首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We wished to determine whether retinal ganglion cells that have axons terminating in the dorsal lateral geniculate and/or the superior colliculus have specific sizes of somata, comprising only part of the entire size range of ganglion cell somata. If so, then perhaps the specific functional types described by Michael might be associated with morphological types based on soma size. HRP was injected into either the superior colliculus (SC) or dorsal lateral geniculate nucleus (LGd) of thirteen-lined ground squirrels. Soma diameter of labeled ganglion cells was measured and the relation between cell size and frequency determined. After SC injections HRP-filled cells were mostly small and medium-sized. They ranged in diameter from 3 to 14 microns and the mean diameter of labeled neurons was 7.35 microns. Cells labeled after SC injections were often distributed as doublets or triplets in the retina. After LGD injections the majority of labeled cells were medium and large-sized. They ranged from 4 to 18 microns in diameter with a mean of 9.1 microns and were more regularly spaced within the retinal region of labeled cells. Thus, the present results provide reason to believe that functional classes of ganglion cells in ground squirrels may be correlated with particular morphological types.  相似文献   

2.
Somatostatin-immunoreactive cells in the adult cat retina   总被引:2,自引:0,他引:2  
Peptides have been found in the retinas of all mammalian species studied to date, but little is known about their localization and function in the cat. Using two mouse monoclonal antibodies directed to somatostatin 14, we have observed two sparse groups of somatostatin-immunoreactive neurons in the cat, both distributed preferentially in the inferior retina. The more numerous cell type is characterized by a small- to medium-sized soma (mean diameter = 16.3 +/- 9.0 microns; n = 186) with sparsely branching, far-reaching varicose processes that ramify mainly in the inner plexiform layer. The majority of these cells are located in the ganglion cell layer, with the remainder in the proximal inner nuclear layer and the inner plexiform layer. They are in especially high density at the retinal margin. In morphology and soma size, these cells resemble wide-field amacrine cells. The second cell type has a large, granular-staining soma (mean diameter = 29.7 +/- 14.8 microns; n = 145) with poorly stained primary processes and is found only in the ganglion cell layer. Cells of this type are most similar in their size and morphology to alpha ganglion cells. In contrast to the location of somatostatin-immunoreactive somata, a dense meshwork of immunoreactive processes was observed at all eccentricities within the inner plexiform layer, adjacent to the inner nuclear layer and to the ganglion cell layer. Labeled processes arising from the inner plexiform layer were also occasionally detected in the outer plexiform layer and the nerve fiber layer. Additional processes of unknown origin were observed in the nerve fiber layer and the optic nerve head. The extensive distribution of immunoreactive processes suggests that somatostatin-immunoreactive somata located preferentially in the inferior half of the retina have a widespread influence on neural activity.  相似文献   

3.
The ganglion cell dendrites of the rat retina were investigated by means of the strongly fluorescent, non-polar carbocyanine dye 1,1-dioctadecyl-3,3,3',3'-tetramethyl-indocarbodyanine perchlorate (diI or diI-C18-3 or D282) which was taken up by retinofugal axons and transported in the retrograde direction. The dye completely outlined the somata, the axons and the dendritic trees of several retinal ganglion cells and allowed qualitative and quantitative investigations. By means of this labeling technique, the diameters were determined in 272 dendrites and somata of various ganglion cell sizes. A comparison of the measurements with those reported in the literature revealed that the diI could be taken up by all classes of retinal ganglion cells. The most frequently labeled cells were those of class II, which have small to middle-sized perikarya (16.7 +/- 2.5 microns in diameter) and small to middle-sized dendritic trees (187 +/- 70 microns in diameter) with a high branching frequency (88 +/- 19 branching points). Retinal ganglion cells of class I were less frequent and have large perikarya (21.9 +/- 3.4 microns in diameter) with large dendritic trees (318 +/- 55 microns in diameter) and medium branching frequency (60 +/- 19 branching points). Class III cells which were described incompletely in the literature, appeared to be small to middle-sized in their perikaryal diameter (15.9 +/- 2.5 microns) but have large dendritic trees (299 +/- 63 microns in diameter) and a low branching frequency (40 +/- 10 branching points). In about 10% of the retinal ganglion cells with completely filled dendritic fields, the somata were situated outside the dendritic extensions, as viewed on the whole mounted retina. These "asymmetric" retinal ganglion cells appeared to belong to class II cells and were evenly distributed throughout the entire retina and were not related to neighboring blood vessels. The orientation of the asymmetric dendrites was random in relation to the optic disc. The axons of asymmetric retinal ganglion cells were almost always oriented opposite to the direction of the dendritic trees. If the dendrites extended towards the optic disc, the proximal parts of the corresponding axons were oriented towards the periphery of the retina, turning then at 180 degrees to the optic disc. Less than 1.5% of the retrogradely filled cells were displaced ganglion cells and extended dendritic trees within the deep inner plexiform larger.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
NADPH-diaphorase-positive neurons have been demonstrated in the inner nuclear layer and ganglion cell layer of the retina of different mammalian species, but so far no experiments have been conducted to identify whether these cells are amacrine cells and/or retinal ganglion cells. We attempted to solve this problem by studying the NADPH-diaphorase-positive neurons in the hamster retina. From the NADPH-diaphorase histochemical reaction, two distinct types of neurons in the hamster retina were identified. They were named ND(g) and ND(i) cells. The ND(g) cells were cells with larger somata, ranging from 10 to 21 μm in diameter with a mean of 15.58 μm (S.D.= 2.59). They were found in the ganglion cell layer only. The ND(i) cells were smaller, with the somata ranging from 7 to 11 μm and having the mean diameter of 8.77 μm (S.D. = 1.24). Most of the ND(i) cells were found in the inner nuclear layer, and only very few could be observed in the inner plexiform layer. On average, there were 8,033 ND(g) and 5,051 ND(i) cells in the ganglion cell layer and inner nuclear layer, respectively. Two experiments were performed to clarify whether any of the NADPH-diaphorase neurons were retinal ganglion cells. Following unilateral optic nerve section, which leads to the retrograde degeneration of retinal ganglion cells, the numbers of both ND(g) and ND(i) cells did not change significantly for up to 4 months. In addition, when retinal ganglion cells were prelabeled retrogradely (horseradish peroxidase of flurescent microspheres) and retinas were then stained for NADPH diaphorase, no double-labeled neurons were detected. These results indicated that the NADPH-diaphorase neurons in the hamster retina were the amacrine cells in the inner nuclear layer and displaced amacrine cells in the ganglion cell layer. Dendrites of the ND(g) and ND(i) cells were found to stratify in sublaminae 1, 3, and 5 of the inner plexiform layer, with a prominent staining in the sublamina 5. The possible importance of this arrangement in the rod pathway is also discussed. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Substance P-like immunoreactive (SP-LI) neurons were identified within the inner nuclear layer and ganglion cell layer of the chick retina. The SP-LI cells in the inner nuclear layer consisted of several subtypes of neurons, differing in soma size and dendritic arborization. In the ganglion cell layer a population of moderately labelled SP-LI neurons was also present. About 6-9 microns in diameter and spaced 50-80 microns apart, they formed a regular array across the entire retina, with a density of about 400 cells/mm2 in the superior temporal retina, declining to less than 100 cells/mm2 in the peripheral retina. The total number of SP-LI cells in the ganglion cell layer was approximately 75,000. Individual axons could be followed toward the optic nerve head. Lesions near the optic nerve head resulted in axotomy of ganglion cells within a limited portion of the retina. Two days of postaxotomy there were numerous SP-LI swellings in the proximal segments of axotomized axons. SP-LI neurons in the axotomized zone were larger, more numerous, and showed increased staining of their processes. Fourteen days following a retinal lesion, there was depletion of all SP-LI cells in the ganglion cell layer within the axotomized zone, but the SP-LI neurons in the inner nuclear layer were not noticeably affected. Following a localized injection of rhodamine-coupled latex beads into the optic tectum, a population of retinal ganglion cells (RGCs) in the contralateral retina was retrogradely labelled. Many of these cells also exhibited SP-like immunoreactivity. Examination of the optic tectum indicated the presence of SP-LI fibres in laminae 2-13 (nomenclature of Cajal: Histologie du Systeme Nerveux. Vol. 2. Paris: Maloine, '11), with immunoreactive terminal regions present mainly in laminae 2-4, 7, and 9-13. SP-LI cell bodies were found predominantly in laminae 10-12 and 13. Fourteen days following a retinal lesion, SP-LI processes and terminals were depleted from laminae 2 and 3. Immunoreactive cells and processes in the remaining laminae of the optic tectum were not noticeably altered. The present report confirms the existence of SP-LI retinal ganglion cells in the chick retina and demonstrates their contribution to lamina specific SP-LI arborization in the optic tectum.  相似文献   

6.
Distribution and morphology of retinal ganglion cells in the Japanese quail   总被引:6,自引:0,他引:6  
A ganglion cell density map was produced from the Nissl-stained retinal whole mount of the Japanese quail. Ganglion cell density diminished nearly concentrically from the central area toward the retinal periphery. The mean soma area of ganglion cells in isodensity zones increased as the cell density decreased. The histograms of soma areas in each zone indicated that a population of small-sized ganglion cells persists into the peripheral retina. The total number of ganglion cells was estimated at about 2.0 million. Electron microscopic examination of the optic nerve revealed thin unmyelinated axons to comprise 69% of the total fiber count (about 2.0 million). Since there was no discrepancy between both the total numbers of neurons in the ganglion cell layer and optic nerve fibers, it is inferred that displaced amacrine cells are few, if any. The spectrum in optic nerve fiber diameter showed a unimodal skewed distribution quite similar to the histogram of soma areas of ganglion cells in the whole retina. This suggests a close correlation between soma areas and axon diameters. Retinal ganglion cells filled from the optic nerve with horseradish peroxidase were classified into 7 types according to such morphological characteristics as size, shape and location of the soma, as well as dendritic arborization pattern. Taking into account areal ranges of somata of each cell type, it can be assumed that most of the ganglion cells in the whole retinal ganglion cell layer are composed of type I, II and III cells, and that the population of uniformly small-sized ganglion cells corresponds to type I cells and is an origin of unmyelinated axons in the optic nerve.  相似文献   

7.
We have examined the soma diameters and distribution of catecholaminergic (CA) cells in human retinae, by using an antibody to tyrosine hydroxylase (TH), the rate limiting enzyme in the production of catecholamines. TH-immunoreactivity was detected in two classes of cells (CA1 and CA2 cells). CA1 cells had relatively large somata (mean diameter 14 microns) located in either the inner nuclear layer (INL) or in the ganglion cell layer and extensive dendrites spreading into the other strata of the inner plexiform layer (IPL). CA2 cells had smaller, weakly labelled somata (mean diameter 9.6 microns) located principally in the inner regions of the INL and weakly labelled dendrites extending into the IPL. The mean density of CA2 cells in the far retinal periphery was approximately 38/mm2. The number of CA1 cells averaged approximately 15,600 per retina, with a mean density of 16/mm2. The density distribution of CA1 cells closely paralleled the distribution of ganglion cells, their density peaking at the foveal rim, with an area of relatively high density extending horizontally from the macula region toward the nasal margin (along the visual streak). A distinctive gradient was detected among the soma diameters of CA1 cells: they were largest in the mid-periphery, in a visual streak-like configuration around the optic disk. This gradient of soma size among CA cells closely corresponds to the density distribution of the rod photoreceptors in human retinae.  相似文献   

8.
Somatostatin (SRIF) is a neuroactive peptide that is distributed throughout the nervous system, including the retina. This peptide has been localized to populations of amacrine cells in a variety of vertebrate species. In the rabbit retina, SRIF immunoreactivity is present in a sparse population of medium to large neurons (13.72 μm in diameter, or 147.84 μ2) in the ganglion cell layer and in a small number of neurons in the inner nuclear layer. These cells display a preferential distribution to the inferior retina, with the highest density near the ventral and ventrolateral retinal margins (11.33 cells/mm2). SRIF-immunoreactive cells have two to five primary processes that arborize in the proximal inner plexiform layer (IPL). These give rise to a plexus of finer processes in the distal IPL. Occasional immunoreactive processes are also present in the outer plexiform layer. In the IPL, these laminar networks are present in all retinal regions. In addition, SRIF-immunoreactive cells often have a fine-caliber axonlike process that eminates from the soma or perisomal region. These processes travel for great distances across the retina in either the nerve fiber layer or in the distal IPL but are never seen to enter the optic nerve head. In addition, the number of SRIF-immunoreactive somata remains unchanged following transection of the optic nerve. Taken together, these data indicate that SRIF-immunoreactive neurons of the rabbit retina are displaced amacrine cells. Furthermore, the sparse distribution of SRIF-immunoreactive somata, the wide-ranging, asymmetric arborization of their cellular processes, and previous pharmacological studies suggest that these neurons mediate a broad modulatory role in retinal function. © 1996 Wiley-Liss, Inc.  相似文献   

9.
During the early postnatal period in the hamster, the retinal ganglion cell layer grows, establishes its central connections, and undergoes substantial cell loss. In this study, we describe the development of the retinal ganglion cell layer with particular attention to the creation of local specializations in cell density. Changes in the number and spatial distribution of cells identified by a single 3H thymidine injection were examined through the period of maximal cell loss (postnatal days 4-10) and at adulthood. The cells of the retinal ganglion cell layer are generated from embryonic day 10 to postnatal day 3. Overall, cell number in the ganglion cell layer increases by approximately 108,000 cells (223%) from postnatal day 1 to 5, because of continued migration of cells generated prenatally. Cell number decreases from postnatal day 5 to 10 (25%), coincident with the presence of degenerating cells. Cell type is correlated with day of generation: the largest cells, all having retinal ganglion cell morphology, are generated on embryonic days 10 and 11; intermediate-sized cells predominantly of ganglion cell morphology on embryonic day 12; and smaller cells of displaced amacrine or glial cell morphology thereafter. At adulthood, the hamster retina shows a streaklike elevation of cell density through central retina. However, at the time of maximal cell number (postnatal day 5), cell density is uniform across the retina. During the period of cell degeneration, cells are lost in greater relative numbers from the retinal periphery. This cell loss occurs principally from the first-generated cells (embryonic days 10 and 11), as shown by both changes in the distribution of labeled cells and by the spatial pattern of labeled degenerating cells. From postnatal day 10 to adulthood, relative cell density continues to decline in the periphery of the retina, thus suggesting that differential growth completes the production of the adult cell density distribution.  相似文献   

10.
The morphological types of ganglion cells in the dog and wolf retina were studied by intracellular staining with Lucifer Yellow. These retinae contain a range of ganglion cell types that closely correspond to those found in cat retina: alpha cells with large somata and large, relatively densely branched dendritic trees; beta cells with medium-sized somata and small, densely branched dendritic trees; and a variety of other types with smaller somata and varying dendritic branching patterns and dendritic field sizes. The correspondence of canine and cat ganglion cell types strengthens the view that there is a common set of ganglion cell types in carnivores. Alpha and beta cell dendritic trees of dog and wolf are monostratified in either the inner or the outer part of the inner plexiform layer, suggesting an on/off dichotomy in the response to light. Dendritic field sizes of dog alpha and beta cells increase from the central area to peripheral retina: alpha cell fields from 160-200 microns to about 1,100 microns diameter, and beta cell fields from 25 microns to about 360 microns diameter. These sizes are quantitatively very similar to those found in cat retina. The close qualitative and quantitative morphological correspondence of cat and dog ganglion cells suggests that they are also functionally very similar. It is likely that dog alpha cells have brisk-transient (Y), and dog beta cells brisk-sustained (X) concentric receptive fields. From the smallest beta cell sizes it is concluded that the visual acuity of the dog may be as good as that of the cat.  相似文献   

11.
Immunocytochemical studies with gamma-aminobutyric acid (GABA) antibodies and glutamic acid decarboxylase antibodies have shown that the primate retina contains GABAergic amacrine, interplexiform, and displaced amacrine cells. In addition, subpopulations of photoreceptors and horizontal cells have also been suggested to be GABAergic in this retina. In the present study, we have used in situ hybridization to localize GABAergic neurons in human and monkey retinas. In situ hybridizations were carried out with 35S-labeled DNA and RNA probes derived from human and cat glutamic acid decarboxylase cDNA clones. In the monkey retina, labeled cells were present in the inner nuclear and ganglion cells layers. The outer nuclear layer or the inner segment layer had only background levels of labeling. In the inner nuclear layer, all labeled somata were located in the vitread-half bordering the inner nuclear layer/inner plexiform layer boundary. These cells constituted approximately 83% of all labeled cells. Labeled cells were also seen in the ganglion cell layer. In the human retina, labeled somata were observed only in the inner nuclear and the ganglion cell layers. In the inner nuclear layer, the majority of labeled cells were located close to the inner nuclear layer/inner plexiform layer boundary although a minor population of labeled somata (approximately 20%) were found deeper in the inner nuclear layer. The distribution of glutamic acid decarboxylase mRNA-containing cells we observed is in good agreement with the known location of GABAergic neurons. We, however, did not find glutamic acid decarboxylase mRNA in either horizontal cells or photoreceptors in monkey and human retina.  相似文献   

12.
Cobaltous-lysine applied to the goldfish optic nerve backfilled retinal ganglion cells and their axons. Confined to the ventronasal and ventrotemporal retina was a small population of retinal ganglion cells whose axons traveled dorsally and parallel to the retinal margin. On reaching the boundary between dorsal and ventral retina, the axons arched, joined radially oriented bundles of axons, and traveled toward the optic disk. Control studies showed that the axons came from retinal ganglion cells rather than from retinopetal cells. The somatic area of retinal ganglion cells (RGCs) with circumferential axons was 30-50 microns, and was similar to that of average ganglion cells. The axons of these cells coursed between the optic fiber and ganglion cell layers or between the ganglion cell and inner plexiform layers. Many somata were displaced slightly toward the inner plexiform layer, but were not really displaced ganglion cells. The aberrant axonal trajectory may be related to the slightly displaced location of the cell. However, ganglion cells that are displaced to the edge of the inner nuclear layer usually have radially coursing axons. We digitized the coordinates of the bending points and the dorsoventral retinal boundary. On average, the bending points occurred within 100 microns of the dorsoventral retinal border. These findings suggest that some molecular, rather than mechanical, factor at the dorsoventral retinal boundary alters the course of the circumferential axons. Furthermore, because there are cells with circumferential axons throughout the ventral retina, the data imply that at least ventral RGC axons avoid mingling with the axons from dorsal RGCs.  相似文献   

13.
Axon-bearing amacrine cells of the macaque monkey retina   总被引:2,自引:0,他引:2  
A new and remarkable type of amacrine cell has been identified in the primate retina. Application of the vital dye acridine orange to macaque retinas maintained in vitro produced a stable fluorescence in the somata of apparently all retinal neurons in both the inner nuclear and ganglion cell layers. Large somata (approximately 15-20 microns diam) were also consistently observed in the approximate center of the inner plexiform layer (IPL). Intracellular injections of horseradish peroxidase (HRP) made under direct microscopic control showed that the cells in the middle of the IPL constitute a single, morphologically distinct amacrine cell subpopulation. An unusual and characteristic feature of this cell type is the presence of multiple axons that arise from the dendritic tree and project beyond it to form a second, morphologically distinct arborization within the IPL; these cells have thus been referred to as axon-bearing amacrine cells. The dendritic tree of the axon-bearing amacrine cell is highly branched (approximately 40-50 terminal dendrites) and broadly stratified, spanning the central 50% of the IPL so that the soma is situated between the outermost and innermost branches. Dendritic field size increases from approximately 200 microns in diameter within 2 mm of the fovea to approximately 500 microns in the retinal periphery. HRP injections of groups of neighboring cells revealed a regular intercell spacing (approximately 200-300 microns in the retinal periphery), suggesting that dendritic territories uniformly cover the retina. One to four axons originate from the proximal dendrites as thin (less than 0.5 microns), smooth processes. The axons increase in diameter (approximately 1-2 microns) as they course beyond the dendritic field and bifurcate once or twice into secondary branches. These branches give rise to a number of thin, bouton-bearing collaterals that extend radially from the dendritic tree for 1-3 mm without much further branching. The result is a sparsely branched and widely spreading axonal tree that concentrically surrounds the smaller, more highly branched dendritic tree. The axonal tree is narrowly stratified over the central 10-20% of the IPL; it is approximately ten times the diameter of the dendritic tree, resulting in a 100 times greater coverage factor. The clear division of an amacrine cell's processes into distinct dendritic and axonal components has recently been observed in other, morphologically distinct amacrine cell types of the cat and monkey retina and therefore represents a property common to a number of functionally distinct cell types. It is hypothesized that the axon-bearing amacrine cells, like classical neurons,  相似文献   

14.
In a previous study we observed massive retinal ganglion cell death in adult Rana pipiens after periods of optic nerve regeneration, and reported that large numbers of the surviving cells had become displaced bodily into the inner plexiform layer of the affected eye (Scalia et al.: Brain Research 344:267-280, 1985). The outwardly displaced cells could be identified as retinal ganglion cells because they could be back-filled with horseradish peroxidase (HRP) injected into the regenerated optic nerve. Quantitative observations on the abnormal outward displacement of ganglion cells are reported here. Parallel observations on normally displaced ganglion cells (cells of Dogiel) are also reported to clarify the distinctions between these two classes of cells. For the present work, injections of HRP of varying size were placed in the optic tectum bilaterally in 3 normal frogs and 9 frogs sustaining unilateral optic nerve regeneration. Most injections were centered at loci mapping the middle region of the nasal retina. The retinas were examined as flat-mounts and in-section. In 8 other frogs sustaining optic nerve regeneration, the HRP was administered bilaterally directly to the optic nerves in the orbit. Ganglion cells were labeled by retrograde transport of the HRP in the retinal ganglion cell layer in both the normal and affected eyes in areas topographically isomorphic with the tectal areas subtended by the injections. In the normal eyes, the orthotopic ganglion cells formed a strict monolayer, and virtually no cells existed in the inner plexiform layer. In the retinas sustaining optic nerve regeneration, the retinal ganglion cells abnormally displaced into the inner plexiform layer were also labeled topographically in correspondence with the injection sites. The abnormally displaced cells comprised 5.5% of the total population of surviving neurons in the retinal ganglion cell and inner plexiform layers. The mean outward dislocation of the displaced cells, as measured in one frog surviving optic nerve crush for 8 weeks, was 69.9 +/- 2.4% of the distance across the inner plexiform layer, which itself was uniformly 14.3 +/- 0.39 microns thick. Cells of Dogiel, which were embedded within the inner nuclear layer, were also labeled when the injections of HRP spread to include the area of representation of the optic disc. The labeled cells were restricted to a dorsal, peripapillary locus capping the optic disc. Therefore, some cells of Dogiel project to the tectum normally, but only from the central retina.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
During neuronal development neurites are likely to be specifically guided to their targets. Within the chicken retina, ganglion cell axons are extended exclusively into the optic fibre layer, but not into the outer retina. We investigated, whether radial glial cells having endfeet at the optic fibre layer and somata in the outer retina, might be involved in neurite guidance. In order to analyse distinct cell surface areas, endfeet and somata of these glial cells were purified. Glial endfeet were isolated from flat mounted retina by a specific detachment procedure. Glial somata were purified by negative selection using a monoclonal antibody/complement mediated cytolysis of all non-glial cells. Retinal tissue strips were explanted either onto pure glial endfeet or onto glial somata. As revealed by scanning and fluorescence microscopy, essentially no ganglion cell axons were evident on glial somata, whereas axonal outgrowth was abundant on glial endfeet. However, when glial somata were heat treated and employed thereafter as the substratum, axon extension was significantly increased. Time-lapse video recording studies indicated that purified cell membranes of glial somata but not of endfeet induced collapse of growth cones. Collapsing activity was destroyed by heat treatment of glial membranes. The collapsing activity of retinal glia was found to be specific for retinal ganglion cell neurites, because growth cones from dorsal root ganglia remained unaffected. Employing four different kinase inhibitors revealed that the investigated protein kinase types were unlikely to be involved in the collapse reaction. The data show for the first time that radial glial cells are functionally polarized having permissive endfeet and inhibitory somata with regard to outgrowing axons. This finding underscores the pivotal role of radial glia in structuring developing nervous systems.  相似文献   

16.
Monoamine-accumulating ganglion cell type of the cat's retina   总被引:2,自引:0,他引:2  
A monoamine-accumulating ganglion cell type has been identified in an in vitro preparation of the cat's retina by a catecholamine-like fluorescence that appears following intravitreal injections of dopamine and the indoleaminergic transmitter analog, 5,7-dihydroxytryptamine (5,7-DHT). A subpopulation of large, weakly fluorescing neurons were identified as composing a single, morphologically distinct ganglion cell type by intracellular injections of horseradish peroxidase (HRP). In a sample of 374 HRP-filled cells soma diameter ranged from 13-21 microns (mean +/- SD = 16.6 +/- 1.3). Dendritic field size increased with increasing retinal eccentricity from 150-200 microns diameter at 0.5 mm from the area centralis to 600-800 microns diameter in the far retinal periphery. Dendrites are thin (approximately 1 micron diameter), show a characteristic branching pattern, and are narrowly stratified at the outer border of the inner plexiform layer. The monoamine-accumulating ganglion cell and the outer (OFF-center) alpha cell occupy distinct strata within sublamina a of the inner plexiform layer separated by a gap of about 5 microns. The total number of monoamine-accumulating (MA) ganglion cells was estimated at 5,400, about 3.5% of the total ganglion cell population. Spatial density of the MA ganglion cells, calculated from cell counts made in vitro, ranges from 60 cells/mm2 near the area centralis to 5 cells/mm2 in the far retinal periphery. A coverage factor (density x dendritic field area) of 2.2 was maintained from central to peripheral retina. The nature of the dendritic overlap was observed directly by making HRP injections into several neighboring ganglion cells. Five to seven neighboring dendritic trees extensively overlapped a given cell's dendritic field. However the dendritic processes did not intersect randomly but tended to interdigitate such that a uniform interdendritic spacing and density of dendritic processes was constructed locally within the dendritic plexus. Rotation of individual dendritic trees from their normal orientation produced a dramatic 4-5-fold increase in the number of dendritic intersections, suggesting that an active, local mechanism operates in the precise placement of individual dendrites within the plexus. The monoamine-accumulating ganglion cell appears morphologically equivalent to the delta ganglion cell (Boycott and W?ssle; J. Physiol. (Lond.) 240:397-419, '74; Kolb et al.; Vision Res. 21:1081-1114, '81) and to the recently recognized indoleamine-accumulating ganglion cell (W?ssle et al: J. Neurosci. 7:1574-1585, '87).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Antiserum directed against neuropeptide Y selectively labeled certain amacrine cells in the turtle retina. The cell types, sizes, dendritic stratification, regional distribution, and degrees of immunolabeling were examined. The results indicated that three morphologically distinct cell types were labeled: types A, B, and C. Computer rotation of digitized data from camera lucida drawings was used to study dendritic stratification. The type A somata were large (11.5 micron in diameter), well-stained, and located in the third tier of the inner nuclear layer. Type A somata gave rise to well-stained processes which arborized within the inner plexiform layer in strata 1 and 3 and at the border between strata 4 and 5. Processes in stratum 1 were sparse and delicate with small boutons. Processes in stratum 3 were numerous and often coarse, with many large and small boutons. At the border between strata 4 and 5 the processes were frequently numerous but slender, with many small boutons. Occasional immunolabeled processes were found in the ganglion cell layer. The somata of the type B cells were smaller (9.0 micron in diameter) and gave rise to single labeled processes which descended into the inner plexiform layer and divided quickly into two secondary processes. These secondary processes gave rise to lightly labeled dendritic fields which arborized primarily in strata 2 and 4. The type C cells were usually observed at the periphery of the retina and had large somata (12.0 micron in diameter) with simple, but very elongated, dendritic arborizations in strata 1, 4, and 5. Observations also showed that type A and B cells were often found in close proximity to each other and suggested that dendrites of these cells made contact with each other. The labeled neurons were distributed relatively evenly throughout the retina except for the visual streak where they were sparse. This study indicates that neuropeptide Y-like immunoreactivity is found in more than one anatomically distinct class of amacrine cells in the turtle retina.  相似文献   

18.
Distribution patterns of ganglion cells in the retina were examined in Nissl-stained retinal whole mounts of Sebastiscus and Navodon. The existence of area centralis in the temporal retina in both species suggests binocular vision. In Navodon, another high density area was found in the nasal retina, and a dense band of ganglion cells was observed along the horizontal axis between the two high-density areas. There is an obvious trend for the ganglion cell size to increase as the density decreases. The total number of ganglion cells was estimated to be about 45 × 104 in Sebastiscus and 87 × 104 in Navodon, whereas the total number of optic nerve fibers was about 35 × 104 and 70 × 104, respectively. The retinal ganglion cells labeled with HRP were classified into six types according to such morphological characteristics as size, shape, and location of the soma as well as dendritic arborization pattern. Type I cells have a small round or oval soma in the ganglion cell layer and a small dendritic field in the inner plexiform layer. Type II cells are similar to type I cells, but the dendrites arborize more closely to the ganglion cell layer in the innermost region of the inner plexiform layer. Type III cells have a medium-sized round soma in the ganglion cell layer, and the dendrites extend in an extremely wide area in the inner plexiform layer with few branches. Type IV cells have a large soma which is located in the ganglion cell layer. Dendrites emanate from the soma in all directions, branching out several times within a rather small region in the innermost part of the inner plexiform layer. Type V cells have large somata of various shapes, usually dislocated to the inner plexiform or granular layer. The dendrites extend in every direction and occupy an extremely large area in the inner plexiform layer. Type VI cells have the largest somata, which are also dislocated to the inner plexiform or granular layer. Type VI cells have a characteristic triangular or fan-shaped dendritic field. Soma size and the axon diameter are intimately linked, that is, small somata of type I and II cells give off thin axons, and large somata of type V and VI give off thick axons. Medium-sized somata of type III cells or large somata of type IV cells, which have rather small dendritic fields, give off medium-sized axons. The histograms of the soma areas in the whole retina are quite similar to the histograms of the diameters of the optic nerve fibers.  相似文献   

19.
A subpopulation of retinal ganglion cells projecting to the pigeon ventral lateral geniculate nucleus was shown to contain cholecystokinin-like immunoreactivity. These ganglion cells were mainly distributed in the peripheral retina, and their somata sizes were medium to large (14-23 microns). Taken together with previous findings, these results indicate that the retinal input to the ventral geniculate is chemically heterogeneous.  相似文献   

20.
Goldfish retinal ganglion cells were filled with horseradish peroxidase and studied in flatmounts. Two regular mosaics of large neurons with many of the properties of mammalian alpha ganglion cells were found, differing from each other in spacing, size, and dendritic stratification. The existence of biplexiform ganglion cells with additional dendrites in the outer plexiform layer was also confirmed. One of the two alpha-like mosaics consisted of giant ganglion cells with thick primary dendrites and large, sparsely branched dendritic trees in the outer sublamina of the inner plexiform layer (IPL). In fish 55-65 mm long, about 300 formed a tessellated array across each retina. Their somata (mean area 277 +/- 6 microns 2) were displaced to varying degrees into the IPL, neighbours in the mosaic often occupying different levels. Their dendrites ramified in one stratum near the inner nuclear layer, at a mean depth of 70.8 +/- 0.5% of the IPL. The other alpha-like mosaic comprised about 900 large ganglion cells, with slightly smaller somata (mean area 193 +/- 4 microns 2) in the ganglion cell layer. Most of their dendrites lay in a narrow stratum at 41.9 +/- 0.5% of the depth of the IPL. However, deviations (usually into more vitread strata) were common, which was not true for similar cells in the distantly related cichlid fish Oreochromis. Measurements of nearest neighbour distance (NND) for 4 outer and 4 inner mosaics showed that they were at least as regular as the alpha cell mosaics of mammals: the ratio of the mean NND to the standard deviation ranged from 4.03 for the least regular outer mosaic to 6.47 for the most regular inner mosaic. The wide phylogenetic distribution of these paired, regular mosaics points to a fundamental role in vision. The presence of some variability in dendritic stratification even within the exceptionally regular inner-stratified mosaic suggests that classifications based entirely on the detailed morphology of individual neurons may not always correlate well with their primary functional roles. Where possible, neuronal morphology and spatial distribution should be studied together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号