首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vaccination of cats with fowlpox virus expressing the avian influenza (AI) virus H5 hemagglutinin gene (TROVAC AI) resulted in detectable hemagglutination inhibition (HI) antibody responses to the homologous A/Turkey/Ireland/1378/83 (H5N8) (A/tky/Ire/83) AI virus antigen. The HI antibody responses to heterologous A/Chicken/Indonesia/7/03 (H5N1) (A/ck/Indonesia/03) AI virus antigen were also detected in all vaccinated cats, but only after booster vaccinations. The vaccine described in this study and other poxvirus-vectored vaccines may be of value for the prophylaxis of AI virus-associated morbidity and mortality in mammals.  相似文献   

2.
In 2005, European Commission directive 2005/744/EC allowed controlled vaccination against avian influenza (AI) virus of valuable avian species housed in zoos. In 2006, 15 Spanish zoos and wildlife centers began a vaccination program with a commercial inactivated H5N9 vaccine. Between November 2007 and May 2008, birds from 10 of these centers were vaccinated again with a commercial inactivated H5N3 vaccine. During these campaigns, pre- and postvaccination samples from different bird orders were taken to study the response against AI virus H5 vaccines. Sera prior to vaccinations with both vaccines were examined for the presence of total antibodies against influenza A nucleoprotein (NP) by a commercial competitive enzyme-linked immunosorbent assay (cELISA). Humoral responses to vaccination were evaluated using a hemagglutination inhibition (HI) assay. In some taxonomic orders, both vaccines elicited comparatively high titers of HI antibodies against H5. Interestingly, some orders, such as Psittaciformes, which did not develop HI antibodies to either vaccine formulation when used alone, triggered notable HI antibody production, albeit in low HI titers, when primed with H5N9 and during subsequent boosting with the H5N3 vaccine. Vaccination with successive heterologous vaccines may represent the best alternative to widely protect valuable and/or endangered bird species against highly pathogenic AI virus infection.  相似文献   

3.
Preparedness against an A/H5N1 influenza pandemic requires well-tolerated, effective vaccines which provide both vaccine strain-specific and heterologous, cross-clade protection. This study was conducted to assess the immunogenicity and safety profile of an MF59-adjuvanted, prepandemic influenza vaccine containing A/turkey/Turkey/01/2005 (H5N1) strain viral antigen. A total of 343 participants, 194 adults (18 to 60 years) and 149 elderly individuals (≥61 years), received two doses of the investigational vaccine given 3 weeks apart. Homologous and heterologous antibody responses were analyzed by hemagglutination inhibition (HI), single radial hemolysis (SRH), and microneutralization (MN) assays 3 weeks after administration of the first vaccine dose and 3 weeks and 6 months after the second dose. Immunogenicity was assessed according to European licensure criteria for pandemic influenza vaccines. After two vaccine doses, all three European licensure criteria were met for adult and elderly subjects against the homologous vaccine strain, A/turkey/Turkey/1/2005, when analyzed by HI and SRH assays. Cross-reactive antibody responses were observed by HI and SRH analyses against the heterologous H5N1 strains, A/Indonesia/5/2005 and A/Vietnam/1194/2004, in adult and elderly subjects. Solicited local and systemic reactions were mostly mild to moderate in severity and occurred less frequently in the elderly than in adult vaccinees. In both adult and elderly subjects, MF59-adjuvanted vaccine containing 7.5 μg of A/Turkey strain influenza virus antigen was highly immunogenic, well tolerated, and able to elicit cross-clade, heterologous antibody responses against A/Indonesia and A/Vietnam strains 6 weeks after the first vaccination.  相似文献   

4.
Nine monoclonal antibodies (mAbs) against avian influenza virus (AI) H5 subtype from mice immunized with inactivated virus H5N1 (A/Turkey/ON/6213/66) were produced. Upon testing, the results indicated that the binding epitopes of eight out of the nine mAbs were conformational, while one mAb (#7) reacted with denatured H5N1 only. Two mAbs #10 and #11 reacted with all of the thirteen H5 strains tested indicating that the binding epitopes of these mAbs were conserved among these H5 subtypes.Possible applications of these mAbs in rapid tests for H5 antigen were explored. Double antibody sandwich (DAS) ELISAs were developed using two selected mAbs #10 and #11. This DAS ELISA detects specific H5 viruses and is able to identify all thirteen H5 strains tested. Three mAbs showed reactivity with AI H5 antigen for both immunofluorescence (IF) and immunohistochemistry. A cELISA used to screen chickens that had been infected with an H5 virus was developed with mAb #9 and recombinant H5 antigen. The sera from chickens that have been infected with an H5N1 virus were examined using the cELISA. 80% of the sera from H5 infected chickens showed a positive H5 specific antibody response at 7 days post-infection (dpi) and remained positive until the end of the experiment on day 30 (>40% inhibition). This panel of the AI H5 specific mAbs is valuable for the development of various immunoassays.  相似文献   

5.
In this report, the genome of the Thai avian influenza virus A (H5N1); A/Chicken/Nakorn-Pathom/Thailand/CU-K2/04, isolated from the Thai avian influenza A (AI) epidemic during the early of 2004 was sequenced. Phylogenetic analyses were performed in comparison to AI viruses from Hong Kong 1997 outbreaks and other AI (H5N1) isolates reported during 2001-2004. Molecular characterization of the Thai AI (H5N1) HA gene revealed a common characteristic of a highly pathogenic AI (HPAI), a 20-codon deletion in the neuraminidase gene, a 5-codon deletion in the NS gene and polymorphisms of the M2 and PB2 genes. Moreover, the HA and NA genes of the Thai AI displayed high similarity to those of the AI viruses isolated from human cases during the same epidemic. Finally, our results demonstrated that the Thai AI emerged as a member of 2000's AI lineage with most of the genetic sequences closely related to the Influenza A/Duck/China/E319.2/03 (H5N1).  相似文献   

6.
High-pathogenicity (HP) avian influenza (AI) virus of the H5N1 subtype has caused an unprecedented epizootic in birds within nine Asian countries/regions since it was first reported in 1996. Vaccination has emerged as a tool for use in managing the infection in view of future eradication. This study was undertaken to determine whether two divergent H5N2 commercial vaccine strains, one based on a European and the other a North American low-pathogenicity AI virus, could protect chickens against a recent Asian H5N1 HPAI virus. The North American and European vaccine viruses had 84 and 91% deduced amino acid sequence similarity to the HA1 segment of haemagglutinin protein of Indonesia H5N1 HPAI challenge virus, respectively. Both vaccine strains provided complete protection from clinical signs and death. The vaccines reduced the number of chickens infected and shedding virus from the respiratory and intestinal tracts at the peak of virus replication. In addition, the quantity of virus shed was reduced by 10(4) to 10(5) median embryo infectious doses. The use of specific neuraminidase inhibition tests allowed identification of infected chickens within the vaccinated groups. These data indicate that the currently available H5 vaccines of European and North American lineages will protect chickens against the Asian H5N1 HPAI virus and reduce environmental contamination by the H5N1 HPAI virus. They will be an adjunct to biosecurity measures to reduce virus transmission.  相似文献   

7.
A/PR/8/34(H1N1)病毒株血清流行病学调查   总被引:1,自引:1,他引:0  
目的了解当今人群中是否仍有A/PR/8/34(H1N1)这类毒株的活动。方法从全国8个不同地区采集1975年之后出生人的血清,用常量半加敏HI测定A/PR/8/34(H1N1)毒株的抗体,然后凡HI效价≥10的血清,一律按同法对A/Swine/Iowa/15/30(H1N1)、A/桂富/10/194(H1N1)和A/京防/53/97(H1N1)毒株进行复核测定。结果有24份血清HI效价≥20,分布于8个不同地区。结论当今我国人群中存在有A/PR/8/34(H1N1)毒株的活动  相似文献   

8.
The influence of AS03A, a tocopherol oil-in-water emulsion-based adjuvant system, on humoral and cell-mediated responses to A/California/7/2009 H1N1 pandemic vaccine was investigated. In two observer-blind studies, a total of 261 healthy adults aged 18 to 60 years were randomized to receive either AS03A-adjuvanted H1N1 vaccine containing 3.75 μg hemagglutinin (HA) or nonadjuvanted H1N1 vaccine containing 15 or 3.75 μg HA on days 0 and 21. Hemagglutination inhibition (HI) antibody and T-cell responses were analyzed up to day 42. A first dose of AS03A-adjuvanted vaccine (3.75 μg HA) or nonadjuvanted vaccine (15 μg HA) induced HI responses of similar magnitudes that exceeded licensure criteria (e.g., 94 to 100% with titers of ≥40). A lower response following 3.75 μg HA without adjuvant was observed (73% with titers of ≥40). Following a second dose, geometric mean HI titers at day 42 were higher for AS03A-adjuvanted vaccine (636 and 637) relative to nonadjuvanted vaccine (341 for 15 μg HA and 150 for 3.75 μg HA). Over the 42-day period, the increase in frequency of A/H1N1/2009-specific CD4+ T cells was significantly higher in the adjuvanted group than in the nonadjuvanted group. There was no evidence of correlation between baseline CD4+ T-cell frequencies and day 21 HI antibody titers, while there was some correlation (R = 0.35) between day 21 CD4+ T-cell frequencies and day 42 HI titers. AS03A adjuvant enhanced the humoral and CD4+ T-cell-mediated responses to A/H1N1/2009 vaccine. Baseline A/H1N1/2009-specific CD4+ T-cell frequencies did not predict post-dose 1 antibody responses, but there was some correlation between post-dose 1 CD4+ T-cell frequencies and post-dose 2 antibody responses.  相似文献   

9.
Hemagglutination inhibition (HI) tests against whole virus (WV) influenza B/Singapore/222/79 antigen detected prevaccination serum antibody in only 15 (20%) of 50 predominantly elderly volunteers and fourfold or greater titer rises in only three (6%) after they received 1981-1982 trivalent influenza vaccine containing antigens of this virus. HI titers against ether-treated (ET) B/Singapore/222/79 were about eightfold higher than those against WV antigen and were comparable to microneutralization titers against this virus. The ET HI detected prevaccination antibody in 84%, a postvaccination titer rise in 32%, and a final titer of 80 or higher in 66%. Among 51 additional persons with known or presumed influenza B virus infections early in 1982, ET B/Singapore/222/79 was also more sensitive than WV for serodiagnosis (69 versus 49%), but eight persons with both WV and ET B/Singapore/222/79 HI responses also had an HI titer rise to WV A/Brazil/11/78 (H1N1) antigen. Conversely, among 14 college students with febrile, culture-proven influenza A (H1N1) infections early in 1982, 6 (43%) developed HI titer rises to ET B/Singapore/222/79 with no other serological evidence of influenza B virus infection. Moreover, young adult volunteers with mild experimental influenza A (H1N1) infections also exhibited a 17% (3 of 18) incidence of ET B/Singapore/222/79 HI titer rises, versus none in matched, uninfected volunteers. These data indicate that ET B/Singapore/222/79 virus has increased sensitivity but reduced specificity compared to WV as an HI antigen and that caution is needed in interpretation of a single HI test for serodiagnosis, whether with WV or ET antigen.  相似文献   

10.
Although rare, influenza pandemics are a recurrent event, and influenza A/H5N1 is generally considered to be the most likely causative agent of the next pandemic. Vaccines are widely considered to be the first line of defense for protecting populations in advance of an influenza pandemic. Because it is not known beforehand which strain of influenza A/H5N1 virus could give rise to a pandemic, prepandemic vaccines that impart broad cross-reactive immunogenicity are required. In addition, low doses of H5 hemagglutinin are preferable in order to make antigen supplies go further towards meeting global demands for prepandemic vaccines.Prepandemic influenza vaccine H5N1 [Prepandrix(trade mark); AS03-H5N1 vaccine] is a split virion, inactivated vaccine containing H5 hemagglutinin antigen adjuvanted with a novel 10% oil-in-water emulsion-based adjuvant system (AS03). It is approved in the EU for use as an active immunization against H5N1 subtype influenza A virus (influenza A/H5N1 virus) in adults aged 18-60 years. The recommended dosage in this population is two doses of 0.5 mL containing 3.75 microg of H5 hemagglutinin, administered >/=21 days apart. Adjuvantation of H5N1 vaccine with AS03 allows for a reduction in the H5 hemagglutinin dose required to elicit an adequate immune response, and administration of two doses of the adjuvanted vaccine met all criteria for the licensure of influenza vaccines set out in European Committee for Proprietary Medicinal Products (CPMP) and US FDA documents.In two clinical trials, two doses of AS03-H5N1 vaccine containing 3.75 microg of H5 hemagglutinin induced an immune response in healthy volunteers aged 18-60 years against the homologous, clade 1 vaccine strain, A/Vietnam/1194/2004, and the heterologous, drifted, clade 2 nonvaccine strains, A/Anhui/1/2005, A/Indonesia/5/2005, and A/turkey/Turkey/1/2005. This cross-clade response persisted for >/=6 months following administration of the first vaccine dose in the majority of vaccine recipients. In addition, AS03-H5N1 vaccine protected against lethal challenge with A/Vietnam/1194/2004 or A/Indonesia/5/2005 in animal studies. The vaccine was generally well tolerated and adverse events were transient and predominantly of mild to moderate severity.AS03-H5N1 vaccine has demonstrated antigen dose-sparing properties and cross-clade reactive immunity in clinical trials and challenge studies in animal models. As a result, stockpiling AS03-H5N1 vaccine has the potential to protect populations against a pandemic caused by an influenza A/H5N1 virus and may represent an important measure in pandemic preparedness.  相似文献   

11.
Enzyme-linked immunosorbent assay (ELISA) has been adopted for simultaneous determination of the levels of antibodies to different influenza virus proteins in human sera with known haemagglutination-inhibition (HI) titre. Whole virus of serotypes H1N1 and H3N2, haemagglutinin (HA), matrix (M) and nucleoprotein (NP) proteins have been used as antigens. For detection of antibodies bound to the antigen, peroxidase labelled Staphylococcus protein A conjugate has been used. Correlation of the ELISA and HI titres of anti-HA antibody has been demonstrated. The use of isolated HA as antigen increased the specificity of ELISA. The analysis of human reconvalescent sera has shown that increase in the titre of antibodies to internal proteins does not always coincide with the increase of antibody level to HA. Out of 8 sera with significant increase of the HI titre to the H3 subtype 5 specimens showed 4-fold increase of antibody titre to NP protein. The antibody titre to M protein was elevated in 2 sera only, while 1 serum showed no rise of antibody response to the tested viral proteins.  相似文献   

12.
The capacity of live influenza type A (H3N2) vaccines to produce antihemagglutinins and antineuraminidase antibody to drift variants of a given serosubtype emerging later than the vaccine strain was studied. For this purpose, a wider set of antigens was used to examine retrospectively by the HI and virus elution from erythrocyte inhibition tests the paired sera from the subjects immunized in 1975 and 1976 with live vaccine virus strains similar to A/Port Chalmers/1/73 (H3N2) and A/Victoria/3/75. These vaccines were shown to actively stimulate antibody production in titres of 1:40 or higher to strains forestolling the vaccine strain by 1 (antihemagglutinins) and 2 (antineuraminidase antibody) degrees of the antigenic hierarchy. The intensity of production of both kinds of antibody to similar future strains depended on the intensity of immune response to the vaccine virus. By increasing the dose and frequency of administration of the virus serosubtype A (H3N2) to animals it was possible to intensify the production of antihemagglutinins and antineuraminidase antibodies to later drift variants of this agent with respect to the virus-immunogen. Volunteers immunized in 1983 with a commercial inactivated chromatographic bivaccine prepared from the strains similar to A/Bangkok/1/79 (H3N2) and A/Brazil/14/78 (H1N1) were found to intensively produce antihemagglutinins in titres of 1:40 or higher to viruses A/Philippines/2/84 (H3N2), A/Leningrad/167/83 (H3N2), A/Leningrad/3/82 (H1N1) but not to A/Dunedin/27/83 (H1N1) virus.  相似文献   

13.
The influence of vaccine strain and antigen mass on the ability of inactivated avian influenza (AI) viruses to protect chicks from a lethal, highly pathogenic (HP) AI virus challenge was studied. Groups of 4-week-old chickens were immunized with inactivated vaccines containing one of 10 haemagglutinin subtype H5 AI viruses, one heterologous H7 AI virus or normal allantoic fluid (sham), and challenged 3 weeks later by intra-nasal inoculation with a HP H5 chicken-origin AI virus. All 10 H5 vaccines provided good protection from clinical signs and death, and produced positive serological reactions on agar gel immunodiffusion and haemagglutination inhibition tests. In experiment 1, challenge virus was recovered from the oropharynx of 80% of chickens in the H5 vaccine group. In five H5 vaccine groups, challenge virus was not recovered from the cloaca of chickens. In the other five H5 vaccine groups, the number of chickens with detection of challenge virus from the cloaca was lower than in the sham group (P < 0.05). Reductions in the quantity of challenge virus shed from the cloaca and oropharynx were also evident in some H5 vaccinate groups when compared to the sham group. However, there was no positive correlation between the sequence identity of the haemagglutinin gene from the vaccine strain and challenge virus, and the ability to reduce the quantity of challenge virus shed from the cloaca or oropharynx. As the quantity of AI antigen in the vaccines increased, all parameters of protection improved and were virus strain dependent. A/turkey/Wisconsin/68 (H5N9) was the best vaccine candidate of the H5 strains tested (PD50= 0.006 μg AI antigen). These data demonstrate that chickens vaccinated with inactivated H5 whole virus AI vaccines were protected from clinical signs and death, but usage of vaccine generally did not prevent infection by the challenge virus, as indicated by recovery of virus from the oropharynx. Vaccine use reduced cloacal detection rates, and quantity of virus shed from the cloaca and oropharynx in some vaccine groups, which would potentially reduce environmental contamination and disease transmission in the field.  相似文献   

14.
Summary. In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype, possibly an H6. The haemagglutinin and the acidic polymerase genes of the virus were closely related to a low-pathogenic Danish H5N2 virus A/Duck/Denmark/65041/04 (H5N2). The neuraminidase gene and the non-structural gene were most similar to the highly pathogenic A/Chicken/Netherlands/1/03 (H7N7) and the human-fatal A/Netherlands/219/03 (H7N7), respectively. The basic polymerase 1 and 2 genes were phylogenetically equidistant to both A/Duck/Denmark/65047/04 (H5N2) and A/Chicken/Netherlands/1/03 (H7N7). The nucleoprotein and matrix gene had highest nucleotide sequence similarity to the H6 subtypes A/Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found.  相似文献   

15.
目的以传统遗传重配技术选育HSN1流感病毒Veto细胞适应株,制备Vero细胞H5N1流感疫苗。方法以流感病毒Vero细胞适应株A/Yunnan/1/2005Va(H3N2)为母株与反向遗传学技术改造的禽流感病毒疫苗株A/Anhui/1/2005(H5N1)共同感染SPF鸡胚和Vero细胞,用羊抗A/Yunnan/1/2005Va(H3N2)抗体筛选,血抑试验和基因测序鉴定病毒型别,并进行重配株的其他相关生物学试验。结果获得了1株在Vero细胞高产的H5N1流感病毒,重配前后的单价灭活疫苗免疫小鼠抗体血清效价差异无统计学意义(F=0.857,P〉0.05)。结论通过流感病毒Vero细胞适应株与流行株的重配和抗体筛选,可以获得H5N1流感病毒Vero细胞适应株。  相似文献   

16.
It was shown earlier that the reassortant influenza virus having hemagglutinin (HA) gene of A/Duck/Primorie/2621/2001 (H5N2) virus and 7 genes of A/Puerto Rico/8/34 (H1N1) virus produced low yields in embryonated chicken eggs. We found that a variant reassortant selected by serial passages in eggs produced higher yields than the initial reassortant. The variant reassortant had an amino acid substitution in the hemagglutinin N244D (H3 numbering). In this report we demonstrated that the post-reassortment amino acid substitution N244D altered the antigenic specificity of HA as revealed by the loss of reactivity with an anti-H5 monoclonal antibody in hemagglutination-inhibition (HI) test. The results are discussed in association with the evolution of H5 hemagglutinin.  相似文献   

17.
抗H5N1禽流感病毒VHH抗体库的构建   总被引:1,自引:1,他引:0  
目的:构建抗H5N1禽流感病毒的小羊驼免疫噬菌体重链可变区抗体库(VHH型抗体库),为抗H5N1的VHH抗体筛选奠定基础。方法:利用H5N1灭活疫苗免疫小羊驼,一定免疫时间后测定小羊驼外周血清中抗体中和活性,分离其外周淋巴细胞,利用RT-PCR方法得到VHH抗体片段。通过优化连接和电转化方法,将足量VHH片段与pCANTAB5E连接后电转入大肠杆菌TG1,获得VHH抗体基因库;检测基因库库容以及多样性,并采用血凝抑制试验对噬菌体抗体库进行初步功能性鉴定。结果:利用H5N1灭活疫苗免疫小羊驼四次后,其外周血清中抗体血清抑制效价可达1∶2 560,构建的VHH抗体基因库库容可达3×108,随机挑选14个抗体基因克隆进行测序鉴定,结果显示均为独立克隆,表明所建抗体库多样性好。上述基因库经辅助噬菌体拯救后,得到抗H5N1的噬菌体VHH型抗体初级库,对初级库进行血凝抑制试验,结果呈阳性,表明初级库中存在具有潜在中和活性的抗H5N1抗体。结论:结果表明,已成功构建抗H5N1禽流感病毒的小羊驼免疫噬菌体重链抗体库,为进一步筛选抗H5N1禽流感的重链抗体打下良好基础,并为H5N1的早期临床诊断和治疗提供新的手段。  相似文献   

18.
Haemagglutination-inhibition (HI) tests are a simple method used to assess immune responses to influenza haemagglutinin. However, HI tests are insensitive at detection of antibody responses to avian haemagglutinin after vaccination or natural infection, even in the presence of high titres of neutralising antibody or virus isolation. Avian influenza viruses preferentially bind to sialic acid receptors that contain N-acetylneuraminic acid alpha2,3-galactose (alpha2,3Gal) linkages while human viruses preferentially bind to those containing N-acetylneuraminic acid alpha2,6-galactose (alpha2,6Gal) linkages. By using horse erythrocytes in the HI test and thereby increasing the proportion of alpha2,3Gal linkages available for binding, we are able to demonstrate improved detection of antibody to avian H5 in human sera following vaccination with MF59-adjuvanted A/Duck/Singapore/97 surface antigen vaccine. This modified HI test was more sensitive in detection of anti-H5 antibody evoked by revaccination of primed subjects and may be useful in assessing potential avian HA vaccine candidates.  相似文献   

19.
目的:制备针对H1亚型流感病毒HA蛋白的单克隆抗体(mAb),并分析其反应特性。方法:分别以2009年甲型H1N1、季节性A1流感病毒裂解疫苗为免疫原,常规法免疫、融合、克隆化,获得各抗原特异性mAb。应用ELISA、HI试验和Western blot等技术研究mAb的反应性和特异性。结果:获得稳定分泌抗H1亚型流感病毒HA蛋白的杂交瘤细胞97株。其中株特异性mAb39株,29株具有HI活性;亚型特异性mAb7株,5株具有HI活性;2009年流行株与季节性A1、A3流行株共同抗原的mAb16株,9株具有HI活性;针对流感病毒共同抗原mAb35株,22株具有HI活性。结论:两种疫苗均具有较好的免疫原性和免疫保护活性,这些mAb的获得为流感病毒株特异、亚型特异性诊断试剂盒及流感病毒通用诊断试剂盒的制备提供了实验资料,为进一步研究H1N1流感病毒HA的抗原表位奠定了基础。  相似文献   

20.
Influenza A H5N1 viruses remain a substantial threat to global public health. In particular, the expanding genetic diversity of H5N1 viruses and the associated risk for human adaptation underscore the importance of better understanding host immune responses that may protect against disease or infection. Although much emphasis has been placed on investigating early virus–host interactions and the induction of innate immune responses, little is known of the consequent adaptive immune response to H5N1 virus infection. In this review, we describe the H5N1 virus-specific and cross-reactive antibody and T cell responses in humans and animal models. Data from limited studies suggest that although initially robust, there is substantial waning of the serum antibody responses in survivors of H5N1 virus infection. Characterization of monoclonal antibodies generated from memory B cells of survivors of H5N1 virus infection has provided an understanding of the fine specificity of the human antibody response to H5N1 virus infection and identified strategies for immunotherapy. Human T cell responses induced by infection with seasonal influenza viruses are directed to relatively conserved internal proteins and cross-react with the H5N1 subtype. A role for T cell-based heterosubtypic immunity against H5N1 viruses is suggested in animal studies. Further studies on adaptive immune responses to H5N1 virus infection in both humans and animals are needed to inform the design of optimal immunological treatment and prevention modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号