首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of liposomes as injectable-drug delivery systems   总被引:7,自引:0,他引:7  
The formation of liposomes and their application as delivery systems for injectable drugs are described. Liposomes are microscopic vesicles composed of one or more lipid membranes surrounding discrete aqueous compartments. These vesicles can encapsulate water-soluble drugs in their aqueous spaces and lipid-soluble drugs within the membrane itself. Liposomes release their contents by interacting with cells in one of four ways: adsorption, endocytosis, lipid exchange, or fusion. Liposome-entrapped drugs are distributed within the body much differently than free drugs; when administered intravenously to healthy animals and humans, most of the injected vesicles accumulate in the liver, spleen, lungs, bone marrow, and lymph nodes. Liposomes also accumulate preferentially at the sites of inflammation and infection and in some solid tumors; however, the reason for this accumulation is not clear. Four major factors influence liposomes' in vivo behavior and biodistribution: (1) liposomes tend to leak if cholesterol is not included in the vesicle membrane, (2) small liposomes are cleared more slowly than large liposomes, (3) the half-life of a liposome increases as the lipid dose increases, and (4) charged liposomal systems are cleared more rapidly than uncharged systems. The most advanced application of liposome-based therapy is in the treatment of systemic fungal infections, especially with amphotericin B. Liposomes are also under investigation for treatment of neoplastic disorders. Liposomes' uses in cancer therapy include encapsulation of known antineoplastic agents such as doxorubicin and methotrexate, delivery of immune modulators such as N-acetylmuramyl-L-alanine-D-isoglutamine, and encapsulation of new chemical entities that are synthesized with lipophilic segments tailored for insertion into lipid bilayers. Liposomal formulations of injectable antimicrobial agents and antineoplastic agents already are undergoing clinical testing, and most probably will receive approval for marketing in the early 1990s. Liposomal encapsulation of drugs represents a new drug delivery system that appears to offer important therapeutic advantages over existing methods of drug delivery.  相似文献   

2.
A major obstacle in drug delivery is the inability to effectively deliver drugs to their intended biological target without deleterious side-effects. Delivery vehicles such as liposomes can minimize toxic side-effects by shielding the drug from reaction with unintended targets while in systemic circulation. Liposomes have the ability to accommodate both hydrophilic and hydrophobic drugs, either in the internal aqueous core or the lipid bilayer, respectively. In the present study, fluorescein and rhodamine have been used to model hydrophilic and hydrophobic drugs, respectively. We have compared the stabilities of liposomes encapsulating these fluorophores as a function of lipid content, time, and temperature. At 25 and 37 degrees C, liposomes containing distearoyl phosphatidylcholine as the major phospholipid component were found to be more stable over time than those containing dipalmitoyl phosphatidylcholine, regardless of the fluorophore encapsulated. Liposomes loaded with fluorescein were found to be more stable than those with rhodamine. Dipalmitoyl phosphatidylcholine liposomes that encapsulated rhodamine were the least stable. The results indicate that the physical properties of the drug cargo play a role in the stability, and hence drug delivery kinetics, of liposomal delivery systems, and desired drug release times can be achieved by adjusting/fine-tuning the lipid compositions.  相似文献   

3.
The indispensable obligation behind the successful therapy of a disease is to deliver the effective drug/bioactive concentration with sustained release manner at the diseased organs without any exposure to the healthy tissues. Novel drug-delivery systems increase the concentration and persistence of drug at the vicinity of the target site and thereby minimize the undesired side effects of the drug to the normal tissues of body. With advances in nanotechnology, several new drug delivery approaches have become available that may fulfil the requirement of safe and effective drug therapy. Among these techniques, vesicular drug-delivery systems, particularly liposomes, are under rigorous research for their applicability to deliver FDA-approved and newer drugs. Liposomes have been widely investigated as one of the most widely used nanocarriers in cancer therapy and have shown their potential in spatial and temporal release of bioactive agents for the effective treatment of various life-threatening diseases, including cancer. Various targeted and triggered-release approaches of bioactive substances using liposomes further improve the applicability of liposomes in cancer therapeutics. Thus, keeping these points in view, the present review has been focussed on application of liposomes for development of liposome technology and its novel applications for effective cancer therapy.  相似文献   

4.
Cell targeted delivery of drugs, including nucleic acids, is known to enhance the therapeutic potential of free drugs. We used serotonin (5-HT) as the targeting ligand to deliver plasmid DNA to cells specifically expressing 5-HT receptor. Our liposomal formulation includes the 5-HT conjugated targeting lipid, a cationic lipid and cholesterol. DNA-binding studies indicate that the targeting 5-HT-lipid binds DNA efficiently. The formulation was tested and found to efficiently deliver DNA into CHO cells stably expressing the human serotonin(1A) receptor (CHO-5-HT(1A)R) compared to control CHO cells. Liposomes without the 5-HT moiety were less efficient in both cell lines. Similar enhancement in transfection efficiency was also observed in human neuroblastoma IMR32 and hepatocellular carcinoma (HepG2) cells. Cell uptake studies using CHO-5-HT(1A)R cells by flow cytometry and confocal microscopy clearly indicated that the targeting liposomes through 5-HT moiety may have a direct role in increasing the cellular uptake of DNA-lipid complexes. To our knowledge this is the first report that demonstrates receptor-targeted nucleic acid delivery into cells expressing 5-HT receptor.  相似文献   

5.
INTRODUCTION: Over the past several decades, liposomes have been used in a variety of applications, from delivery vehicles to cell membrane models. In terms of pharmaceutical use, they can offer control over the release of active agents encapsulated into their lipid bilayer or aqueous core, while providing protection from degradation in the body. In addition, liposomes are versatile carriers, because targeting moieties can be conjugated on the surface to enhance delivery efficiency. It is for these reasons that liposomes have been applied as carriers for a multitude of drugs and genetic material, and as contrast agents, aimed to treat and diagnose cardiovascular diseases. AREAS COVERED: This review details advancements in liposome technology used in the field of cardiovascular medicine. In particular, the application of liposomes to cardiovascular disease treatment and diagnosis, with a focus on delivering drugs, genetic material and improving cardiovascular imaging, will be explored. Advances in targeting liposomes to the vasculature will also be detailed. EXPERT OPINION: Liposomes may provide the means to deliver drugs and other pharmaceutical agents for cardiovascular applications; however, there is still a vast amount of research and clinical trials that must be performed before a formulation is brought to market. Advancements in targeting abilities within the body, as well as the introduction of theranostic liposomes, capable of both delivering treating and imaging cardiac diseases, may be expected in the future of this burgeoning field.  相似文献   

6.
Bladder drug delivery via catheter instillation is a widely used treatment for recurrence of superficial bladder cancer. Intravesical instillation of liposomal botulinum toxin has recently shown promise in the treatment of overactive bladder and interstitial cystitis/bladder pain syndrome, and studies of liposomal tacrolimus instillations show promise in the treatment of hemorrhagic cystitis. Liposomes are lipid vesicles composed of phospholipid bilayers surrounding an aqueous core that can encapsulate hydrophilic and hydrophobic drug molecules to be delivered to cells via endocytosis. This review will present new developments on instillations of liposomes and liposome-encapsulated drugs into the urinary bladder for treating lower urinary tract dysfunction.  相似文献   

7.
Liposomes, which are biodegradable and essentially non-toxic vehicles, can encapsulate both hydrophilic and hydrophobic materials, and are utilized as drug carriers in drug delivery systems. In addition, liposomes can be used to carry radioactive compounds as radiotracers can be linked to multiple locations in liposomes. One option is the hydrated compartment inside the liposome, another the lipid core into which especially hydrophobic conjugates can be attached, and the third option is the outer lipid leaflet where molecules can be bound by covalent linkage. Delivery of agents to the reticuloendothelial system (RES) is easily achieved, since most conventional liposomes are trapped by the RES. For the purpose of delivery of agents to target organs other than RES, long-circulating liposomes have been developed by modifying the liposomal surface. Understanding of the in vivo dynamics of liposome-carried agents is required for the evaluation of the bioavailability of drugs encapsulated in liposomes. In this review, we focus on the in vivo trafficking of liposomes visualized by positron emission tomography (PET) and discuss the characteristics of liposomes that affect the targeting of drugs in vivo.  相似文献   

8.
Liposome-encapsulated drugs often exhibit reduced toxicity and have also been shown to enhance retention of drugs in the tissues. Thus, encapsulation of drugs in liposomes has often resulted in an improved overall therapeutic efficacy. The results of efficacy of liposome-encapsulated ciplofloxacin or azithromycin for therapy of intracellular M. avium infection show enhanced cellular delivery of liposome-encapsulated antibiotics and suggest that efficiency of intracellular targeting is sufficient to mediate enhanced antimycobacterial effects. The antitubercular drugs encapsulated in lung specific stealth liposomes have enhanced efficacies against tuberculosis infection in mice. These results from stealth liposome study indicate that antitubercular drugs encapsulated in liposome may provide therapeutic advantages over the existing chemotherapeutic regimen for tuberculosis. Liposomes with encapsulated amikacin are able to protect collagen almost completely from adherence of bacterial cells of all strains examined and prevent from invading of bacteria.  相似文献   

9.
Bangham et al. (1965) created first the concept of the liposome as a microparticulate lipoidal vesicle separated from its aqueous environment by one or more lipid bilayers. Later Gregoriadis and Ryman (1972) suggested to use liposomes as drug carrier systems. Nowadays liposomes are under extensive investigation for improving the delivery of therapeutic agents, enzymes, vaccines and genetic materials. Liposomes offer an excellent opportunity to selective targeting of drugs which is expected to optimize the pharmacokinetical parameters, the pharmacological effect and to reduce the toxicity of the encapsulated drugs. To understand the system it is important to know the basic properties of these lipoidal vesicles. Our aim was to focus on the lipid composition and the method of liposome preparation what determine the liposomal membrane fluidity, permeability, vesicle size, charge density, steric hindrance and stability of the liposomes as principle factors those influence the fate of liposomes, their interactions with the blood components and other tissues after systemic administration or local use.  相似文献   

10.
This article reports the development of a multifunctional silica nanoparticle system for targeted delivery of hydrophobic imaging and therapeutic agents. Normally, silica nanoparticles have been widely used to deliver hydrophilic drugs such as doxorubicin while difficult to carry hydrophobic drugs. A strategy for loading hydrophobic drugs onto silica nanoparticles via covalent attachment was developed in this study as a universal strategy to solve this problem. Docetaxel, one of the most potent therapeutics for cancer treatment is selected as a model hydrophobic drug and quantum dots (QDs) are used as a model imaging agent. Such a multifunctional delivery system possesses high drug loading capacity, controlled drug release behavior and stable drug reservation. A mixed layer of polyethylene glycol conjugated phospholipids is formed on the nanoparticle surface to further enhance the biocompatibility and cell fusion capability of the delivery system. Folic acid as ligand is then conjugated onto the surface layer for targeting. Such a multifunctional system for targeting, imaging and therapy is characterized and evaluated in vitro. Fluorescent confocal microscopy is used to monitor the cellular uptake by specific cancer cells. Cytotoxicity studies are conducted by using MTT assay.  相似文献   

11.
Introduction: Over the past several decades, liposomes have been used in a variety of applications, from delivery vehicles to cell membrane models. In terms of pharmaceutical use, they can offer control over the release of active agents encapsulated into their lipid bilayer or aqueous core, while providing protection from degradation in the body. In addition, liposomes are versatile carriers, because targeting moieties can be conjugated on the surface to enhance delivery efficiency. It is for these reasons that liposomes have been applied as carriers for a multitude of drugs and genetic material, and as contrast agents, aimed to treat and diagnose cardiovascular diseases.

Areas covered: This review details advancements in liposome technology used in the field of cardiovascular medicine. In particular, the application of liposomes to cardiovascular disease treatment and diagnosis, with a focus on delivering drugs, genetic material and improving cardiovascular imaging, will be explored. Advances in targeting liposomes to the vasculature will also be detailed.

Expert opinion: Liposomes may provide the means to deliver drugs and other pharmaceutical agents for cardiovascular applications; however, there is still a vast amount of research and clinical trials that must be performed before a formulation is brought to market. Advancements in targeting abilities within the body, as well as the introduction of theranostic liposomes, capable of both delivering treating and imaging cardiac diseases, may be expected in the future of this burgeoning field.  相似文献   

12.
Liposomal drug delivery systems improve the therapeutic index of chemotherapeutic agents, and the use of cationic liposomes to deliver anticancer drugs to solid tumors has recently been recognized as a promising therapeutic strategy to improve the effectiveness of conventional chemotherapeutics. This review summarizes the selective targeting of cationic liposomes to tumor vasculature, the merits of incorporating the polymer polyethylene-glycol (PEG), and the impact of the molar percent of the cationic lipid included in cationic liposomes on liposomal targeting efficacy. In addition, the discussion herein includes the therapeutic benefit of a dual targeting approach, using PEG-coated cationic liposomes in vascular targeting (of tumor endothelial cells), and tumor targeting (of tumor cells) of anticancer drugs. Cationic liposomes have shown considerable promise in preclinical xenograft models and are poised for clinical development.  相似文献   

13.
To develop a novel vaginal delivery system, able to effectively deliver entrapped drugs during an extended period of time at the site of action, liposomes made of phosphatidylcholine were prepared by two different methods, namely the polyol dilution method and the proliposome method. Liposomes containing three commonly applied drugs in the treatment of vaginal infections: clotrimazole, metronidazole and chloramphenicol were tested for in vitro stability (in buffers at pH 4.5 and 5.9 representing pre- and postmenopausal vaginal pH). In situ stability (in the presence of cow vaginal mucosa) showed that after 6 h incubation (at 37°C), liposomes retained more than 40% of originally entrapped clotrimazole, 28% of entrapped metronidazole or 37% of entrapped chloramphenicol. In vitro and in situ stability studies confirmed the applicability of liposomes as a carrier system for vaginal delivery. Even after 24 h of incubation in the presence of vaginal mucosa liposomes retained sufficient amounts of entrapped drugs.  相似文献   

14.
Liposomes are microscopic lipid membrane vesicles that provide a current strategy for topical, dermal delivery of biologically active molecules. They have been successfully used for the delivery of various low and high molecular weight molecules into the skin, and as an alternative to virus-mediated delivery systems, have opened the field of dermal gene therapy. The present study was undertaken on 6-day-old rat pups to determine in vivo the efficacy of several liposome and nonliposome formulations, including phospholipid liposomes and their cationic or pegylated variants, nonionic liposomes and their cationic variant, PINC polymer (Protective, Interactive, Noncondensing polymers), and a propylene glycol:alcohol:water mixture (delivery vehicle for minoxidil) in delivering beta-galactosidase and luciferase reporter genes into skin cells. Based upon our observations of the expression of beta-galactosidase and luciferase reporter genes in skin cells, we report here that nonionic liposomes are the most efficient vehicle for transdermal delivery followed by nonionic/cationic and phospholipid (pegylated) liposomes. The propylene glycol:ethanol:water mixture and the PINC polymer were relatively inefficient in the delivery of beta-galactosidase or luciferase DNAs. This simple, noninvasive technique of using nonionic liposomes to deliver biomolecules provides an efficient delivery strategy for gene therapy and drug delivery to the dermal organ site.  相似文献   

15.
INTRODUCTION: Liposomes remain at the forefront of drug and vaccine design owing to their well-documented abilities to act as delivery vehicles. Nevertheless, the concept of liposomes as delivery vehicles is not a new one, with most works focusing on their use for the delivery of genes and drugs. However, in the last 10 years a significant amount of research has focused on using liposomes as vaccine adjuvants, not only as an antigen delivery vehicle but also as a tool to increase the immunogenicity of peptide and protein antigens. AREAS COVERED: This paper reviews liposomal adjuvants now in vaccine development, with particular emphasis on their adjuvant mechanism and how specific physicochemical characteristics of liposomes affect the immune response. The inclusion of immunomodulators is also discussed, with prominence given to Toll-like receptor ligands. EXPERT OPINION: The use of liposomes as vaccine delivery systems is evolving rapidly owing to the combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. The CAF liposomal system, described in detail in this review, is one liposomal model that shows such flexibility.  相似文献   

16.
Liver targeted therapy is designed to deliver a substance preferentially to the organ in order to increase the accumulation, improve the therapeutic effect and reduce toxicity to other organs. The aim of selective targeting is to deliver a substance to a specific cell type in the liver. A variety of vehicles have been designed and further modified for selective targeting of therapeutics to the liver. The targeting properties and strategies of commonly used agents, such as liposomes, microspheres and recombinant chylomicrons, are discussed. Viral and non-viral vectors, such as cationic liposomes, reconstituted chylomicron remnants, adenoviruses, adeno-associated viruses, retroviruses, and SV-40, are currently being evaluated for the delivery of DNA to the liver. New developments in improving the targeting efficiency of the available vectors while avoiding their disadvantages have made their use in clinical trials of various genetic disorders possible. For viral hepatitis, antisense and ribozyme techniques are being employed with selective targeting approaches. A commonly employed current strategy for targeting hepatocellular carcinoma cells is to make the tumour cells convert non-toxic 'prodrugs' to toxic metabolites in situ, achieving a high concentration of the toxic product in the local milieu, while avoiding systemic toxicity. Although gene therapy itself is in its infancy, some encouraging results have been developed in studies of familial hypercholesterolaemia, haemophilia, alpha1-antitrypsin deficiency and Crigler-Najjar syndrome. The potential strengths as well as the problems with these studies are discussed.  相似文献   

17.
Targeting drug delivery into the lungs has become one of the most important aspects of systemic or local drug delivery systems. Consequently, in the last few years, techniques and new drug delivery devices intended to deliver drugs into the lungs have been widely developed. Currently, the main drug targeting regimens include direct application of a drug into the lungs, mostly by inhalation therapy using either pressurized metered dose inhalers (pMDI) or dry powder inhalers (DPI). Intratracheal administration is commonly used as a first approach in lung drug delivery in vivo. To convey a sufficient dose of drug to the lungs, suitable drug carriers are required. These can be either solid, liquid, or gaseous excipients. Liposomes, nano- and microparticles, cyclodextrins, microemulsions, micelles, suspensions, or solutions are all examples of this type of pharmaceutical carrier that have been successfully used to target drugs into the lungs. The use of microreservoir-type systems offers clear advantages, such as high loading capacity and the possibility of controlling size and permeability, and thus of controlling the release kinetics of the drugs from the carrier systems. These systems make it possible to use relatively small numbers of vector molecules to deliver substantial amounts of a drug to the target. This review discusses the drug carriers administered or intended to be administered into the lungs. The transition to CFC-free inhalers and drug delivery systems formulated with new propellants are also discussed. Finally, in addition to the various advances made in the field of pulmonary-route administration, we describe new systems based on perfluorooctyl bromide, which guarantee oxygen delivery in the event of respiratory distress and drug delivery into the lungs.  相似文献   

18.
Utilization of functionalized liposomes as the means of targeted delivery of therapeutics may enhance specific transport of biologically active drugs to target tissues, while avoiding or reducing undesired side effects. In the present investigation, peptide‐conjugated cationic liposomes were constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide‐conjugated liposomes induced only cytotoxicity at the highest concentration in non‐activated or activated endothelial cells, as well as in co‐culture of endothelial cells and macrophages. There was unaltered secretion of cytokines after exposure of peptide‐conjugated liposomes to endothelial cells, indicating that the materials were not inflammogenic. Liposomes with a peptide targeting the fibronectin receptor (integrin α5β1) were more effective in targeting of activated endothelial cells, as compared to a liposome with a peptide that targeted both the fibronectin and vitronectin receptors, as well as liposomes with a control peptide. The liposome targeted to the fibronectin receptor also displayed uptake in endothelial cells in co‐culture with activated macrophages. Therefore, this study demonstrates the feasibility of constructing a peptide‐conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells.  相似文献   

19.
Liposomes and nanoparticles have emerged as versatile carrier systems for delivering active molecules in the organism. These colloidal particles have demonstrated enhanced efficacy compared to conventional drugs. However, the design of liposomes and nanoparticles with a prolonged circulation time and ability to deliver active compounds specifically to target sites remains an ongoing research goal. One interesting way to achieve active targeting is to attach ligands, such as monoclonal antibodies or peptides, to the carrier. These surface-bound ligands recognize and bind specifically to target cells. To this end, various techniques have been described, including covalent and noncovalent approaches. Both in vitro and in vivo studies have proved the efficacy of the concept of active targeting. The present review summarizes the most common coupling techniques developed for binding homing moieties to the surface of liposomes and nanoparticles. Various coupling methods, covalent and noncovalent, will be reviewed, with emphasis on the major differences between the coupling reactions, on their advantages and drawbacks, on the coupling efficiency obtained, and on the importance of combining active targeting with long-circulating particles.  相似文献   

20.
Targeting of liposomes with phospholipid-anchored folate conjugates is an attractive approach to deliver chemotherapeutic agents to folate receptor (FR) expressing tumors. The use of polyethylene glycol (PEG)-coated liposomes with folate attached to the outer end of a small fraction of phospholipid-anchored PEG molecules appears to be the most appropriate way to combine long-circulating properties critical for liposome deposition in tumors and binding of liposomes to FR on tumor cells. Although a number of important formulation parameters remain to be optimized, there are indications, at least in one ascitic tumor model, that folate targeting shifts intra-tumor distribution of liposomes to the cellular compartment. In vitro, folate targeting enhances the cytotoxicity of liposomal drugs against FR-expressing tumor cells. In vivo, the therapeutic data are still fragmentary and appear to be formulation- and tumor model-dependent. Further studies are required to determine whether folate targeting can confer a clear advantage in efficacy and/or toxicity to liposomal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号