首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: The authors examined gender differences in d-amphetamine-induced displacements of [(18)F]fallypride in the striatal and extrastriatal brain regions and the correlations of these displacements with cognition and sensation seeking. METHOD: Six women and seven men underwent positron emission tomography (PET) with [(18)F]fallypride before and after an oral dose of d-amphetamine. Percent displacements were calculated using regions of interest and parametric images of dopamine 2 (D(2)) receptor binding potential. RESULTS: Parametric images of dopamine release suggest that the female subjects had greater dopamine release than the male subjects in the right globus pallidus and right inferior frontal gyrus. Gender differences were observed in correlations of changes in cognition and sensation seeking with regional dopamine release. CONCLUSION: Findings revealed a greater dopamine release in women as well as gender differences in the relationship between regional dopamine release and sensation seeking and cognition.  相似文献   

2.
OBJECTIVE: To investigate whether dopamine D2 and D3 receptor subtypes (D2/3Rs) outside the caudate-putamen are affected in PD. BACKGROUND: Alterations in striatal D2-like dopamine receptors in PD have been extensively demonstrated using PET, but there are no studies focusing on extrastriatal D2/3Rs. METHODS: Fourteen unmedicated patients with idiopathic early PD with predominantly left-sided symptoms, 14 levodopa-medicated patients with advanced PD, and 20 normal age-matched controls were examined using PET. PET scanning was performed with a novel high-affinity D2/3R radioligand ([11C]FLB 457) and a PET scanner in three-dimensional mode. RESULTS: In advanced PD, the binding potential of [11C]FLB 457 in the dorsolateral prefrontal cortex was decreased by 40% (p < 0.01), in the anterior cingulate cortex by 20% (p < 0.01), and in the medial thalamus by 17% (p < 0.05) compared with healthy controls. In early PD, the extrastriatal [11C]FLB 457 binding potentials were not significantly different compared with the control group. However, the binding potential in the anterior cingulate cortex (29%; p < 0. 05) was higher in early PD compared with advanced PD. CONCLUSIONS: These results imply that the D2/3 receptor subtypes outside the striatum are affected in advanced PD but not in the early stages of the disease, and that this receptor decline is present in the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus.  相似文献   

3.
Most antiparkinsonian drugs are known to act through central dopamine D(2) receptor agonism. A previous longitudinal positron emission tomography (PET) study has indicated that, in the striatum of Parkinson's disease (PD) patients, dopamine D(2) receptor binding declines at a relatively fast annual rate of 2-4% (compared to the rate of <1%/year in healthy individuals). In the present study, the examination of longitudinal changes in D(2) receptors was extended to extrastriatal brain regions in PD. Eight early PD patients were examined twice with PET, approximately 3 years apart, using a high-affinity extrastriatal D(2)/D(3) receptor tracer, [(11)C]FLB 457. Both the MRI-referenced region-of-interest method and the voxel-based statistical analysis method were used independently in the analysis. Regional D(2)-like availabilities (binding potentials) in the left dorsolateral prefrontal cortex, the left temporal cortex and the left and right medial thalami were significantly decreased at the second examination by 20-37% (corresponding to an annual decline of 6-11%). Thus, the annual loss of extrastriatal D(2) availability in PD is up to three times faster than the rate previously reported in the putamen. Our longitudinal study shows first evidence concerning cortical D(2) receptor loss in the progression of PD, although it is not possible to distinguish between the effects of the therapy and the disease.  相似文献   

4.
Central dopaminergic systems are known to be implicated in the pathophysiology of schizophrenia and recent in vivo dopamine receptor imaging studies have focused on the measurement of extrastriatal dopamine receptor. However, there are only a limited number of ligands that can measure the low-density D2 receptor in extrastriatal regions and their sensitivity to endogenous dopamine in extrastriatal regions has not yet been fully examined. In this study, the effect of endogenous dopamine on the extrastriatal binding of [(11)C]FLB 457 was examined in the rhesus monkey after facilitation with 1 mg/kg of methamphetamine (MAP) and was compared with the effect on the striatal binding of [(11)C]raclopride. The indices of receptor binding were obtained by four methods using cerebellum as a reference region. The bindings of [(11)C]FLB 457 in the frontal cortex, temporal cortex, and thalamus were not significantly changed after MAP treatment, while the striatal binding of [(11)C]raclopride was decreased by more than 20%. These results suggest that [(11)C]FLB 457 is not sensitive to endogenous dopamine in the extrastriatal regions of rhesus monkeys, despite a sufficient dose of MAP to decrease the binding of [(11)C]raclopride in the striatum.  相似文献   

5.
BACKGROUND: The clinical efficacy of dopamine D2 receptor antagonism on the psychotic symptoms of schizophrenia has been widely demonstrated. However, most in vivo imaging studies have not been able to detect significant changes in striatal D2 receptors in schizophrenia. On the other hand, a number of studies have reported abnormalities in the cerebral cortex of schizophrenia. The aim of this study was to examine the extrastriatal D2 receptors of patients with schizophrenia. METHODS: Eleven drug-naive male patients with schizophrenia were examined with positron emission tomography using carbon 11-labeled FLB 457. Symptoms were assessed using the Brief Psychiatric Rating Scale. Eighteen healthy controls were used for comparison. Region-of-interest analysis was performed using the reference tissue method, and binding potential (BP) was used for the index of dopamine D2 receptor binding. RESULTS: The BP value was significantly lower, by about 12.5%, in the anterior cingulate cortex in drug-naive patients with schizophrenia than in healthy controls. A significant negative correlation was observed between BP in the anterior cingulate cortex and the positive symptom score on Brief Psychiatric Rating Scale. CONCLUSIONS: The lower BP values indicate fewer D2 receptors in the anterior cingulate cortex in patients with schizophrenia. Alterations in D2 receptor function in the extrastriatal region may underlie the positive symptoms of schizophrenia.  相似文献   

6.
OBJECTIVE: The authors' goal was to test the hypothesis of extrastriatal D(2) receptor selectivity as the mechanism of action of clozapine. METHOD: Positron emission tomography (PET) was used to examine extrastriatal as well as striatal dopamine D(2) receptor occupancy in four patients treated with clozapine and three patients treated with haloperidol. The reference radioligand [(11)C]raclopride was used for determination of D(2) receptor occupancy in the striatum. The radioligand [(11)C]FLB 457 was chosen for determination of D(2) receptor occupancy in the thalamus, the temporal cortex, and the frontal cortex. RESULTS: In patients treated with haloperidol the D(2) receptor occupancy was high in all examined brain regions. In clozapine-treated patients the D(2) receptor occupancy was relatively low in both the striatum and the extrastriatal regions. CONCLUSIONS: The results from the present study give no support for the hypothesis of regional selectivity as the mechanism of action for clozapine.  相似文献   

7.
Positron emission tomography (PET) has hitherto been used to examine D2 dopamine receptor binding in the striatum, a region with a high density of receptors. Research has been hampered by the lack of suitable radioligands for detection of the low-density D2 dopamine receptor populations in the limbic and cortical dopamine systems that are implicated in the pathophysiology of schizophrenia. [11C]FLB 457 is a new radioligand with the very high affinity of 20 pmol/L (K(i)) for the D2 and D3 dopamine receptor subtypes. This study in eight healthy subjects was designed to evaluate the suitability of [11C]FLB 457 for quantification of extrastriatal D2/D3 dopamine receptors. PET-data were acquired in the three-dimensional mode and the arterial input function was corrected for labeled metabolites. The standard three-compartment model and four derived approaches were applied to calculate and compare the binding potentials. Besides the striatum, conspicuous radioactivity was found in extrastriatal regions such as the thalamus, the anterior cinguli, and the temporal and frontal cortices. The time activity curves could be described by the three compartment model. The different approaches gave similar binding potential values and the rank order between regions was consistent with that found in vitro. The short time of a PET measurement using [11C]FLB 457 (63 minutes) seemed not to be sufficient for reliable determination of the high binding potential in the striatum. These results are of principal importance because they show the potential for PET quantification of minute receptor populations in the human brain.  相似文献   

8.
BACKGROUND: The aim of the study was to examine extrastriatal dopamine D(2/3) receptor binding and psychopathology in schizophrenic patients, and to relate binding potential (BP) values to psychopathology. METHODS: Twenty-five drug-naive schizophrenic patients and 20 healthy controls were examined with single-photon emission computerized tomography (SPECT) using the D(2/3)-receptor ligand [123I]epidepride. RESULTS: In the hitherto largest study on extrastriatal D(2/3) receptors we detected a significant correlation between frontal D(2/3) BP values and positive schizophrenic symptoms in the larger group of male schizophrenic patients, higher frontal BP values in male (n = 17) compared to female (n = 8) patients, and - in accordance with this - significantly fewer positive schizophrenic symptoms in the female patients. No significant differences in BP values were observed between patients and controls; the patients, however, had significantly higher BP in the right compared to the left thalamus, whereas no significant hemispheric imbalances were observed in the healthy subjects. CONCLUSIONS: The present data are the first to confirm a significant correlation between frontal D(2/3) receptor BP values and positive symptoms in male schizophrenic patients. They are in agreement with the hypothesis that frontal D(2/3) receptor activity is significant for positive psychotic symptoms. Additionally, the data support a thalamic hemispheric imbalance in schizophrenia.  相似文献   

9.
The ability to measure amphetamine-induced dopamine release in extrastriatal brain regions in the non-human primates was evaluated by using the dopamine D-2/D-3 receptor radioligand, (18)F-fallypride. These regions included the thalamus, amygdala, pituitary, temporal cortex and frontal cortex as well as putamen, caudate and ventral striatum. The positron emission tomography (PET) studies involved control studies, which extended to 3 h, and the amphetamine-challenge studies, which involved administration of d-amphetamine (approx. 0.5-1 mg/kg, i.v.). PET data analysis employed the distribution volume ratio method (DVR) in which the cerebellum was used as a reference region. Our results show a substantial decrease in the binding potential of (18)F-fallypride in extrastriatal regions: thalamus (-20%), amygdala (-39%) and pituitary (-14%). Putamen, caudate and ventral striatum also exhibited significant decreases (-20%). The decrease in (18)F-fallypride binding in the extrastriatal regions points to the importance of dopaminergic neurotransmission in these brain regions. Furthermore, our findings support the use of (18)F-fallypride to measure extrastriatal dopamine release.  相似文献   

10.
The objective was to investigate the association between extrastriatal dopamine D(2)/D(3) receptor binding and performance on the Wisconsin Card Sorting Test (WCST), a measure of executive functioning. Thirty-two healthy volunteers performed the WCST and underwent positron emission tomography and a high-affinity D(2)/D(3) receptor tracer, [(11)C]FLB 457. All WCST error parameters, in particular nonperseverative errors, correlated positively with [(11)C]FLB 457 binding in the cognitive division of the right anterior cingulate cortex. An independent voxel-based receptor parametric mapping analysis confirmed these findings. The results indicate that executive functioning in healthy volunteers is modulated by D(2)/D(3) receptors in the anterior cingulate cortex.  相似文献   

11.
Objectives: Long-term dopamine D2/3 receptor blockade, common to all antipsychotics, may underlie progressive brain volume changes observed in patients with chronic schizophrenia. In the present study, we examined associations between cortical volume changes and extrastriatal dopamine D2/3 receptor binding potentials (BPND) in first-episode schizophrenia patents at baseline and after antipsychotic treatment.

Methods: Twenty-two initially antipsychotic-naïve patients underwent magnetic resonance imaging (MRI), [123I]epidepride single-photon emission computerised tomography (SPECT), and psychopathology assessments before and after 3 months of treatment with either risperidone (N?=?13) or zuclopenthixol (N?=?9). Twenty healthy controls matched on age, gender and parental socioeconomic status underwent baseline MRI and SPECT.

Results: Neither extrastriatal D2/3 receptor BPND at baseline, nor blockade at follow-up, was related to regional cortical volume changes. In post-hoc analyses excluding three patients with cannabis use we found that higher D2/3 receptor occupancy was significantly associated with an increase in right frontal grey matter volume.

Conclusions: The present data do not support an association between extrastriatal D2/3 receptor blockade and extrastriatal grey matter loss in the early phases of schizophrenia. Although inconclusive, our exclusion of patients tested positive for cannabis use speaks to keeping attention to potential confounding factors in imaging studies.  相似文献   

12.
[(11)C]FLB 457 is a very high-affinity radiotracer that allows the measurement of dopamine D(2/3) receptor availability in regions of the brain where densities are very low, such as the cerebral cortex. It is not known if [(11)C]FLB 457 binding is sensitive to the concentration of endogenous dopamine in humans in a manner analogous to [(11)C]raclopride and [(123)I]IBZM in the striatum. To test this possibility, extrastriatal [(11)C]FLB 457 binding was measured at baseline and after the oral administration of 40 to 60 mg of the psychostimulant methylphenidate (MP) in 12 healthy volunteers using positron emission tomography (PET) in a balanced-order, double-blind design. The dynamic PET data were quantified using a two-tissue compartment model with a metabolite-corrected arterial plasma input function. Two volunteers were excluded because of excessive head movement. In the remainder, MP caused significant reductions in the volume of distribution (VD) in temporal and frontal cortical regions and thalamus, suggesting that [(11)C]FLB 457 binding is sensitive to endogenous dopamine concentration. Moreover, the change in [(11)C]FLB 457 binding after MP correlated with the dose of MP (in mg/kg body weight) in all regions assessed. We conclude that MP in doses within the therapeutic range for the treatment of attention deficit hyperactivity disorder causes increases in dopamine concentrations in extrastriatal regions and that [(11)C]FLB 457 PET may be a useful tool for the assessment of change in dopamine concentration in these areas in humans.  相似文献   

13.
OBJECTIVE: Alcohol and other drugs of abuse stimulate dopamine release in the ventral striatum, which includes the nucleus accumbens, a core region of the brain reward system, and reinforce substance intake. Chronic alcohol intake is associated with down-regulation of central dopamine D(2) receptors, and delayed recovery of D(2) receptor sensitivity after detoxification is positively correlated with high risk for relapse. Prolonged D(2) receptor dysfunction in the ventral striatum may interfere with a dopamine-dependent error detection signal and bias the brain reward system toward excessive attribution of incentive salience to alcohol-associated stimuli. METHOD: Multimodal imaging, with the radioligand [(18)F]desmethoxyfallypride and positron emission tomography as well as functional magnetic resonance imaging (fMRI), was used to compare 11 detoxified male alcoholics with 13 healthy men. The authors measured the association of D(2)-like dopamine receptors in the ventral striatum with alcohol craving and central processing of alcohol cues. RESULTS: Activation of the medial prefrontal cortex and striatum by alcohol-associated stimuli, relative to activation by neutral visual stimuli, was greater in the detoxified alcoholics than in the healthy men. The alcoholics displayed less availability of D(2)-like receptors in the ventral striatum, which was associated with alcohol craving severity and with greater cue-induced activation of the medial prefrontal cortex and anterior cingulate as assessed with fMRI. DISCUSSION: In alcoholics, dopaminergic dysfunction in the ventral striatum may attribute incentive salience to alcohol-associated stimuli, so that alcohol cues elicit craving and excessive activation of neural networks associated with attention and behavior control.  相似文献   

14.
Most molecular imaging studies of the dopamine (DA) system performed to date have focused on the striatum, a region receiving dense dopaminergic innervation. In clinical research on the DA D2‐receptor, striatal binding has often been regarded as an index of global DA function, based on the underlying assumption of common regulatory mechanisms for receptor expression across brain regions. Recent data has challenged this view, suggesting differences in genetic regulation between striatal and extrastriatal brain regions. The relationship between binding levels in brain regions has, however, not been directly examined in the same sample. In this study, we searched for interregional correlations between DA D2‐receptor availability as determined with Positron Emission Tomography in 16 control subjects. The radioligands [11C]raclopride and [11C]FLB 457 were used for measurements of D2‐receptor binding in striatal and extrastriatal regions, respectively. No correlation was observed between D2‐receptor availability in striatum and any of the extrastriatal regions, as assessed using both region of interest‐ and voxel‐based analyses. Instead, the pattern of correlations was consistent with the model of separate dopaminergic systems as has been originally observed in rodents. These preliminary results encourage approaches searching for individual patterns of receptor binding across the whole brain volume in clinical studies on the dopamine system. Synapse 64:478–485, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
BACKGROUND: There are sex differences in the clinical features of several neuropsychiatric illnesses associated with dopamine dysfunction. The effects of sex on brain dopaminergic function have been sparsely studied in human subjects using modern imaging techniques. We have previously reported that the apparent affinity of [(11)C]raclopride for striatal D(2) dopamine receptors in vivo is lower in women than in men, whereas D(2) receptor density is not different. This finding indirectly suggests that women have a higher synaptic concentration of dopamine in the striatum. We explored further the basis of this phenomenon in an independent study and hypothesized that striatal presynaptic dopamine synthesis capacity would also be elevated in women. METHODS: A total of 23 healthy men and 12 healthy women (age range 20-60 years) were studied using positron emission tomography and [(18)F]fluorodopa. RESULTS: Women had significantly higher striatal [(18)F]fluorodopa uptake (Ki values) than men. The difference was more marked in the caudate (+26%) than in the putamen (+12%). In addition, there was a negative correlation between striatal [(18)F]fluorodopa Ki values and age in men but not in women. CONCLUSIONS: The results further substantiate sex differences in striatal dopaminergic function in humans. This finding may be associated with sex differences in vulnerability and clinical course of neuropsychiatric disorders with dopaminergic dysregulation, e.g., schizophrenia, alcohol dependence, and Parkinson's disease.  相似文献   

16.
The two D1-like dopamine receptor subtypes, D1a and D1b, are structurally similar and pharmacologically indistinguishable using currently available ligands. To differentiate between the D1-like dopamine receptor subtypes, murine monoclonal antibodies to the rat Dla and the rat D1b dopamine receptor have been prepared. Rat D1-like and D2-like dopamine receptors expressed in Sf9 cells were used to verify the immunospecificity of the monoclonal anti-(D1a dopamine receptor) and anti-(D1b dopamine receptor) antibodies using immunoblot and immunohistochemical techniques. These two antibodies were used to compare the temporal dynamics of D1-like dopamine receptors expressed in Sf9 cells following infection with recombinant baculovirus and to monitor the partial purification of detergent solubilized receptors following ion exchange chromatography. Immunoreactivity of the anti-(D1a receptor) antibody was observed in the striatum and cortical regions of the rat brain using immunoblot techniques. No reactivity on immunoblots was observed for the anti-(D1b receptor) antibody using rat brain tissue, probably due to the low levels of receptor expression. For immunohistochemical studies using rat brain slices, the anti-(D1a receptor) antibody heterogeneously labeled cells and punctate processes within the striatal neuropil while labeling in the adjacent cerebral cortex was weak. Anti-(D1b receptor) antibody immunoreactivity was weak in the .striatum and generally limited to sparse perikarya in the dorsal region. However, immunoreactivity was observed in numerous cells within the vertical and horizontal limbs of the diagonal band and in the ventral pallidum. Immunoreactivity of the anti-(D1b receptor) antibody was also observed in layer V pyramidal neurons of the frontal sensorimotor cortex.  相似文献   

17.
Theories of adult brain development, based on neuropsychological test results and structural neuroimaging, suggest differential rates of age‐related change in function across cortical and subcortical sub‐regions. However, it remains unclear if these trends also extend to the aging dopamine system. Here we examined cross‐sectional adult age differences in estimates of D2‐like receptor binding potential across several cortical and subcortical brain regions using PET imaging and the radiotracer [18F]Fallypride in two samples of healthy human adults (combined N = 132). After accounting for regional differences in overall radioligand binding, estimated percent difference in receptor binding potential by decade (linear effects) were highest in most temporal and frontal cortical regions (~6–16% per decade), moderate in parahippocampal gyrus, pregenual frontal cortex, fusiform gyrus, caudate, putamen, thalamus, and amygdala (~3–5%), and weakest in subcallosal frontal cortex, ventral striatum, pallidum, and hippocampus (~0–2%). Some regions showed linear effects of age while many showed curvilinear effects such that binding potential declined from young adulthood to middle age and then was relatively stable until old age. Overall, these data indicate that the rate and pattern of decline in D2 receptor availability is regionally heterogeneous. However, the differences across regions were challenging to organize within existing theories of brain development and did not show the same pattern of regional change that has been observed in gray matter volume, white matter integrity, or cognitive performance. This variation suggests that existing theories of adult brain development may need to be modified to better account for the spatial dynamics of dopaminergic system aging.  相似文献   

18.
PET imaging studies of the role of the dopamine D2 receptor family in movement and neuropsychiatric disorders are limited by the use of radioligands that have near‐equal affinities for D2 and D3 receptor subtypes and are susceptible to competition with endogenous dopamine. By contrast, the radioligand [18F]N‐methylbenperidol ([18F]NMB) has high selectivity and affinity for the D2 receptor subtype (D2R) and is not sensitive to endogenous dopamine. Although [18F]NMB has high binding levels in striatum, its utility for measuring D2R in extrastriatal regions is unknown. A composite MR‐PET image was constructed across 14 healthy adult participants representing average NMB uptake 60 to 120 min after [18F]NMB injection. Regional peak radioactivity was identified using a peak‐finding algorithm. FreeSurfer and manual tracing identified a priori regions of interest (ROI) on each individual's MR image and tissue activity curves were extracted from coregistered PET images. [18F]NMB binding potentials (BPNDs) were calculated using the Logan graphical method with cerebellum as reference region. In eight unique participants, extrastriatal BPND estimates were compared between Logan graphical methods and a three‐compartment kinetic tracer model. Radioactivity and BPND levels were highest in striatum, lower in extrastriatal subcortical regions, and lowest in cortical regions relative to cerebellum. Age negatively correlated with striatal BPNDs. BPND estimates for extrastriatal ROIs were highly correlated across kinetic and graphical methods. Our findings indicate that PET with [18F]NMB measures specific binding in extrastriatal regions, making it a viable radioligand to study extrastriatal D2R levels in healthy and diseased states. Synapse 66:770–780, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Postnatal development of dopamine D1-like (D1/D5) receptors in rat caudate-putamen (CPu), nucleus accumbens (NAc), hippocampus, frontal and entorhinal cerebral cortex was assessed between postnatal days (PD) 7-60 by in vitro receptor autoradiography. Density of [3H]SCH-23390 binding to D1-like receptors increased from PD-7 to a peak at PD-28 in CPu (11-fold) and NAc (23-fold), then declined by 20-40% in both regions over PD-35-60, to adult levels. In hippocampus, frontal and entorhinal cortex, D1-like receptors increased by lesser amounts (3- to 4-fold) from PD-7 to stable, maximal adult levels at PD-60. Evidently, excess D1-like receptors were eliminated during maturation of CPu and NAc, but not in the other forebrain regions. Postnatal D1-like receptor development in rat forebrain paralleled that of D2- and D4-like receptors in the same regions.  相似文献   

20.
OBJECTIVES: Antipsychotic medications improve psychosis but often induce a state of dysphoria in patients. Blockade of the dopamine D(2) receptors, which is thought to mediate their efficacy, has also been implicated in producing this adverse subjective experience. The authors present the first double-blind controlled study to examine the relationship between striatal and extrastriatal dopamine D(2) receptor binding potential and occupancy values and adverse subjective experience. METHOD: Patients with recent-onset psychosis (N=12) were randomly assigned to low or high doses of olanzapine or risperidone. Subjective experiences, motor side effects, and striatal and extrastriatal dopamine D(2) receptors (determined with [(11)C]raclopride and [(11)C]FLB 457 PET scans, respectively) were evaluated after 2 weeks of continuous antipsychotic treatment. RESULTS: Higher dopamine D(2) receptor occupancy and binding potentials in the striatal (dorsal and ventral), temporal, and insular regions were associated with subjective experience. The finding was confirmed with two convergent methods of analysis (region-of-interest and voxel-based statistics), and the same relationship was observed using two different dopamine receptor measures (observed binding potential values and age- and sex-corrected occupancy values). CONCLUSIONS: Higher D(2) receptor occupancy is associated with negative subjective experience in patients taking risperidone or olanzapine. These negative subjective effects may be related to the high discontinuation rates seen in usual practice. Understanding the neurobiological mechanism of these negative subjective experiences and developing antipsychotics with novel (i.e., non D(2)) mechanisms may be critical in improving the treatment of psychosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号