共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Ailin Wu Yanfeng Zhu Bin Han Jiayuan Peng Xiaomin Deng Wei Chen Jingchang Du Yu Ou Xiaoli Peng Xiaoping Yu 《Oncology Letters》2021,22(6)
Delphinidin is an anthocyanidin monomer, commonly found in vegetables and fruits, and has demonstrated antitumor effects in the HER-2-positive MDA-MB-453 breast cancer cell line, with low cytotoxicity on normal breast cells. However, the direct functional mechanisms underlying the effect of delphinidin on HER-2-positive breast cancer cells has not been fully characterized. In the present study, it was found that delphinidin could induce G2/M phase cell cycle arrest by inhibiting the protein expression level of cyclin B1 and Cdk1 in HER-2-positive breast cancer cell lines. In addition, delphinidin promoted the mitochondrial apoptosis pathway by inhibiting the ERK and NF-κB signaling pathway and activating the JNK signaling pathway. Therefore, delphinidin markedly suppressed the viability of the HER-2-positive breast cancer cell lines by modulating the cell cycle and inducing apoptosis. Overall, the findings from the present study demonstrated that delphinidin treatment could induce the mitochondrial apoptosis pathway in human HER-2-positive breast cancer cell lines, providing an experimental basis for the prevention and treatment of HER-2-positive breast cancer by flavonoids. 相似文献
5.
Myoung Woo Lee Dae Seong Kim Ji Eun Eom Ji Won Lee Ki Woong Sung Hong Hoe Koo Young Bin Hong Keon Hee Yoo 《American journal of cancer research》2022,12(7):3373
Targeting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling is a promising approach in cancer treatment. Although ERK and/or NF-κB signaling is involved in the expression of TRAIL receptors (TRAIL-R), the exact underlying mechanisms remain unknown. In this study, we evaluated the role of ERK2 and NF-κB in the cytotoxicity of TRAIL during cisplatin treatment. Cisplatin treatment of neuroepithelioma cells (SK-N-MC) significantly induced ERK2 activation and increased TRAIL cytotoxicity via the upregulation of death receptor 5 (DR5) expression. In partial ERK2 knockdown cell lines that maintained only basal levels of ERK2 activity, cisplatin treatment did not increase ERK2 activity or DR5 expression. These findings indicate that induced (rather than basal) ERK2 activity enhances TRAIL susceptibility via DR5 expression. In complete ERK2 knockdown cell lines with no basal ERK2 activity, DR4, DR5, and DcRs expression levels were increased, and additional treatment with cisplatin did not further increase TRAIL-R expression. Chemical inhibition of ERK2 also enhanced TRAIL cytotoxicity by upregulating DR4 and DR5 expression. These findings indicate that basal ERK2 activity suppresses TRAIL-R expression. Both basal and inducible ERK2 activities regulate TRAIL-R expression via the NF-κB signaling pathway. Overall, our findings suggest that the ERK2/NF-κB signaling pathway has a dual role in TRAIL susceptibility by differentially regulating TRAIL-R expression in the same cellular system. 相似文献
6.
Dayong Han Na Zhang Shu Zhao Huailei Liu Xiaoxiong Wang Mingchun Yang Shengtao Wang Yue Li Zhanwen Liu Lei Teng 《American journal of cancer research》2021,11(4):1185
This study aimed to investigate the interaction of A-kinase-interacting protein 1 (AKIP1) with C-X-C motif chemokine ligand (CXCL)1, CXCL2, CXCL8, and their effects on regulating glioblastoma multiforme (GBM) malignant behaviors. AKIP1 expression was modified by pcDNA and pGPH1 vectors in U-87 MG and U-251 MG cells. Subsequently, multiple compensative experiments were conducted via adding CXCL1, CXCL2 and CXCL8 in the pGPH1-AKIP1 (AKIP1 knockdown) transfected U-87 MG and U-251 MG cells, respectively. Furthermore, AKIP1, CXCL1/2/8 expressions in 10 GBM and 10 low-grade glioma (LGG) tumor samples were detected. AKIP1 was elevated in various GBM cell lines compared to normal human astrocytes. AKIP1 overexpression promoted U-87 MG and U-251 MG cell proliferation and invasion while inhibited apoptosis; and it enhanced chemoresistance to temozolomide (but not cisplatin) and radiation resistance; then AKIP1 knockdown showed the opposite effects. Meanwhile, AKIP1 positively regulated CXCL1/2/8, NF-κB pathway, AKT pathway and PD-L1 expression. Further multiple compensative experiments uncovered that CXCL1 and CXCL8 promoted proliferation, invasion, chemoradiation resistance, NF-κB pathway, AKT pathway and PD-L1 expression in U-87 MG and U-251 MG cells, also in pGPH1-AKIP1 (AKIP1 knockdown) transfected U-87 MG and U-251 MG cells; although CXCL2 exhibited similar treads, but its effect was much weaker. Besides, NF-κB pathway inhibitor and AKT pathway inhibitor attenuated the effect of CXCL1&CXCL8 on promoting GBM cell malignant behaviors. Clinically AKIP1 and CXCL1/8 were elevated in GBM compared to LGG tumor samples, and they were inter-correlated. AKIP1 promotes GBM viability, mobility and chemoradiation resistance via regulating CXCL1 and CXCL8 mediated NF-κB and AKT pathways. 相似文献
7.
Marie N M Volmar Jiying Cheng Haitham Alenezi Sven Richter Alisha Haug Zonera Hassan Maria Goldberg Yuping Li Mengzhuo Hou Christel Herold-Mende Cecile L Maire Katrin Lamszus Charlotte Flüh Janka Held-Feindt Gaetano Gargiulo Geoffrey J Topping Franz Schilling Dieter Saur Günter Schneider Michael Synowitz Joel A Schick Roland E Klin Rainer Glass 《Neuro-oncology》2021,23(11):1898
8.
Yanjiao Guo Yiming Zhou Xiaodong Gu Jianbin Xiang 《Journal of gastrointestinal oncology.》2022,13(3):1097
BackgroundWith the advancement of early detection and treatment, the incidence of colon cancer (CC) has declined steadily worldwide; however, the mortality remains unacceptably high. Tripartite motif 52 (TRIM52) is a member of the family of highly conserved RBCC (a RING-finger, two B-boxes, and a predicted alpha-helical Coiled-Coil domain were linked to the N-terminal region in sequence) proteins with more than 70 isoforms, which plays an important role in tumorigenesis through different signaling pathways. How it regulates the development of CC remains unknown.MethodsWestern blot was used to reveal that TRIM52 protein expression is up-regulated in CC cells. The Analysis of The Cancer Genome Atlas (TCGA) database was used to find the different expressions of TRIM52 between colon cancer tissues and normal colonic epithelial tissues. Cell proliferation assays, migration and invasion assays, and apoptosis were used to verify the changes in cell function after knockdown or overexpression of TRIM52 in CC cells. After that, the key proteins of the nuclear factor (NF)-κB signaling pathway were validated by western blot to explore the role of TRIM52 in the NF-κB signaling pathway. Finally, in order to explore the potential sites of TRIM52, LPS and PDTC were employed to activate and block the NF-κB signaling pathway, and the key proteins of the NF-κB signaling pathway were validated by western blot.ResultsTGCA database revealed that TRIM52 expression was elevated in CC tissues and correlated with prognosis. It was verified that TRIM52 promoted the proliferation, migration, and invasion of CC cells, and inhibited cell apoptosis. Most of the tripartite motif proteins (TRIMs) have ubiquitin ligase activity related to their highly conserved RING structure. Detection of the key proteins of the NF-κB signaling pathway in CC cells revealed that TRIM52 activated the NF-κB signaling pathway.ConclusionsWe confirmed that TRIM52 promotes proliferation, migration, and invasion while inhibiting apoptosis of CC cells. The regulatory effect of TRIM52 on CC cells is related to the activation of the NF-κB signaling pathway. As TRIM52 acted as an upstream stimulator, stimulating the transfer of P65 into the nucleus to activate the NF-κB signaling pathway, it may provide a potential target for prognosis prediction and treatment of CC. 相似文献
9.
10.
11.
12.
13.
Dongfang Dai Hongping Zhou Li Yin Fei Ye Xiao Yuan Tao You Xiaohui Zhao Weiguo Long Deqiang Wang Xia He Jifeng Feng Deyu Chen 《Molecular oncology》2022,16(6):1384
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression. 相似文献
14.
15.
16.
Xunhao Xiong Rochelle R. Arvizo Sounik Saha David J. Robertson Scott McMeekin Resham Bhattacharya Priyabrata Mukherjee 《Oncotarget》2014,5(15):6453-6465
Recently we reported that gold nanoparticles (AuNPs) inhibit ovarian tumor growth and metastasis in mice by reversing epithelial-mesenchymal transition (EMT). Since EMT is known to confer drug resistance to cancer cells, we wanted to investigate whether anti-EMT property of AuNP could be utilized to sensitize ovarian cancer cells to cisplatin. Herein, we report that AuNPs prevent cisplatin-induced acquired chemoresistance and stemness in ovarian cancer cells and sensitize them to cisplatin. AuNPs inhibit cisplatin induced EMT, decrease the side population cells and key stem cell markers such as ALDH1, CD44, CD133, Sox2, MDR1 and ABCG2 in ovarian cancer cells. Mechanistically, AuNPs prevent cisplatin-induced activation of Akt and NF-κB signaling axis in ovarian cancer cells that are critical for EMT, stem cell maintenance and drug resistance. In vivo, AuNPs sensitize orthotopically implanted ovarian tumor to a low dose of cisplatin and significantly inhibit tumor growth via facilitated delivery of both AuNP and cisplatin. These findings suggest that by depleting stem cell pools and inhibiting key molecular pathways gold nanoparticles sensitize ovarian cancer cells to cisplatin and may be used in combination to inhibit tumor growth and metastasis in ovarian cancer. 相似文献
17.
Zilu Zhang Chenjing Ye Jia Liu Wenbin Xu Chao Wu Qing Yu Xiaoguang Xu Xinyi Zeng Huizi Jin Yingli Wu Hua Yan 《癌症生物学与医学(英文版)》2022,19(5):651
Objective:Multiple myeloma (MM) remains incurable with high rates of relapse. New therapeutic drugs are therefore urgently needed to improve the prognosis. JaponiconeA (JA), a natural product isolated from Inula japonica Thunb, has shown good anti-MM potential. A comprehensive study should therefore be conducted to identify both the in vitro and in vivo mechanisms of the anti-MM effects of JA.Methods:CCK8 assays and flow cytometry were used to detect the proliferation, apoptosis, and cell cycle of MM cell lines when treated with JA. In vivo experiments were conducted using subcutaneous xenograft mouse models. We also identified possible targets and the mechanism of JA using RNA-seq and c-Map databases, and identified the specific targets of JA in bortezomib-sensitive and -resistant MM cell lines using CETSA, DARTS, and rescue experiments. Furthermore, JA and bortezomib were used separately or together to characterize their possible synergistic effects.Results:In vitro, JA inhibited proliferation, and induced apoptosis and G2/M phase arrest in MM cell lines, and selectively killed primary CD138+ MM cells. In vivo, JA also demonstrated a strong anti-tumor effect with no observable toxicity. In addition, JA showed synergetic effects in combination with bortezomib, and enhanced the anti-tumor effect of bortezomib in bortezomib-resistant cells. CETSA and DARTS confirmed direct binding of JA to NF-κB inhibitor kinase beta (IKKβ), and overexpression of IKKβ or knockdown of IκBα partially rescued the apoptosis induced by JA.Conclusions:JA exhibited strong anti-tumor effects in MM. It sensitized myeloma cells to bortezomib and overcame NF-κB-induced drug resistance by inhibiting IKKβ, providing a new treatment strategy for MM patients. 相似文献
18.
19.
Hyun-Joo Park Su-Ryun Kim Su Seong Kim Hee-Jun Wee Moon-Kyoung Bae Mi Heon Ryu Soo-Kyung Bae 《Oncotarget》2014,5(13):5087-5099
Overexpression of Notch1 has been associated with breast cancer. We recently showed that visfatin stimulates breast cancer cell proliferation and invasion. The present study was undertaken to determine whether Notch1 signaling is affected by visfatin and to characterize the functional role of the visfatin-Notch1 axis in breast cancer. Visfatin and Notch1 were expressed at higher levels in breast tumors than in matched control tissues. Visfatin induced Notch1 expression in MDA-MB-231 breast cancer cell line and in nontransformed MCF10A mammary epithelial cells, whereas visfatin depletion reduced Notch1 mRNA and protein levels. Depletion of Notch1 in MDA-MB-231 cells attenuated cell growth in vitro and in vivo; visfatin depletion produced similar effects, but was less potent. Additionally, Notch1 depletion inhibited cell proliferation induced by visfatin. Analysis of the signaling pathways underlying visfatin-mediated Notch1 upregulation revealed that visfatin activated NF-κB p65. Blockade of NF-κB signaling suppressed the effects of visfatin on Notch1 upregulation and breast cancer cell proliferation. Breast tumors expressing high levels of NF-κB p65 exhibited increased expression of Notch1. Our results demonstrate that the visfatin-Notch1 axis contributes to breast tumor growth through the activation of the NF-κB pathway. Study of the visfatin-Notch1 axis may offer new therapeutic directions for breast cancer. 相似文献
20.
Yun Hee Kang Seung Ro Han Jong-Tae Kim Seon-Jin Lee Young Il Yeom Jeong-Ki Min Chul-Ho Lee Jae Wha Kim Suk Ran Yoon Do-Young Yoon Kwan Soo Hong Geum-Sook Hwang Hee Cheol Kim Young-Ha Lee Hee Gu Lee 《Oncotarget》2014,5(8):2149-2160
Tescalcin (TESC) is an EF-hand calcium binding protein that is differentially expressed in several tissues, however it is not reported that the expression and functional roles of TESC in colorectal cancer. Levels of messenger RNA (mRNA) and protein expression of TESC in colorectal cancer tissues were assessed using RT-PCR, real time PCR, immunohistochemistry, and clinicopathologic analyses. Quantitative analysis of TESC levels in serum specimens was performed using sandwich ELISA. Colorectal cancer cells transfected with TESC small interfering RNA and short hairpin RNA were examined in cell proliferation assays, phospho-MAPK array, and mouse xenograft models. Here we demonstrated that TESC is overexpressed in colorectal cancer (CRC), but was not expressed in normal mucosa and premalignant dysplastic lesions. Furthermore, serum TESC levels were elevated in patients with CRC. Knockdown of TESC inhibited the Akt-dependent NF-κB pathway and decreased cell survival in vitro. Depletion of TESC reduced tumor growth in a CRC xenograft model. Thus, TESC is a potential diagnostic marker and oncotarget in colorectal cancer. 相似文献