首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, lives free within the cytoplasm of infected host cells. This intracellular niche suggests that parasite antigens may be processed and presented on major histocompatibility complex (MHC) class I molecules for recognition by CD8+ T cells. However, the parasite persists indefinitely in the mammalian host, indicating its success at evading immune clearance. It has been shown that T. cruzi interferes with processing and presentation of antigenic peptides in the MHC class II pathway. This investigation sought to determine whether interference in MHC class I processing and presentation occurs with T. cruzi infection. Surface expression of MHC class I molecules was found to be unaffected or up-regulated by T. cruzi infection in vitro. A model system employing a β-galactosidase (β-gal)-specific murine cytotoxic T lymphocyte (CTL) line (0805B) showed: (i) in vitro infection of mouse peritoneal macrophages or J774 cells with T. cruzi did not inhibit MHC class I presentation of exogenous peptide (a nine-amino acid epitope of β-gal) to the CTL line, (ii) in vitro infection of a β-gal-expressing 3T3 cell line (LZEJ) with T. cruzi did not inhibit MHC class I presentation of the endogenous protein to the CTL line and (iii) mouse renal adenocarcinoma cells infected with T. cruzi and subsequently infected with adenovirus expressing β-gal were able to present antigen to the β-gal-specific CTL line. These findings indicate that the failure of the immune response to clear T. cruzi does not result from global interference by the parasite with MHC class I processing and presentation. Parasites engineered to express β-gal were unable to sensitize infected antigen-presenting cells in vitro to lysis by the CTL 0805B line. This was probably due to the intracellular localization of the β-gal within the parasite and its inaccessibility to the host cell cytoplasm.  相似文献   

2.
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to CD8-expressing cytotoxic T lymphocytes (CTLs). This antigen recognition system is critically important for immune surveillance against viruses and tumors. Most class I-binding peptides are generated in the cytosol, as side products from the degradation of misfolded proteins by proteasomes. A subset of the resulting peptides are translocated across the endoplasmic reticulum (ER) membrane by a dedicated peptide transporter, and these peptides are then loaded onto peptide-receptive class I molecules in the ER. The stable assembly of class I molecules with peptides is controlled by a variety of accessory proteins, including chaperones with general housekeeping functions and factors with dedicated roles in class I assembly. Peptide-filled class I molecules are then delivered to the cell surface for recognition by CTLs. This highly regulated process permits the host to rapidly counter invading pathogens with strong and sustained CTL responses and, at the same time, avoid misguided attacks. Here, how the class I antigen processing machinery accomplishes this daunting task is reviewed.  相似文献   

3.
Immunization of mice with mixtures of listeriolysin, a pore-forming hemolysin secreted by the pathogenic bacterium Listeria monocytogenes, together with soluble ovalbumin, nucleoprotein of influenza virus, or β-galactosidase of Escherichia coli, resulted in strong cytotoxic CD8 T cell responses to each of the respective passenger proteins in vivo. Also, the concomitant addition of either protein with listeriolysin to target cells elicited efficient sensitization of these cells which could be attributed to the pore-forming activity of listeriolysin. This response was dependent upon a functional TAP transporter and was inhibitable by brefeldin A, indicating the transfer of the soluble proteins into the cytosol and the classical major histocompatibility (MHC) class I presentation pathway. The treatment of target cells with listeriolysin under our experimental conditions did not affect cell viability and the pores generated by listeriolysin treatment were repaired within 60 min. Introduction of soluble proteins into the MHC class I presentation pathway by listeriolysin provides a powerful system to study the cytotoxic response towards intracellular pathogens and would allow for rapid screening of potential antigens in vaccine formulations.  相似文献   

4.
Peritoneal macrophages from C57BL/6 mice process antigens from bacteria or coated on polystyrene beads for presentation by major histocompatibility complex (MHC) class I molecules. To investigate this antigen processing pathway, peritoneal macrophages from homozygous TAP1−/− mice, which lack the transporter associated with antigen processing (TAP) and are defective in presenting endogenous antigens on MHC class I, were used. TAP1−/− or C57BL/6 macrophages were co-incubated with either bacteria or polystyrene beads containing the 257–264 epitope from ovalbumin [OVA(257–264)], which binds the mouse class I molecule Kb. The source of the OVA(257–264) epitope was either the Crl-OVA(257–264) (Crl-OVA) fusion protein, the maltose binding protein (MBP)-Crl-OVA fusion protein, native OVA or bacterial recombinant OVA (rOVA); Crl-OVA, MBP-Crl-OVA and rOVA were each expressed in bacteria, and Crl-OVA and MBP-Crl-OVA purified from bacterial lysates and native egg OVA were coated onto polystyrene beads. The data reveal that peritoneal macrophages from C57BL/6 and TAP1−/− mice can process bacteria expressing Crl-OVA, MBP-Crl-OVA and rOVA as well as beads coated with native OVA, purified Crl-OVA, and purified MBP-Crl-OVA and present OVA(257–264) for recognition by OVA(257–264)/Kb-specific T hybridoma cells, albeit with different relative processing efficiencies. The processing efficiency of TAP1−/− macrophages co-incubated with bacteria or beads containing Crl-OVA or MBP-Crl-OVA was reduced approximately three to five times compared to C57BL/6 macrophages, but OVA(257–264) was presented 100 times less efficiently when the source of OVA(257–264) was full-length OVA. Chloroquine inhibition studies showed a differential requirement for acidic compartments in C57BL/6 versus TAP1−/− macrophages, which also depended upon the source of the OVA (257–264) epitope (Crl-OVA versus full-length OVA). These data suggest that TAP1−/− and C57BL/6 macrophages may process Crl-OVA and full-length OVA in different cellular compartments and that the protein context of the OVA(257–264) epitope influences the extent of TAP-independent processing for MHC class I presentation.  相似文献   

5.
The peptide transporter-defective cell line RMA-S expressing the wild-type simian virus 40 large T antigen (wtT-Ag) from a transfected gene did not present two well-defined, H-2 class I (Db)-restricted epitopes of T-Ag to cytotoxic T lymphocytes (CTL). Hence, “endogenous” processing and presentation of the wtT-Ag depended on a functional peptide transporter heterodimer. In contrast, both T-Ag epitopes were efficiently presented to CTL by transfected RMA-S cells expressing a truncated, cytoplasmic T-Ag variant (cT-Ag) or a karyophilic, amino-terminal 272-amino acid T-Ag fragment. Transporter-independent “endogenous” processing of mutant T-Ag molecules correlated with their association with the constitutively expressed heat shock protein 73 (hsp 73). Class I-restricted presentation of both epitopes processed from these hsp73-associated protein antigens was sensitive to NH4Cl and chloroquine. These data indicate that selected intracellular proteins access an alternative, hsp73-mediated pathway for class I-restricted presentation that operates independent of peptide transporters in an endosomal compartment.  相似文献   

6.
As a preliminary step towards the use of cell surface single-chain class I major histocompatibility complex (MHC) molecules as T cell immunogens, we have engineered a recombinant gene encoding a full-length cell surface single-chain version of the H-2Dd class I MHC molecule (SCβDdm) which has β2-microglobulin (β2m) covalently linked to the amino terminus of a full-length H-2Dd heavy chain via a peptide spacer. The single-chain protein is correctly folded and stably expressed on the surface of transfected L cells. It can present an antigenic peptide to an H-2Dd-restricted antigen-specific T cell hybridoma. When expressed in peptide-transport-deficient cells, SCβDdm can be stabilized and pulsed for antigen presentation by incubation with extracellular peptide at 27° or 37 °C, allowing the preparation of cells with single-chain molecules that are loaded with a single chosen antigenic peptide. SCβDdm can be stably expressed in β2m-negative cells, showing that the single-chain molecule uses its own β2m domain to achieve correct folding and surface expression. Furthermore, the β2m domain of SCβDdm, unlike transfected free β2m, does not rescue surface expression of endogenous class I MHC in the β2m-negative cells. This strict cis activity of the β2m domain of SCβDdm makes possible the investigation of class I MHC function in cells, and potentially in animals, that express but a single type of class I MHC molecule.  相似文献   

7.
Antigenic peptides derived from endogenous or viral proteins can associate with class I or class II major histocompatibility complex (MHC) molecules, while exogenous antigens are endocytosed, processed intracellularly and presented on MHC class II molecules. Here we describe a method that allows the presentation of an MHC class I-restricted antigenic peptide on MHC class I molecules, although it was taken up from the outside. The HLA-A2-restricted influenza virus matrix protein-derived peptide (flu, 57–68) was used either in soluble form or coupled via an S-S bridge to transferrin (Tf-flu). Target cells were incubated with flu or Tf-flu and the effective antigen presentation was detected in a cytotoxicity assay using flu peptide-specific, HLA-A2-restricted CD8+ cytotoxic T lymphocytes. Sensitization of target cells with Tf-flu required 5 to 10 times higher molar concentrations of peptide compared to sensitization with soluble free peptide. The Tf-flu construct was taken up by the cells via the Tf receptor (CD71) as the binding of Tf-flu was blocked by an excess of Tf. In contrast to the flu peptide, cytotoxicity elicited by Tf-flu was blocked by brefeldin A but not by chloroquine nor inhibitors of intracellular reducing steps, like 1-buthionine-(s, r)-sulfoximine or n-ethylmaleimide. Presentation of the flu peptide derived from Tf-flu construct is not hindered in the mutant T2 cell line, which lacks genes coding for transporter proteins for antigenic peptides (TAP1/TAP2) and proteasomes subunits, suggesting that the processing pathway described in this report may involve TAP-independent steps.  相似文献   

8.
Over the last decade, in silico models of the major histocompatibility complex (MHC) class I pathway have developed significantly. Before, peptide binding could only be reliably modelled for a few major human or mouse histocompatibility molecules; now, high‐accuracy predictions are available for any human leucocyte antigen (HLA) ‐A or ‐B molecule with known protein sequence. Furthermore, peptide binding to MHC molecules from several non‐human primates, mouse strains and other mammals can now be predicted. In this review, a number of different prediction methods are briefly explained, highlighting the most useful and historically important. Selected case stories, where these ‘reverse immunology’ systems have been used in actual epitope discovery, are briefly reviewed. We conclude that this new generation of epitope discovery systems has become a highly efficient tool for epitope discovery, and recommend that the less accurate prediction systems of the past be abandoned, as these are obsolete.  相似文献   

9.
The molecular mechanisms that regulate sorting of major histocompatibility complex (MHC) class II molecules into the endocytic pathway are poorly understood. For many proteins, access to endosomal compartments is regulated by cytosolically expressed sequences. We present evidence that a sequence in the lumenal domain of the MHC class II molecule regulates a very late event in class II biogenesis. Class II molecules containing single amino acid changes in the highly conserved 80–82 region of the β chain were introduced into invariant chain (Ii)-negative fibroblasts with wild-type α chain, and the derived transfectants were analyzed biochemically. Using an endosomal isolation technique, we have quantified the level of class II molecules expressed in endocytic compartments and found that in the absence of Ii, approximately 15% of total cellular class II molecules can be isolated from endosomal compartments. Mutation at position 80 enhances this localization, while changes at positions 81 and 82 ablate class II expression in endosomal compartments. In addition, we have evaluated whether the induced changes in intracellular distribution of class II molecules were due to alterations in early biosynthetic events, indicative of misfolding of the molecules, or to modulation of later trafficking events more likely to be a consequence of the modulation of a specific transport event. Despite the dramatic effects on endosomal localization induced by the mutations, early bio-synthetic events and maturation of class II were unaffected by the mutations. Collectively, our data argue that late trafficking events that control the ability of the class II molecule to access antigens is regulated by the 80–82 segment of the MHC class II β chains.  相似文献   

10.
Targeting exogenous antigen into the MHC class I-restricted presentation pathway is a prerequisite for the induction of cytotoxic T lymphocytes (CTL) which have been shown to represent an important component of the protective and therapeutic immune response to viral infections and tumors. In this study, we produced recombinant proteins composed of the receptor-binding non-toxic B-fragment of bacterial Shiga toxin derived from Shigella dysenteriae associated with an epitope from a model tumor antigen, Mage 1. We show that Shiga B-Mage 1 fusion proteins carrying an active or inactive endoplasmic reticulum retrieval signal (the C-terminal peptides KDEL or KDELGL, respectively) could be presented by peripheral blood mononuclear cells in an MHC class I-restricted manner to Mage 1-specific CTL. After pulsing B lymphoblastoid cells or dendritic cells with Shiga B-Mage 1 fusion protein, activation of the MHC class I-restricted Mage 1-specific CTL was also demonstrated. In further analysis, we showed that treatment with brefeldin A or paraformaldehyde fixation of Epstein-Barr virus-transformed B cells prevented the presentation of the Mage 1 T cell epitope, which excluded extracellular processing of the antigen. Immunofluorescence analysis also revealed that the Shiga B-Mage 1 fusion protein was largely excluded from Lamp-2-positive lysosomal structures. Therefore, the ability of Shiga toxin B-fragment to target dendritic cells and B cells and to direct antigen into the exogenous class I-restricted pathway makes it an attractive non-living and non-toxic vaccine vector.  相似文献   

11.
We have tested the involvement of the invariant chains (Ii) p31 and p41 in the presentation of peptides derived from hen egg lysozyme (HEL) constructs targeted to different intracellular compartments within transfected fibroblasts. The endogenous HEL constructs were either present in the cytosol (HELc), secreted (HELs), or linked to the mammalian (KDEL C-terminal sequence that causes retention of HEL in the endoplasmic reticulum (ER)/pre-Golgi recycling compartment (HELr). Using Ii-negative antigen-presenting cells, the presentation of HELr to a HEL 46-61 specific T cell hybridoma was far less efficient than the presentation of the HELs. High levels of Ii expression enhanced drastically the presentation of the HEL 46-61 determinant derived from both HELr and HELs. HELr and HELs presentation was fully sensitive to lysosomotropic agents such as chloroquine, indicating that the formation of complexes between major histocompatibility complex (MHC) class II molecules and determinants derived from endogenous antigens entering the secretory pathway is taking place in an acidic compartment. The degradation and dissociation of Ii might be a prerequisite for the efficient presentation of endogenously derived determinants by MHC class II molecules, as for the presentation of most exogenous antigens. All our results are compatible with the notion that endogenous molecules being translocated into the lumen of the ER could be presented by class II molecules through a processing pathway involving an acidic compartment in which Ii chains dissociate from class II molecules.  相似文献   

12.
We analyzed the mode of antigen presentation of an endogenous antigen localized in the cytoplasm or in the mitochondria. Pseudomonas aeruginosa PAO leucine-, isoleucine-, valine-binding protein (LIVAT-BP) encoded by the braC gene was used as a model antigen. Using mouse BALB/3T3 cells, we established two LIVAT-BP transfectants by transfection of a plasmid harboring the intact braC or braC gene fused with the mitochondrial transport signal derived from the yeast COXIV gene. One of the resulting transfectants, BC-15, expressed LIVAT-BP in the cytoplasm, while YZ-710 cells expressed LIVAT-BP in the mitochondria. The splenic effector cells derived from BALB/c mice primed with BC-15 cells exhibited cytotoxic T lymphocyte (CTL) activity against BC-15 cells, but not against YZ-710 cells, whereas splenic effector cells primed with YZ-710 cells exhibited CTL activity against YZ-710 cells, but not against BC-15 cells. Neither group of splenic effector cells showed CTL activity against parental BALB/3T3 cells. These CTL belonged to the CD8+ αβ T cell subset. Furthermore, we observed that the CTL activity against BC-15 cells or YZ-710 cells was blocked with anti-H2-Kd mAb, but not with anti-H2-Dd or H2-Ld mAb. The CTL against BC-15 or YZ-710 cells could kill parental BALB/3T3 cells in the presence of peptides produced by alkali lysis of the LIVAT-BP. suggesting that these CTL indeed recognized the peptide(s) derived from LIVAT-BP. We determined that the epitope for the CTL against BC-15 cells was QYGEGIATEV, corresponding to residues 162–171, and that the epitope recognized by the CTL against YZ-710 cells was GYKLIFRTI, corresponding to residues 123–131 of LIVAT-BP, respectively. Thus, we show here that epitope selection for MHC class I expression is affected by the intracellular localization of the antigenic protein.  相似文献   

13.
Abstract:  We have sequenced a segment of 150,102 nucleotides of canine major histocompatibility complex (MHC) DNA, corresponding to the junction of the class I and class III regions. The distal portion contained five class III genes including two tumor necrosis factor genes and the proximal portion contained five genes or pseudogenes belonging to the class I region. The order of the class III region genes was conserved as in the porcine and human MHC regions. The order of the class Ib loci from the proximal side outwards was DLA-53, DLA-12a, DLA-64, stress-induced phosphoprotein-1, followed by DLA-12. Only DLA-64 and DLA-12 display an overall predicted protein sequence compatible with the expression of membrane-anchored glycoproteins. The other class 1b loci do not appear to be functional by sequence analysis. In all, these 10 genes spanned 24% of the total sequence. The remaining 76% comprised of a number of non-coding and repetitive DNA elements including long interspersed nuclear element (LINE) fragments, short interspersed nuclear elements (SINE), and microsatellites.  相似文献   

14.
The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and β2-microglobulin (β2m) have been used to examine the assembly of the trimolecular MHC class I/β2m/peptide complex. Recombinant human β2m and mouse β2m2 have been generated to compare the binding of the two β2m to mouse class I. It is frequently assumed that human β2m binds to mouse class I heavy chain with a much higher affinity than mouse β2m itself. We find that human β2m only binds to mouse class I heavy chain with slightly (about 3-fold) higher affinity than mouse β2m. In addition, we compared the effect of the two β2m upon peptide binding to mouse class I. The ability of human β2m to support peptide binding correlated well with its ability to saturate mouse class I heavy chains. Surprisingly, mouse β2m only facilitated peptide binding when mouse β2m was used in excess (about 20-fold) of what was needed to saturate the class I heavy chains. The inefficiency of mouse β2m to support peptide binding could not be attributed to a reduced affinity of mouse β2m/MHC class I complexes for peptides or to a reduction in the fraction of mouse β2m/MHC class I molecules participating in peptide binding. We have previously shown that only a minor fraction of class I molecules are involved in peptide binding, whereas most of class I molecules are involved in β2m binding. We propose that mouse β2m interacts with the minor peptide binding (i.e. the “empty”) fraction with a lower affinity than human β2m does, whereas mouse and human β2m interact with the major peptide-occupied fraction with almost similar affinities. This would explain why mouse β2m is less efficient than human β2m in generating the peptide binding moiety, and identifies the empty MHC class I heavy chain as the molecule that binds human β2m preferentially.  相似文献   

15.
Prior to loading antigenic peptides, assembled major histocompatibility complex (MHC) class I molecules associate with the transporter associated with antigen processing (TAP) in a complex which also includes calreticulin and a recently described component, tapasin. The interaction of MHC class I molecules has been characterized as occurring exclusively with the TAP1 chain of the TAP heterodimer. In contrast, as described here, in the TAP-deficient human cell line T2, MHC class I molecules interact with a transfected rat TAP2 polypeptide in addition to rat TAP1. Furthermore, this interaction with TAP2 also involves calreticulin and tapasin. An association with both TAP polypeptides would presumably further enhance the efficiency of peptide loading of MHC class I molecules by allowing more than one MHC class I allele proximity to the site of peptide supply on each TAP complex.  相似文献   

16.
We analyzed the capacity of B cells to process and present a peptide from the variable region of an endogenous immunoglobulin heavy (H) chain to a major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocyte (CTL) clone. The H-chain gene was engineered to express 14-amino acid peptide from the sequence of the influenza virus nucleoprotein (NP) antigen in the third complementarity-determining region (CDR3). This NP peptide is presented in association with the Db allele in H?2b mice. We demonstrate that B lymphoma cells (H-2b) harboring the antigenized H-chain gene process and present the NP peptide in association with the Db molecule and are lysed by a CTL clone specific for that peptide in an MHC-restricted way. In contrast, the soluble antigenized antibody failed to mediate lysis of H?2b target cells. The endogenously processed immunoglobulin CDR3 peptide could be eluted from surface Db molecules in transfected cells. This study formally demonstrates that peptides from the hypervariable loops of endogenous immunoglobulin are processed through the endogenous degradative pathway and are presented to CD8+ T cells in the context of MHC class I molecules. The implication of these findings for processing and presentation of endogenous immunoglobulin peptides in B cells and network regulation by idiopeptides is discussed.  相似文献   

17.
Mouse T cells co-expressing an αβ T cell receptor (TCR) and the NK1.1 antigen have been shown to be major interleukin (IL)-4-producing cells and could therefore regulate cell-mediated immune responses. We have identified a related subset of thymocytes co-expressing a γδ TCR and NK1.1 which also produce IL-4. Unlike αβ+NK1.1+ thymocytes, the selection of γδ+NK1.1+ thymocytes is not dependent upon β2-microglobulin (β2m)-associated class I molecule expression because these cells are present in β2m-deficient mice. This suggests that γδ+NK1.1+ T cells may regulate immune responses to a different variety of antigens. However, the development of αβ+NK1.1+ and αβ+NK1.1+ thymocytes appears to be related. Analysis of different mutant mice lacking αβ+NK1.1+ thymocytes revealed a specific increase in γδ+NK1.1+ thymocyte production when the block in αβ+NK1.1+ thymocyte differentiation occurs after β TCR rearrangement.  相似文献   

18.
With β2-microglobulin?2m?) cell lines such as R1E/Db, the surface expression of class I major histocompatibility complex molecules is greatly impaired, and class I molecules that are on the surface are generally misfolded. To determine whether β2m must be continually present with the class I heavy chain for the class I molecule to reach the surface in a folded conformation, a sequence encoding an endoplasmic reticulum (ER) retention signal (KDEL) was attached onto the 3′ end of a β2m cDNA. After this chimeric cDNA was transfected into R1E/Db cells, β2m-KDEL protein was detectable by an anti-β2m serum within the cells but not at the cell surface. Interestingly, R1E/Db cells transfected with β2m-KDEL were found to express a high level of conformationally correct Db molecules at the cell surface. This observation implies that β2m has a critical and temporal role in the de novo folding of the class I heavy chain. We propose that the critical time for β2m association is when the class I molecule is docked with the transporter associated with antigen processing (TAP) and first interacts with peptide.  相似文献   

19.
The functional status (Th1- versus Th2-like) of CD4 T cells primed against human collagen type IV (hCol IV) or a single 30mer peptide from the α2 chain of this molecule is predicted by the major histocompatibility complex (MHC) class II (I-A) genotype of the responding mice. H-2s mice elicit Th1-like cell-mediated responses to these antigens, whereas Th2-like humoral responses are primed in H-2b,d,k mice. We now report that the ability of MHC to dictate T helper function in this system depends upon a single amino acid of the minimal α2(IV) peptide. The C terminus of this minimal (12mer) peptide is -G-G-P-K, which is predicted to form a β-turn. The present data demonstrate that the terminal lysine (K) stabilizes the immunogens full biological effects necessary for exclusive cellmediated responses in H-2s mice. The lysine-truncated (11mer) peptide with otherwise identical sequence effectively primes T helper function in both H-2b and H-2s genotypes. Most importantly, our direct analysis of these peptides' presentation by live antigen-presenting cells (APC) reveals that the 12mer is bound at a log higher density on H-2s APC than on H-2b APC, and that the 11mer is presented at an equally low relative density on APC from both genotypes. In vitro analyses of 12mer/11mer cross-reactive Th clones demonstrate that I-As restricted clones require about 1–2 log lower doses of 12mer peptide than 11mer peptide to stimulate equivalent thymidine incorporation and cytokine release. By contrast, I-Ab-restricted (12mer/11mer cross-reactive) Th clones show no preference for the 12mer and require relatively high peptide doses similar to those required to stimulate the I-As clones with the 11mer peptide. Thus, the peptide dose requirements of Th clones reflect the high density of presentation associated with the 12mer: I-As ligand. Taken together, the results directly support the role of ligand density as an important control point in the functional decision of CD4 T cells.  相似文献   

20.
Enhancement of major histocompatibility complex (MHC) class I expression leads to protection from recognition by natural killer (NK) cells in several systems. MHC class I gene products can be expressed in different forms at the cell surface - for example as “empty” β2-microglobulin (β2m)-associated heterodimers or free heavy chains. To study the role of different class I heavy chain forms in NK target interactions, we have used lymphoblastoid target cell lines preincubated with β2m. This was found to shift the equilibrium between β2m-associated and nonassociated - heavy chains in favor of the former. In parallel, there was a significant increase in NK sensitivity. The recognition of MHC class I-deficient cell lines was not affected by β2m, arguing against a general nonspecific effect of fern on NK sensitivity. Our data indicate that protection against NK recognition correlates with target cell expression of free heavy chains (i.e. devoid of β2m) rather than with expression of complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号