首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regulatory T (Treg) lymphocytes play a central role in the control of immune responses and so maintain immune tolerance and homeostasis. In mice, expression of the CD8 co‐receptor and low levels of the co‐stimulatory molecule CD28 characterizes a Treg cell population that exerts potent suppressive function in vitro and efficiently controls experimental immunopathology in vivo. It has remained unclear if CD8+ CD28low Treg cells develop in the thymus or represent a population of chronically activated conventional T cells differentiating into Treg cells in the periphery, as suggested by their CD28low phenotype. We demonstrate that functional CD8+ CD28low Treg cells are present in the thymus and that these cells develop locally and are not recirculating from the periphery. Differentiation of CD8+ CD28low Treg cells requires MHC class I expression on radioresistant but not on haematopoietic thymic stromal cells. In contrast to other Treg cells, CD8+ CD28low Treg cells develop simultaneously with CD8+ CD28high conventional T cells. We also identified a novel homologous naive CD8+ CD28low T‐cell population with immunosuppressive properties in human blood and thymus. Combined, our data demonstrate that CD8+ CD28low cells can develop in the thymus of mice and suggest that the same is true in humans.  相似文献   

2.
The importance of CD8+CD122+ Treg in the maintenance of immune homeostasis has been previously demonstrated in mice. Because the expression pattern of CD8 and CD122 in humans is different from that in mice, human CD8+ Treg that correspond to the murine CD8+CD122+ Treg have not been identified. In this study, we performed DNA microarray analyses to compare the gene expression profiles of CD8+CD122+ cells and CD8+CD122? cells in mice and found that CXCR3 was preferentially expressed in CD8+CD122+ cells. When we analyzed the expression of CD122 and CXCR3 in murine CD8+ cells, we observed a definite population of CD122+CXCR3+ cells. CD8+CXCR3+ cells in mice showed similar regulatory activities to CD8+CD122+ cells by in vivo and in vitro assays. While CD8+CD122+CXCR3+ cells are present in mice, CD8+CXCR3+ cells, but not CD8+CD122+ cells, are present in humans. In the in vitro assay, human CD8+CXCR3+ cells showed the regulatory activity of producing IL‐10 and suppressing IFN‐γ production from CD8+CXCR3? cells. These results suggest that human CD8+CXCR3+ T cells are the counterparts of murine CD8+CD122+ Treg.  相似文献   

3.
Hantaan virus (HTNV) infection causes an epidemic of hemorrhagic fever with renal syndrome (HFRS) mainly in Asia. Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to play an important role in innate host defense during virus infection. However, their roles and phenotypes during HTNV infection have not yet been explored. We characterized CD8+MAIT cells from HFRS patients based on scRNA-seq data combined with flow cytometry data. We showed that HTNV infection caused the loss and activation of CD8+MAIT cells in the peripheral blood, which were correlated with disease severity. The production of granzyme B and IFN-γ from CD8+MAIT cells and the limitation of HTNV replication in endothelia cells indicated the anti-viral property of CD8+MAIT cells. In addition, in vitro infection of MAIT cells by HTNV or HTNV-exposed monocytes showed that the activation of MAIT cells was IL-18 mediated. In conclusion, this study identified, for the first time, gene expression profiles of MAIT cells, provided underlying molecular mechanisms for activation of MAIT cells during HTNV infection, and suggested a potential anti-viral role of MAIT cells in HFRS.  相似文献   

4.
Although Treg‐cell‐mediated suppression during infection or autoimmunity has been described, functions of Treg cells during highly pathogenic avian influenza virus infection remain poorly characterized. Here we found that in Foxp3‐GFP transgenic mice, CD8+ Foxp3+ Treg cells, but not CD4+ Foxp3+ Treg cells, were remarkably induced during H5N1 infection. In addition to expressing CD25, the CD8+ Foxp3+ Treg cells showed a high level of GITR and produced IL‐10. In an adoptive transfer model, CD8+ Treg cells suppressed CD8+ T‐cell responses and promoted H5N1 virus infection, resulting in enhanced mortality and increased virus load in the lung. Furthermore, in vitro neutralization of IL‐10 and studies with IL‐10R‐deficient mice in vitro and in vivo demonstrated an important role for IL‐10 production in the capacity of CD8+ Treg cells to inhibit CD8+ T‐cell responses. Our findings identify a previously unrecognized role of CD8+ Treg cells in the negative regulation of CD8+ T‐cell responses and suggest that modulation of CD8+ Treg cells may be a therapeutic strategy to control H5N1 viral infection.  相似文献   

5.
Regulatory T (Treg) cells can balance normal tissue homeostasis by limiting inflammatory tissue damage, e.g. during pathogen infection, but on the other hand can also limit protective immunity induced during natural infection or following vaccination. Because most studies have focused on the role of CD4+ Treg cells, relatively little is known about the phenotype and function of CD8+ Treg cells, particularly in infectious diseases. Here, we describe for the first time the expression of CD39 (E‐NTPDase1) on Mycobacterium‐activated human CD8+ T cells. These CD8+CD39+ T cells significantly co‐expressed the Treg markers CD25, Foxp3, lymphocyte activation gene‐3 (LAG‐3), and CC chemokine ligand 4 (CCL4), and suppressed the proliferative response of antigen‐specific CD4+ T helper‐1 (Th1) cells. Pharmacological or antibody mediated blocking of CD39 function resulted in partial reversal of suppression. These data identify CD39 as a novel marker of human regulatory CD8+ T cells and indicate that CD39 is functionally involved in suppression by CD8+ Treg cells.  相似文献   

6.
《Human immunology》2015,76(7):511-518
T regulatory (Treg) cells have a key role in immune homeostasis and the pathogenesis of chronic inflammatory and autoimmune diseases. CD69 is an early leukocyte activation molecule that under steady state conditions is detected in a small proportion of lymphocytes in peripheral blood and lymphoid tissues. Although it has been reported that a subset of CD69+ T cells behaves as Treg lymphocytes, the possible relationship between CD69+ Treg cells and CD4+NKG2D+ T lymphocytes, which also exert immunosuppressive activity, has not been explored. In this study, we analyzed the expression of CD69 and NKG2D by T lymphocytes from the peripheral blood of twenty-five healthy subjects by multi-parametric flow cytometry analysis, and their suppressive activity by an assay of inhibition of lymphocyte activation (CD40L expression) and proliferation (carboxyfluorescein partition assay). We found a very small percentage of CD4+CD69+NKG2D+ T cells (median 0.002%, Q1Q3, 0.001–0.004%), which also expressed TGF-β (Latency Associated Peptide or LAP) and IL-10, in all samples analyzed. These cells exerted an important in vitro suppressive effect on both activation and proliferation of T effector cells. Our data suggest that at very small numbers, CD4+CD69+NKG2D+ lymphocytes seem to exert a relevant functional immune-regulatory role in healthy subjects.  相似文献   

7.
Regulatory T (Treg) cells act to suppress activation of the immune system and thereby maintain immunological homeostasis and tolerance to self-antigens. The frequency and suppressing activity of Treg cells in general are high in different malignancies. We wanted to identify the role and regulation of CD4+ CD25+ FoxP3+ Treg cells in B-cell acute lymphoblastic leukaemia (B-ALL). We have included patients at diagnosis (= 54), patients in clinical remission (= 32) and normal healthy individuals (= 35). These diagnosed patients demonstrated a lower number of CD4+ CD25+ cells co-expressing a higher level of FoxP3, interleukin-10, transforming growth factor-β and CD152/CTLA-4 than the normal population. Treg cells from patients showed a higher suppressive capability on CD4+ CD25 responder T (Tresp) cells than normal. The frequency and immunosuppressive potential of CD4+ CD25+ FoxP3+ Treg cells became high with the progression of malignancy in B-ALL. Relative distribution of Tresp and Treg cells was only ˜5 : 1 in B-ALL but ˜35 : 1 in normal healthy individuals, further confirming the elevated immunosuppression in patients. A co-culture study at these definite ex vivo ratios, indicated that Treg cells from B-ALL patients exhibited higher immunosuppression than Treg cells from normal healthy individuals. After chemotherapy using the MCP841 protocol, the frequency of CD4+ CD25+ cells was gradually enhanced with the reduction of FoxP3, interleukin-10 positivity corresponded with disease presentation, indicating reduced immunosuppression. Taken together, our study indicated that the CD4+ CD25+ FoxP3+ Treg cells played an important role in immunosuppression, resulting in a positive disease-correlation in these patients. To the best of our knowledge, this is the first detailed report on the frequency, regulation and functionality of Treg cells in B-ALL.  相似文献   

8.
The adoptive transfer of CD4+CD25+ natural regulatory T cells (Treg) is a promising strategy for the treatment of autoimmune diseases and the prevention of alloresponses after transplantation. Clinical trials exploring this strategy require efficient in vitro expansion of this rare cell population. Protocols developed thus far rely on high‐grade purification of Treg prior to culture initiation, a process still hampered by the lack of Treg cell‐specific surface markers. Depletion of CD127+ cells was shown to separate activated conventional T cells from natural Treg cell populations allowing the isolation of highly enriched FOXP3+ cells with all functional and molecular characteristics of natural Treg. Here, we demonstrate that upon in vitro expansion, CpG methylation in a conserved region within the FOXP3 gene locus increased in CD4+CD25+CD127low Treg, correlating with loss of FOXP3 expression and emergence of pro‐inflammatory cytokines. Further analysis identified CD45RA?FOXP3+ memory‐type Treg as the main source of converting cells, whereas CD45RA+FOXP3+ Treg from the same donors showed no conversion within 3 wk of in vitro expansion. Thus, Treg cell lineage differentiation does not seem to represent a final fate decision, as natural Treg can lose their cell‐type‐specific characteristics after repetitive TCR stimulation.  相似文献   

9.
The significance of TLR expression and Tregs in HBV infection has not been clearly described. In this report, flow cytometry was performed to assess TLR2/4 expression on monocytes and circulating CD4+CD25+CD127low/− Tregs frequency of 16 acute hepatitis B (AHB), 42 chronic hepatitis B (CHB), 22 asymptomatic HBV carriers (AsC), and 20 normal controls (NC). We found that TLR2 and TLR4 were overexpressed on CD14+ monocytes in HBV-infected patients as compared with NCs. Upregulation of TLR2 in NCs and TLR4 in CHBs was observed following HBeAg incubation. However, TLR2 and TLR4 expression decreased after HBcAg stimulation. The difference in the proportion of Tregs between NCs and CHBs was significant. Both Pam3Csk4 (TLR2 agonist)- and lipopolysaccharide (TLR4 agonist)-activated CD4+CD25+ Tregs showed enhanced suppression function in CHBs. These results suggest that overexpression of TLR2 and TLR4 may modulate the suppressive function of Tregs, which contribute to the immunotolerance of chronic HBV infection.  相似文献   

10.
11.
《Mucosal immunology》2017,10(1):79-90
Sublingual immunotherapy (SLIT) is a safe and efficient treatment for type 1 allergies; however, the underlying immunological mechanisms, particularly the phenotype of oral antigen-presenting cells (APCs) responsible for the induction of regulatory T (Treg) cells, remain unclear. We show here that the sublingual application of ovalbumin (OVA) induced antigen-specific Foxp3+ Treg cells in draining submandibular lymph nodes (ManLNs). Oral APCs were classified into macrophages, classical dendritic cells (cDCs), and Langerhans cells by flow cytometry. A major subset of oral cDCs with the CD103CD11b+ phenotype showed retinoic acid (RA)-producing activity and converted naive CD4+ T cells to Foxp3+ Treg cells in a transforming growth factor-β- and RA-dependent manner in vitro. In the ManLNs, migratory CD103CD11b+ cDCs also showed RA-producing activity. After the sublingual application of fluorescent OVA, fluorescence was detected in oral macrophages in tissues, followed by migratory CD103CD11b+ cDCs in ManLNs and migratory CD103CD11b+ cDCs were the main APCs responsible for the induction of sublingual antigen-specific Treg cells. The transfer of OVA-SLIT-induced Treg cells suppressed the OVA-induced hypersensitivity response. These results suggest that oral CD103CD11b+ cDCs transport sublingual antigens to draining ManLNs and induce antigen-specific Foxp3+ Treg cells, and, thus, provide a rationale for developing cDC-based therapeutic approaches in SLIT.  相似文献   

12.
Current methods for the detection and isolation of antigen-specific CD4+ and CD8+ T cells require the availability of peptide/MHC multimers or are restricted to cells that produce cytokines after antigen contact. Here we show that de novo cell surface expression of the TNF-receptor family member CD137 (4-1BB) identifies recently activated, but not resting, human CD4+ and CD8+ memory T cells. Maximum CD137 expression level is uniformly observed in both T-cell subsets at 24h after stimulation with antigen. In experiments with CMV and EBV-reactive T cells, we confirmed the specificity of CD137 expression by co-staining with peptide/HLA tetramers. Substantial proportions of CD137+ T cells did not produce IFN-γ, suggesting that CD137 detects a broader repertoire of antigen-specific T cells. Activated CD137+ T cells could be easily purified by MACS and expanded in vitro thereafter. This CD137-based enrichment method was capable of isolating 2-fold higher numbers of anti-viral CD4+ and CD8+ T cells compared to the IFN-γ secretion assay. In conclusion, antigen-triggered CD137 expression allows the rapid detection and sorting of virus-reactive CD4+ and CD8+ T cells. The CD137 assay is most attractive for the simultaneous targeting of anti-viral T helper and effector cells in monitoring studies and adoptive immunotherapy trials.  相似文献   

13.
Chronic schistosome infection results in the suppression of host immune responses, allowing long‐term schistosome survival and restricting pathology. Current theories suggest that Treg play an important role in this regulation. However, the mechanism of Treg induction during schistosome infection is still unknown. The aim of this study was to determine the mechanism behind the induction of CD4+CD25+ T cells by Schistosoma japonicum HSP60 (SjHSP60)‐derived peptide SJMHE1 as well as to elucidate the cellular and molecular basis for the induction of CD4+CD25+ T cells during S. japonicum infection. Mice immunized with SJMHE1 or spleen and LN cells from naïve mice pretreated with SJMHE1 in vitro all displayed an increase in CD4+CD25+ T‐cell populations. Release of IL‐10 and TGF‐β by SJMHE1 stimulation may contribute to suppression. Adoptively transferred SJMHE1‐induced CD4+CD25+ T cells inhibited delayed‐type hypersensitivity in BALB/c mice. Additionally, SJMHE1‐treated APC were tolerogenic and induced CD4+ cells to differentiate into suppressive CD4+CD25+ Treg. Furthermore, our data support a role for TLR2 in SJMHE1‐mediated CD4+CD25+ Treg induction. These findings provide the basis for a more complete understanding of the S. japonicum–host interactions that contribute to host homeostatic mechanisms, preventing an excessive immune response.  相似文献   

14.
Human helminth infections are synonymous with impaired immune responsiveness indicating suppression of host immunity. Using a permissive murine model of filariasis, Litomosoides sigmodontis infection of inbred mice, we demonstrate rapid recruitment and increased in vivo proliferation of CD4+Foxp3+ Treg cells upon exposure to infective L3 larvae. Within 7 days post‐infection this resulted in an increased percentage of CD4+T cells at the infection site expressing Foxp3. Antibody‐mediated depletion of CD25+ cells prior to infection to remove pre‐existing ‘natural’ CD4+CD25+Foxp3+ Treg cells, while not affecting initial larval establishment, significantly reduced the number of adult parasites recovered 60 days post‐infection. Anti‐CD25 pre‐treatment also impaired the fecundity of the surviving female parasites, which had reduced numbers of healthy eggs and microfilaria within their uteri, translating to a reduced level of blood microfilaraemia. Enhanced parasite killing was associated with augmented in vitro production of antigen‐specific IL‐4, IL‐5, IL‐13 and IL‐10. Thus, upon infection filarial larvae rapidly provoke a CD4+Foxp3+ Treg‐cell response, biasing the initial CD4+ T‐cell response towards a regulatory phenotype. These CD4+Foxp3+ Treg cells are predominantly recruited from the ‘natural’ regulatory pool and act to inhibit protective immunity over the full course of infection.  相似文献   

15.
Although CD8+ Treg‐mediated suppression has been described, CD8+ Treg remain poorly characterized. Here we identify a novel subset of CD8+ Treg that express latency‐associated peptide (LAP) on their cell surface (CD8+LAP+ cells) and exhibit regulatory activity in vitro and in vivo. Only a small fraction of CD8+LAP+ cells express Foxp3 or CD25, although the expression levels of Foxp3 for these cells are higher than their LAP? counterparts. In addition to TGF‐β, CD8+LAP+ cells produce IFN‐γ, and these cells suppress EAE that is dependent on both TGF‐β and IFN‐γ. In an adoptive co‐transfer model, CD8+LAP+ cells suppress myelin oligodendrocyte glycoprotein (MOG)‐specific immune responses by inducing or expanding Foxp3+ cells and by inhibiting proliferation and IFN‐γ production in vivo. Furthermore, in vivo neutralization of IFN‐γ and studies with IFN‐γ‐deficient mice demonstrate an important role for IFN‐γ production in the function of CD8+LAP+ cells. Our findings identify the underlying mechanisms that account for the immunoregulatory activity of CD8+ T cells and suggest that induction or amplification of CD8+LAP+ cells may be a therapeutic strategy to help control autoimmune processes.  相似文献   

16.
Because regulatory T (Treg) cells play an important role in modulating the immune system response against both endogenous and exogenous antigens, their control is critical to establish immunotherapy against autoimmune disorders, chronic viral infections and tumours. Ribavirin (RBV), an antiviral reagent used with interferon, is known to polarize the T helper (Th) 1/2 cell balance toward Th1 cells. Although the immunoregulatory mechanisms of RBV are not fully understood, it has been expected that RBV would affect T reg cells to modulate the Th1/2 cell balance. To confirm this hypothesis, we investigated whether RBV modulates the inhibitory activity of human peripheral CD4+ CD25+ CD127 T cells in vitro. CD4+ CD25+ CD127 T cells pre-incubated with RBV lose their ability to inhibit the proliferation of CD4+ CD25 T cells. Expression of Forkhead box P3 (FOXP3) in CD4+ CD25 T cells was down-modulated when they were incubated with CD4+ CD25+ CD127 T cells pre-incubated with RBV without down-modulating CD45RO on their surface. In addition, transwell assays and cytokine-neutralizing assays revealed that this effect depended mainly on the inhibition of interleukin-10 (IL-10) produced from CD4+ CD25+ CD127 T cells. These results indicated that RBV might inhibit the conversion of CD4+ CD25 FOXP3 naive T cells into CD4+ CD25+ FOXP3+ adaptive Treg cells by down-modulating the IL-10-producing Treg 1 cells to prevent these effector T cells from entering anergy and to maintain Th1 cell activity. Taken together, our findings suggest that RBV would be useful for both elimination of long-term viral infections such as hepatitis C virus infection and for up-regulation of tumour-specific cellular immune responses to prevent carcinogenesis, especially hepatocellular carcinoma.  相似文献   

17.
18.
Cancer‐induced immunotolerance mediated by inducible Treg (iTreg) is a major obstacle to cancer immunotherapy. In a basic study of immunotolerance, injection of an endogenous superantigen, i.e. the minor lymphocyte stimulatory (Mls)‐1a, into specific TCR Vβ8.1‐Tg mice enabled generation of anergic CD25 iTreg, the immunosuppressive function of which was maintained by IL‐10 production via p38‐MAPK activation. Interestingly, although p38‐chemical inhibitor (p38‐inhibitor) is capable of breaking CD25 iTreg‐induced immunotolerance, the p38‐inhibitor had hardly any immunotolerance breaking effect when CD25+ Treg were present, suggesting that depletion of CD25+ Treg is necessary for p38‐inhibitor to be effective. Peptide OVA323–339 iv.‐injection into its specific TCR‐Tg (OT‐II) mice also induced adaptive tolerance by iTreg. Peptide immunotherapy with p38‐inhibitor after CD25+ Treg‐depletion was performed in an OVA‐expressing lymphoma E.G7‐bearing tolerant model established by adoptive transfer of OT‐II CD25 iTreg, which resulted in suppression of tumor growth. Similarly, the antitumor immunity induced by peptide immunotherapy in colon carcinoma CT26‐bearing mice, in which the number of IL‐10‐secreting iTreg is increased, was augmented by treatment with p38‐inhibitor after CD25+ Treg‐depletion and resulted in inhibition of tumor progression. These results suggest that simultaneous inhibition of two distinct Treg‐functions may be important to the success of cancer immunotherapy.  相似文献   

19.
Peripheral T‐cell expansion is of major relevance for immune function after lymphopenia. In order to promote regeneration, the process should result in a peripheral T‐cell pool with a similar subpopulation structure as before lymphopenia. We investigated the repopulation of the CD8+ central‐memory T cells (TCM) and effector‐memory T cells (TEM) pools after adoptive transfer of sorted CD8+ T cells from naïve, TCM and TEM subsets into T‐cell‐deficient hosts. We show that the initial kinetics of expansion are distinct for each subset and that the contribution to the repopulation of the CD8+ T‐cell pool by the progeny of each subset is not a mere function of its initial expansion. We demonstrate that CD4+CD25+ Treg play a major role in the repopulation of the CD8+ T‐cell pool and that CD8+ T‐cell subsets impact on each other. In the absence of CD4+CD25+ Treg, a small fraction of naïve CD8+ T cells strongly proliferates, correlating with further expansion and differentiation of co‐expanding CD8+ T cells. CD4+CD25+ Treg suppress these responses and lead to controlled repopulation, contributing decisively to the maintenance of recovered TCM and TEM fractions, and leading to repopulation of each pool with progeny of its own kind.  相似文献   

20.
CTLA‐4 is constitutively expressed by CD4+CD25+Foxp3+ Treg but its precise role in Treg function is not clear. Although blockade of CTLA‐4 interferes with Treg function, studies using CTLA‐4‐deficient Treg have failed to reveal an essential requirement for CTLA‐4 in Treg suppression in vivo. Conditional deletion of CTLA‐4 in Foxp3+ T cells disrupts immune homeostasis in vivo but the immune processes disrupted by CTLA‐4 deletion have not been determined. We demonstrate that Treg expression of CTLA‐4 is essential for Treg control of lymphopenia‐induced CD4 T‐cell expansion. Despite IL‐10 expression, CTLA‐4‐deficient Treg were unable to control the expansion of CD4+ target cells in a lymphopenic environment. Moreover, unlike their WT counterparts, CTLA‐4‐deficient Treg failed to inhibit cytokine production associated with homeostatic expansion and were unable to prevent colitis. Thus, while Treg developing in the absence of CTLA‐4 appear to acquire some compensatory suppressive mechanisms in vitro, we identify a non‐redundant role for CTLA‐4 in Treg function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号