Paradoxically, high-dose GLA treatments of FAS-overexpressing breast cancer cells will promote malonyl-CoA-induced inhibition of CPT-I and FA oxidation, thus precipitating an energy crisis that triggers decreased proliferation or apoptotic cell death. In summary, this working model presents the concept that the breast cancer adaptation in FAS expression can be exploited to develop GLA-based dietary interventions aimed at altering the FA synthesis pathway, which appears to be linked to neoplastic transformation and is associated with tumor virulence and adverse clinical outcome in a subset of human breast carcinomas.  相似文献   

16.
《Mucosal immunology》2021,14(1):164-176
CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacological inhibition of ACC1 by the natural compound soraphen A mirrored the anti-inflammatory effects of T-cell-specific targeting, but also enhanced susceptibility toward infection with C. rodentium. Further analysis revealed that deletion of ACC1 in RORγt+ innate lymphoid cells (ILC), but not dendritic cells or macrophages, decreased resistance to infection by interfering with IL-22 production and intestinal barrier function. Together, our study suggests pharmacological targeting of ACC1 as an effective approach for metabolic immune modulation of T-cell-driven intestinal inflammatory responses, but also reveals an important role of ACC1-mediated lipogenesis for the function of RORγt+ ILC.  相似文献   

17.
Raised concentrations of glucose for extended periods of time have detrimental effects on the insulin-producing beta-cell. As de novo synthesis of lipids has been observed under such conditions, it was hypothesized that newly formed lipids may preferentially contain saturated fatty acids, which in particular have been associated with impaired beta-cell function. Glucose-induced de novo synthesis of fatty acids in INS-1E cells cultured in 5.5, 11, 20 or 27 mM glucose for 5 days was assessed by high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS). The glucose origin of the increase in fatty acyls was verified by replacing glucose with [1-13C]glucose during culture followed by analysis with two-dimensional 1H-13C NMR spectroscopy. The composition of the fatty acyls was determined by GC-MS. Fatty acyls determined by HR-MAS (1)H NMR spectroscopy were increased fivefold in INS-1E cells cultured in 20 or 27 mM glucose compared with cells cultured in 5.5 mM glucose. The five most abundant fatty acids with their relative percentages in INS-1E cells cultured in 5.5 mM glucose were oleate (33%), palmitate (25%), stearate (19%), octadecenoate (13%) and palmitoleate (4.4%). These proportions were not affected by glucose- induced de novo synthesis in INS-1E cells cultured in 11, 20 or 27 mM glucose. It is concluded that glucose-induced de novo lipid synthesis results in accumulation of both saturated and unsaturated fatty acids in specific proportions that are identical with those present under control conditions.  相似文献   

18.
Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin‐1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.  相似文献   

19.
20.
Impaired peroxisomal beta-oxidation of saturated very long chain fatty acids (VLCFA, >/=C22:0) results in increased VLCFA levels in the tissues and body fluids of patients with disorders of peroxisomal biogenesis (i.e., Zellweger syndrome and neonatal adrenoleukodystrophy) and single peroxisomal protein defects (i.e., X-linked adrenoleukodystrophy (X-ALD) and acyl-CoA oxidase deficiency). We show that SV40T transformation also results in impaired peroxisomal beta-oxidation and VLCFA accumulation despite the presence of abundant peroxisomes. To explore the mechanism responsible for this observation, we have examined expression of key components of peroxisomal VLCFA beta-oxidation. We found that expression of both acyl-CoA oxidase, the rate limiting enzyme of peroxisomal VLCFA beta-oxidation and the adrenoleukodystrophy protein (ALDP), the defective gene product in X-ALD, are reduced after SV40T transformation. Surprisingly, ALDP overexpression by itself restores peroxisomal VLCFA beta-oxidation in SV40T-transformed control and X-ALD cells. These results demonstrate that ALDP is a fundamental component in VLCFA peroxisomal beta-oxidation and may serve as a "gatekeeper" for VLCFA homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号