首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, lives free within the cytoplasm of infected host cells. This intracellular niche suggests that parasite antigens may be processed and presented on major histocompatibility complex (MHC) class I molecules for recognition by CD8+ T cells. However, the parasite persists indefinitely in the mammalian host, indicating its success at evading immune clearance. It has been shown that T. cruzi interferes with processing and presentation of antigenic peptides in the MHC class II pathway. This investigation sought to determine whether interference in MHC class I processing and presentation occurs with T. cruzi infection. Surface expression of MHC class I molecules was found to be unaffected or up-regulated by T. cruzi infection in vitro. A model system employing a β-galactosidase (β-gal)-specific murine cytotoxic T lymphocyte (CTL) line (0805B) showed: (i) in vitro infection of mouse peritoneal macrophages or J774 cells with T. cruzi did not inhibit MHC class I presentation of exogenous peptide (a nine-amino acid epitope of β-gal) to the CTL line, (ii) in vitro infection of a β-gal-expressing 3T3 cell line (LZEJ) with T. cruzi did not inhibit MHC class I presentation of the endogenous protein to the CTL line and (iii) mouse renal adenocarcinoma cells infected with T. cruzi and subsequently infected with adenovirus expressing β-gal were able to present antigen to the β-gal-specific CTL line. These findings indicate that the failure of the immune response to clear T. cruzi does not result from global interference by the parasite with MHC class I processing and presentation. Parasites engineered to express β-gal were unable to sensitize infected antigen-presenting cells in vitro to lysis by the CTL 0805B line. This was probably due to the intracellular localization of the β-gal within the parasite and its inaccessibility to the host cell cytoplasm.  相似文献   

2.
The role of major histocompatibility complex (MHC) class I and class II molecules in natural killer (NK) cell-mediated rejection of allogeneic, semi-syngeneic and MHC-matched bone marrow grafts was investigated. The use of β2-microglobulin (β2m) -/- and β2m +/- mice as bone marrow donors to MHC-mismatched recipients allowed an analysis of whether the presence of semi-syngeneic and allogeneic MHC class I gene products would be triggering, protective or neutral, in relation to NK cell-mediated rejection. Loss of β2m did not allow H-2b bone marrow cells to escape from NK cell-mediated rejection in allogeneic (BALB/c) or semi-allogeneic (H-2Dd transgenic C57BL/6) mice. On the contrary, it led to stronger rejection, as reflected by the inability of a larger bone marrow cell inoculum to overcome rejection by the H-2-mismatched recipients. In H-2-matched recipients, loss of β2m in the graft led to a switch from engraftment to rejection. At the recipient level, loss of β2m led to loss of the capability to reject H-2-matched β2m-deficient as well as allogeneic grafts. When MHC class II-deficient mice were used as donors, the response was the same as that against donors of normal MHC phenotype: allogeneic and semi-syngeneic grafts were rejected by NK cells, while syngeneic grafts were accepted. These data suggest a model in which allogeneic class I molecules on the target cell offer partial protection, while certain syngeneic class I molecules give full protection from NK cell-mediated rejection of bone marrow cells. There was no evidence for a role of MHC class II molecules in this system.  相似文献   

3.
TAP1 -/- and β2-microglobulin (β2m) -/- mice (H-2b background) express very low levels of major histocompatibility complex (MHC) class I molecules on the cell surface. Consequently these mice have low numbers of mature CD8+ T lymphocytes. However, TAP1 -/- mice have significantly higher numbers of CD8+ T cells than β2m -/- mice. Alloreactive CD8+ cytotoxic T lymphocyte (CTL) responses were also stronger in TAP1 -/- mice than in β2m -/- mice. Alloreactive CTL generated in TAP1 -/- and β2m -/- mice cross-react with H-2b-expressing cells. Surprisingly, such cross-reactivity was stronger with alloreactive CTL from β2m -/- mice than with similar cells from TAP1 -/- mice. The β2m -/- mice also responded more strongly when primed with and tested against cells expressing normal levels of H-2b MHC class I molecules. Such H-2b-reactive CD8+ CTL from β2m -/- mice but not from TAP1 -/- mice also reacted with TAP1 -/- and TAP2-deficient RMA-S cells. In contrast, H-2b-reactive CD8+ CTL from neither β2m -/- mice nor TAP1 -/- mice killed β2m -/- cells. In line with these results, β2m -/- mice also responded when primed and tested against TAP1 -/- cells. We conclude that the reactivity of residual CD8+ T cells differs between TAP1 -/- and β2m -/- mice. The MHC class I-deficient phenotype of TAP1 -/- and β2m -/- mice is not equivalent: class I expression differs between the two mouse lines with regard to quality as well as quantity. We propose that the differences observed in numbers of CD8+ T cells, their ability to react with alloantigens and their cross-reactivity with normal H-2b class I are caused by differences in the expression of MHC class I ligands on selecting cells in the thymus.  相似文献   

4.
F1 hybrid mice often reject parental hematopoietic grafts, a phenomenon known as hybrid resistance. Hybrid resistance is mediated by natural killer (NK) cells and although the molecular interactions responsible for this phenomenon are largely unknown, one hypothesis suggests that parental cells are rejected because they fail to express a complete set of host major histocompatibility complex (MHC) class I molecules. Inherent in this theory is that NK cells in the F1 hybrid are instructed by self MHC class I molecules to form an NK cell repertoire capable of reacting against cells lacking these self MHC class I molecules. Here, we show that C57BL/6 x DBA/2 mice (H-2b/d) devoid of β2-microglobulin (β2m) are incapable of rejecting β2m?/? parental C57BL/6 cells (H-2b) both in vivo and in vitro. From this, we conclude that the development of an NK cell repertoire, at least in F1 mice of the H-2b/d haplotype, requires expression of MHC class I molecules complexed with β2m.  相似文献   

5.
The expression of certain major histocompatibility complex (MHC) class I ligands on target cells is one important determinate of their susceptibility to lysis by natural killer (NK) cells. NK cells express receptor molecules that bind to MHC class I. Upon binding to their MHC class I ligand, the NK cell is presumed to receive a signal through its receptor that inhibits lysis. It is unclear what role the MHC class I molecules of the effector and target cells play in signaling to the NK cell. We have investigated the role of the cytoplasmic and transmembrane domains of MHC class I molecules by producing a glycosylphosphatidylinositol (GPI)-linked H-2Dd molecule. The GPI-linked H-2Dd molecule is recognized by H-2Dd-specific antibodies and cytotoxic T lymphocytes. Expression of the GPI-linked H-2Dd molecule on H-2b tumor cells resulted in protection of the tumor cells after transplantation into D8 mice (H-2b, H-2Dd) from rejection by NK cells. In addition, NK cells from mice expressing the GPI-linked H-2Dd molecule as a transgene were able to kill nontransgenic H-2b lymphoblast target cells. The GPI-linked MHC class I molecule was able to alter NK cell specificity at the target and effector cell levels. Thus, the expression of the cytoplasmic and transmembrane domains of MHC class I molecules are not necessary for protection and alteration of NK cell specificity.  相似文献   

6.
Processing of exogenous hepatitis B surface antigen (HBsAg) particles in an endolysosomal compartment generates peptides that bind to the major histocompatibility complex (MHC) class I molecule Ld and are presented to CD8+ cytotoxic T lymphocytes. Surface-associated ‘empty’ MHC class I molecules associated neither with peptide, nor with β2-microglobulin (β2m) are involved in this alternative processing pathway of exogenous antigen for MHC class I-restricted peptide presentation. Here, we demonstrate that internalization of exogenous β2m is required for endolysosomal generation of presentation-competent, trimeric Ld molecules in cells pulsed with exogenous HBsAg. These data point to a role of endocytosed exogenous β2m in the endolysosomal assembly of MHC class I molecules that present peptides from endosomally processed, exogenous antigen.  相似文献   

7.
Murine MHC class I-restricted cytotoxic T lymphocyte (CTL) responses can be primed by exogenous as well as endogenous hepatitis B surface antigen (HBsAg). Immunodominant CTL-defined epitopes of this viral envelope protein are the Ld -binding 12-mer S28 – 39 peptide IPQSLDSWWTSL in H-2 d mice, and the Kb -binding 8-mer S208 – 215 peptide ILSPFLPL in H-2b mice. We tested if CTL recognizing these epitopes can be primed in vivo by HBsAg delivered as either an exogenous antigen (native HBsAg lipoprotein particles), or an endogenous antigen (plasmid DNA encoding HBsAg). Primed T cells were restimulated in vitro prior to the cytotoxicity assay with cells presenting the H-2 class I-binding epitopes generated by either exogenous or endogenous processing of HBsAg. The data indicate that the Ld -binding peptide S28 – 39 is generated during exogenous as well as endogenous processing of HBsAg. In contrast, the Kb -binding peptide S208 – 215 is generated during exogenous but not endogenous processing of HBsAg. Hence, some but not all MHC class I-binding, immunogenic peptides are generated during endogenous and exogenous processing of HBsAg but there also exists a repertoire of immunogenic peptides of viral origin that is only revealed after exogenous processing of viral proteins.  相似文献   

8.
As a preliminary step towards the use of cell surface single-chain class I major histocompatibility complex (MHC) molecules as T cell immunogens, we have engineered a recombinant gene encoding a full-length cell surface single-chain version of the H-2Dd class I MHC molecule (SCβDdm) which has β2-microglobulin (β2m) covalently linked to the amino terminus of a full-length H-2Dd heavy chain via a peptide spacer. The single-chain protein is correctly folded and stably expressed on the surface of transfected L cells. It can present an antigenic peptide to an H-2Dd-restricted antigen-specific T cell hybridoma. When expressed in peptide-transport-deficient cells, SCβDdm can be stabilized and pulsed for antigen presentation by incubation with extracellular peptide at 27° or 37 °C, allowing the preparation of cells with single-chain molecules that are loaded with a single chosen antigenic peptide. SCβDdm can be stably expressed in β2m-negative cells, showing that the single-chain molecule uses its own β2m domain to achieve correct folding and surface expression. Furthermore, the β2m domain of SCβDdm, unlike transfected free β2m, does not rescue surface expression of endogenous class I MHC in the β2m-negative cells. This strict cis activity of the β2m domain of SCβDdm makes possible the investigation of class I MHC function in cells, and potentially in animals, that express but a single type of class I MHC molecule.  相似文献   

9.
In this study the immunogenic tryptic fragment from a horse cytochrome c (cyt c) digest recognized by cytotoxic T lymphocytes (CTL), induced by in vitro peptide stimulation from C57BL/6 (B6) and mutant B6.C-H-2bm1 (bm1) mice is identified. An identical sequence, p40—53, is recognized by CTL from both B6 and bm1 mice. In addition, both B6 and bm1 cloned CTL lines display unusual major histocompatibility complex (MHC) class I-restricted recognition of this peptide in that they respond to it in the context of H-2Kb, H-2Db, and H-2Kbm1 class I molecules, although the sequence lacks the usual structural Kb and Db peptide-binding motifs. Truncated analogues which resemble the lengths of naturally processed MHC class I-presented peptides, confer reactivity for B6 and bm1 CTL against EL4 (H-2b) targets as well as the L cell transfectants, L + Kb, L + Db, and L + Kbm1. The antigenic peptide with the greatest potency is p41—49, which appears to be generated by angiotensin converting enzyme cleavage of the full-length p40—53 tryptic peptide. The minimum antigenic peptide recognized by both B6 and bm1 CTL, and which targets lysis on each of the transfectants, is the hexamer p43—48 peptide from horse cyt c. Residues Pro44 and Thr47, which occupy polymorphic positions with respect to other species-variant cyt c molecules, influence recognition of these peptides differently for the B6 and bm1 CTL. The ability of H-2Kb, H-2Db, and mutant H-2Kbm1 class I molecules to present the same peptide to a single cloned CTL is discussed in the context of current knowledge of peptide anchor residues and side chain-specific binding pockets in the MHC class I peptide-binding site.  相似文献   

10.
Correlations between the T cell receptor (TcR) V gene usage and the specificity of T cells have been primarily described for major histocompatibility complex (MHC) class II-restricted helper T cell responses. In the present study the TcR genes expressed by MHC class I-restricted murine cytotoxic T cells (CTL) specific for a major epitope of the lymphocytic choriomeningitis virus (LCMV), LCMV-GP2275–289, were investigated. The TcR primary structure of an LCMV-GP2275–289 specific H-2Db-restricted CTL clone has been determined. It uses a member of the Vα4 family joined to JαAN14.4 for the α chain and Vβ10 rearranged to Dβ2.1 and Jβ2.4 for its β chain. Four other independent LCMV-GP2275–289 specific H-2Db-restricted CTL clones also expressed Vα4 and Vβ10 gene elements. Furthermore, Vα4 and Vβ10 were preferentially expressed by polyclonal CTL of C57BL/6 origin specific for LCMV. These results suggest that both TcR Vα and Vβ regions are important for the recognition of the LCMV-GP2275-289 epitope on H-2Db molecules.  相似文献   

11.
The present investigation explored age-related alterations in T cell populations mediating allospecific responses in vivo. Healthy aged and young H-2b and H-2bxH-2k mice were engrafted with major histocompatibility complex (MHC) class II-disparate bm12 skin, rejection of which requires CD4+ T cells, and MHC class I-disparate bm1 skin, rejection of which requires CD8+ T cells. Aged mice of both genders exhibited prolonged survival of bm12 skin grafts relative to their young counterparts but rejected bm1 skin grafts at a rate equivalent to that of young mice. Consistent with prolonged survival of bm12 skin grafts, markedly diminished levels of Iabm12 CTL activity were elicited from T cells of aged mice in vitro. However, no such decline was observed in the level of Kbm1 CTL from T cells of aged mice. The alterations in Iabm12 allospecific responses were not attributable to quantitative changes in CD4+ T cells of aged mice, and addition of soluble T cell helper factors to response cultures of aged mice did not augment Iabm12 cytotoxic T lymphocytes activity. These data demonstrate that aging fundamentally affects CD4+ T cell-mediated allospecific responses particularly in vivo, and that deficient generation of soluble T cell helper factors alone cannot explain this deficit.  相似文献   

12.
We have previously described the induction of murine CD8+ major histocompatibility complex (MHC) class I-restricted cytotoxic T cells (CTL) recognizing the 20-amino acid repeat region of the human mucin 1 (MUC1) variable number of tandem repeats region (VNTR), a mucin greatly increased in expression in breast cancer and proposed as a target for immunotherapy. In that study, CTL could detect MUC1 peptides associated with the MHC of all nine strains examined, and we now report the different epitopes presented by five different MHC class I molecules. The epitopes were defined in CTL assays using peptide-pulsed phytohemagglutinin blasts or MHC class I-transfected L cells as targets; in addition, peptide binding assays and T cell proliferation studies were performed. Within the 20-amino acid VNTR, nine potential epitopes could be defined. The epitopes for the four MHC class I molecules [Kb (three epitopes), Dd, Ld and Kk] were closely related, all containing the amino acids PDTRPAP. For Db, three epitopes were identified, all containing APGSTAP. Most of the epitopes did not contain a consensus motif for the particular MHC class I allele, and bound with low ‘affinity’, compared with known high-affinity peptides. CD8+ T cell proliferation also occurred to the same MHC class I-presented epitopes. Finally, when conventional anchor residues were introduced into the peptides, peptide binding increased, whereas CTL recognition was either retained (Kb) or lost (Db) depending on the epitope.  相似文献   

13.
The influence of donor major histocompatibility complex (MHC) class I- or class II-deficiency on the initiation of first- and second-set rejection of mouse heart and liver allografts was examined. C3H (H-2k) mice received heterotopic cardiac or orthotopic liver grafts from unmodified B10 (H-2b), B6 (H-2b), b2m (H-2b; class I deficient) or AB0 (H-2b; class II deficient) donors. Organ survival was also investigated in C3H recipients that had been presensitized by a normal B10 skin graft 2–3 weeks before heart or liver transplantation. The absence of cell surface MHC class I or class II resulted in significant prolongation of primary cardiac allograft survival. Three of seven (43%) MHC class I-deficient, and two of five (40%) class II-deficient heart grafts were accepted indefinitely (survival time >100 days). Thus both MHC class I and class II molecules appear to be important for the elicitation of first-set rejection in the heart allograft model. All liver allografts survived >100 days in normal recipients. In C3H recipients that had been presensitized by a B10 skin graft, however, both heart and liver grafts from AB0 (class II deficient) donors underwent accelerated rejection (median survival time [MST] 3 and 4 days, respectively). In contrast, liver grafts from class I-deficient mice (b2m) were still accepted indefinitely by B10 skin-presensitized C3H recipients, whereas class I-deficient hearts survived significantly longer than those from class II-deficient or normal donors. These data demonstrate that the expression of donor MHC class I, and not class II is crucial in initiating second-set organ allograft rejection. In vitro monitoring revealed that at the time of organ transplant, both splenocytes and serum of the skin-presensitized animals displayed high cytotoxicity against AB0 (class II-deficient) but not against b2m (class I-deficient) targets.  相似文献   

14.
The peptide-binding properties of the nonclassical major histocompatibility complex (MHC) class 1b molecule Qa-1 were investigated using a transfected hybrid molecule composed of the α1 and α2 domains of Qa-1b and the α3 domain of H-2Db. This allowed the use of a monoclonal antibody directed against H-2Db whilst retaining the peptide-binding groove of Qa-1b. By comparison with classical MHC class I molecules, intracellular maturation of the chimeric molecule was inefficient with weak intracellular association with β2-microglobulin. However, at the cell surface the hybrid molecules were stably associated with β2-microglobulin and were recognized by cytotoxic T lymphocyte (CTL) clones specific for the Qa-1b -presented peptide Qdm (AMAPRTLLL). A whole-cell binding assay was used to determine which residues of Qdm were important for binding to Qa-1b and CTL clones served to identify residues important for T cell recognition. Substitutions at position 1 and 5 did not reduce the efficiency of binding and had little effect on CTL recognition. In contrast, substitutions at position 9 resulted in loss of MHC class I binding. Mass spectrometric analysis of peptides eluted from immunopurified Qa-1b/Db molecules indicated that Qdm was the dominant peptide. The closely related peptide, AMVPRTLLL, which is derived from the signal sequence of H-2Dk, was also present, although it was considerably less abundant. The mass profile suggested the presence of additional peptides the majority of which consisted of eight to ten amino acid residues. Finally, the finding that a peptide derived from Klebsiella pneumoniae can bind raises the possibility that this non-classical MHC class I molecule may play a role in the presentation of peptides of microorganisms.  相似文献   

15.
Targeted disruption of the CD8 gene results in a profound block in cytotoxic T cell (CTL) development. Since CTL are major histocompatibility complex (MHC) class I restricted, we addressed the question of whether CD8–/– mice can reject MHC class I-disparate allografts. Studies have previously shown that skin allografts are rejected exclusively by T cells. We therefore used the skin allograft model to answer our question and grafted CD8–/– mice with skins from allogeneic mice deficient in MHC class II or in MHC class I (MHC-I or MHC-II-disparate, respectively). CD8–/– mice rejected MHC-I-disparate skin rapidly even if they were depleted of CD4+ cells in vivo (and were thus deficient in CD4+ and CD8+ T cells). By contrast, CD8+/+ controls depleted of CD4+ and CD8+ T cells in vivo accepted the MHC-I-disparate skin. Following MHC-I, but not MHC-II stimulation, allograft-specific cytotoxic activity was detected in CD8–/– mice even after CD4 depletion. A population expanded in both the lymph nodes and the thymus of grafted CD8–/– animals which displayed a CD4?8?3intermediateTCRα/βintermediate phenotype. Indeed its T cell receptor (TCR) density was lower than that of CD4+ cells in CD8–/– mice or of CD8+ cells in CD8+/+ mice. Our data suggest that this CD4?8?T cell population is responsible for the CTL function we have observed. Therefore, MHC class I-restricted CTL can be generated in CD8–/– mice following priming with MHC class I antigens in vivo. The data also suggest that CD8 is needed to up-regulate TCR density during thymic maturation. Thus, although CD8 plays a major role in the generation of CTL, it is not absolutely required.  相似文献   

16.
Lymphoid cells from β2-microglobulin (β2m) knockout mice transgenic for human (h) β2m (C57BL/10 mβ2m?/hβ2m+) were compared with normal mice for their binding to exogenously added hβ2m, binding to a H-2Db peptide and for functional activity in a one-way allogenic MLC. Based on data from cellular binding studies, Scatchard analyses and flow cytometry, it is concluded that exogenous hβ2m does not bind to hybrid MHC class I (MHC-I) molecules composed of mouse heavy chain/hβ2m molecules expressed on lymphocytes of transgenic mice. Immunoprecipitation and SDS-PAGE analysis of metabolically labelled normal C57BL/6 lymph node cells showed binding of exogenous hβ2m to MHC-I, in particular, to the H-2Db molecule through an exchange with endogenous mouse β2m. In contrast to normal H-2Db molecules, hybrid H-2Db expressed on the surface of transgenic lymphocytes binds radiolabelled peptide in the absence of exogenous added hβ2m suggesting that a stable fraction of hybrid H-2Db molecules is empty or contain peptides with very low affinity. In a one-way allogenic mixed lymphocyte culture, transgenic splenocytes were found to be far less stimulatory than normal splenocytes. In contrast, transgenic alloreactive cytotoxic T lymphocytes developed earlier in MLC than their non-transgenic counterparts. These data indicate that the hybrid mouse heavy chain/hβ2m complex alters the alloantigenic repertoire and influences important aspects of T-cell activation.  相似文献   

17.
Minimal numbers of CD8+ T cells are found in bronchoalveolar lavage (BAL) populations recovered from Sendai virus-infected mice that are homozygous (?/?) for β2-microglobulin (β2-m) gene disruption. The prevalence of the CD8+ set was substantially increased in the pneumonic lungs of 8?12-week radiation chimeras made using substantially class I major histocompatibility complex (MHC) glycoprotein-negative β2-m (?/?) recipients and normal β2-m (+/+) bone marrow. Even so, the CD8+ (but not the CD4+) lymphocyte counts were still much lower than in the (+/+)→(+/+) controls. The (+/+)→(+/+) and (+/+)→(?/?) chimeras cleared Sendai virus and potent virus-immune CD8+ cytotoxic T lymphocytes (CTL) specific for H-2Kb + viral nucleoprotein peptide were found in the BAL from both groups. However, following in vivo depletion of the CD4+ population, only the (+/+)→(+/+) mice were able to deal with the infection. Similarly, adoptively transferred, H-2Kb-restricted CD8+ T cells from previously-primed (+/+) mice also failed to clear virus from the lungs of (+/+)→(?/?) chimeras infected within 2 weeks of reconstitution with bone marrow, though they were effective in the (+/+)→(+/+) controls. Sendai virus-immune CD8+ T cells are thus unable to eliminate virus-infected β2-m (?/?) lung epithelial cells that might be thought to be expressing very small amounts of either isolated class I heavy chain, or class I MHC glycoprotein that has bound β2-m derived from β2-m (+/+) T cells or macrophages present in the pneumonic lung. Furthermore, the CD8+ CTL that are being exposed to β2-m (+/+) stimulators in the BAL population cannot operate in some bystander mode to clear virus from respiratory epithelium.  相似文献   

18.
We have developed a murine model expressing the rhesus macaque (RM) Mamu-A?01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A?01 domains) and murine (α3, transmembrane, and cytoplasmic H-2Kb domains) MHC Class I molecules were derived by transgenesis of the H-2KbDb double MHC Class I knockout strain. After immunization of Mamu-A?01/Kb Tg mice with rVV-SIVGag-Pol, the mice generated CD8+ T-cell IFN-γ responses to several known Mamu-A?01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A?01/Kb Tg mice provide a model system to study the Mamu-A?01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.  相似文献   

19.
Syngeneic cells exogenously supplied with hen egg lysozyme (HEL) or endogenously synthesizing HEL were used as antigen-presenting cells to induce major histocompatibility complex class I-restricted cytotoxic T lymphocytes (CTL). Immunization of C57BL/6 mice followed by repeated stimulation of their splenocytes in vitro with trypsinized HEL peptides led to the generation of CTL lines specific for trypsinized HEL peptides and restricted by H-2Kb. Immunization of C3H mice with a mixture of soluble native HEL and irradiated syngeneic spleen cells followed by in vitro stimulation of immune spleen cells with soluble HEL could in a few cases result in HEL-specific CTL able to kill syngeneic transfectant L cells secreting HEL (HELs) or expressing cytosol-targeted HEL (HELc). The use of HELs or HELc transfectant L cells as in vivo and in vitro immunogens was a potent way for eliciting HEL-specific polyclonal CTL. These CTL and two CD8+ clones were found to be H-2Kk restricted and specific for the 1-17 N-terminal HEL peptide. In addition, the anti-HEL CTL could also exhibit a significant cross-reactivity against unsensitized and HEL-untransfected targets expressing the K restriction element. This cross-reactivity was likely due to recognition of unidentified HEL mimicking peptides (self-derived ?) presented by the MHC class I (H-2Kb or H-2Kk) molecule used as the restriction element for the specific recognition of HEL. The CTL raised after immunization with HELs or HELc transfectant cells were found to recognize both the HELs and HELc transfectant cells even though HEL was not detected in the latter after a 2- or 5-min radiolabeling pulse. Recognition of both HELs and HELc transfectant cells by a given CTL clone suggests that HEL subjected to two separate processing pathways, each depending on the initial subcellular localization, can ensure the generation of similar MHC class I peptide complexes.  相似文献   

20.
Mice deficient in the gene encoding the transporter associated with antigen processing 1 (TAP1) are defective in providing major histocompatibility complex (MHC) class I molecules with cytosolic peptides. Consequently, these mice express reduced levels of MHC class I glycoproteins on the cell surface, and have reduced numbers of CD8+ T cells in the periphery. In the present study, we have addressed the diversity and specificity of the peripheral CD8+ T cell population in TAP1 -/- mice. CD8+ T cells were polyclonal with regard to T cell receptor (TCR) Vβ expression. Overall, Vβ usage in TAP1 -/- mice appeared to be very similar to that in wild-type mice, with significantly reduced levels of Vβ5.1/5.2-expressing CD8+ T cells as the only clear exception. This polyclonal population of CD8+ T cells readily mounted epitope-specific CTL responses against four out of five well-defined MHC class I-restricted peptides. In contrast to allospecific CTL, peptide-specific CTL from TAP1 -/- mice did not cross-react on cells expressing normal levels of H-2b class I. The present results demonstrate that a polyclonal CD8+ T cell repertoire, displaying both diversity and peptide specificity, is positively selected in mice devoid of a functional peptide transporter. These observations imply that TAP-dependent peptides are not absolutely required for positive selection of a functionally diverse repertoire of CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号