首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tricyclic antidepressant, doxepin, is formulated as an irrational mixture of E (trans) and Z (cis) stereoisomers (85%: 15%). We examined the stereoselective metabolism of doxepin in vitro, with the use of human liver microsomes, recombinant CYP2D6 and gas chromatography-mass spectrometry. In human liver microsomes over the concentration range 5-1500 microM, the rate of Z-doxepin N-demethylation exceeded that of E-doxepin above 100 microM in two of three livers. Eadie-Hofstee plots were curvilinear indicating the involvement of several enzymes in N-demethylation. Coincubation of doxepin with 7,8-naphthoflavone and ketoconazole reduced the rates of N-demethylation of E- and Z-doxepin by 30-50% and 40-60%, respectively, suggesting the involvement of CYP1A and CYP3A4, whilst quinidine had little effect on N-demethylation. In contrast, doxepin hydroxylation was exclusively stereo-specific; E-doxepin and E-N-desmethyldoxepin were hydroxylated with high affinity in liver microsomes and by recombinant CYP2D6 (Km in the range of 5-8 microM), but there was no evidence of Z-doxepin hydroxylation. In 'metabolic consumption' experiments with liver microsomes (having measurable CYP2D6 activity) and initial substrate concentration of 1 microM, the consumption of E-doxepin was greater (P < 0.05, n = 5) than that of Z-doxepin. Quinidine inhibited the consumption of E-doxepin but did not affect the consumption of Z-doxepin. With N-desmethyldoxepin, quinidine inhibited the consumption of E-N-desmethyl-doxepin whereas Z-N-desmethyldoxepin appeared to be a terminal oxidative metabolite. In summary, CYP2D6 is a major oxidative enzyme in doxepin metabolism; predominantly catalysing hydroxylation with an exclusive preference for the E-isomers. The relatively more rapid metabolism of E-isomeric forms, and the limited metabolic pathways for the Z-isomers may explain the apparent enrichment of Z-N-desmethyldoxepin that is observed in vivo.  相似文献   

2.
CYP2C19 polymorphism effect on phenobarbitone   总被引:6,自引:0,他引:6  
OBJECTIVE: The aim of this study was to clarify the effect of genetic polymorphisms of CYP2C19 on the pharmacokinetics of phenobarbitone (PB) using a nonlinear mixed-effects model (NONMEM) analysis in Japanese adults with epilepsy. METHODS: A total of 144 serum PB concentrations were obtained from 74 subjects treated with both PB and phenytoin but without valproic acid. All patients were classified into three groups by CYP2C19 genotyping: G1, G2 and G3 were homozygous for the wild type of CYP2C19 (*1/*1), heterozygous extensive metabolizers (EMs), (*1/*2 or *1/*3), and poor metabolizers (PMs), (*2/*2, *2/*3), respectively. All data were analyzed using NONMEM to estimate pharmacokinetic parameters of PB with respect to the CYP2C19 genotype. RESULTS: Thirty-three patients belonged to G1 (44.6%), 35 to G2 (47.3%), and 6 to G3 (8.1%). The total clearance (CL) of PB significantly decreased by 18.8% in PMs (G3) relative to EMs (G1 and G2). The CL tended to be lower in G2 than in G1. CONCLUSION: In this study, we first demonstrated the effect of the CYP2C19 polymorphism on pharmacokinetics of PB by genotyping. The contribution of other metabolic enzymes in the metabolism of PB in humans remains to be elucidated; however, it appears that the disposition of PB is mediated in part by this enzyme. The estimated population clearance values in the three genotype groups can be used to predict the PB dose required to achieve an appropriate serum concentration in an individual patient.  相似文献   

3.
Little is known about the impact of cytochrome P450 polymorphisms on the metabolism of trimipramine, which is still widely used as antidepressant due to its positive effect on sleep patterns. A single oral dose of 75 mg trimipramine was given to 42 healthy volunteers selected according to their CYP2D6, CYP2C19, and CYP2C9 genotypes. The reference group included 8 subjects with homozygous active wild-type genotypes of all 3 enzymes (EM). This group was compared with 7 intermediate (IM) with 1 and 7 poor metabolizers (PM) with zero active alleles of CYP2D6 and CYP2C19, respectively, and with 4 subjects with the genotype CYP2C9*3/*3. Pharmacokinetics of trimipramine and its demethylated metabolite strongly depended on the CYP2D6 genotype. Median oral clearance of trimipramine was 276 L/h (range 180-444) in the reference group but only 36 L/h (range 24-48) in CYP2D6 PMs (P < 0.001). These differences could only be explained by an effect of CYP genotypes on both parameters, systemic clearance and bioavailability, the latter being at least 3-fold higher in CYP2D6 PMs than in the reference group. The desmethyltrimipramine area under the concentration-time curve was 40-fold greater in CYP2D6 PMs than in the reference group (1.7 vs. 0.04 mg/L x h in EMs), but below the quantification limit in most carriers of deficiencies of CYP2C19 or CYP2C9. This indicates that both CYP2C enzymes contribute to the demethylation of desmethyltrimipramine and CYP2D6 to further metabolism.  相似文献   

4.

AIMS

This open-label, two-period, randomized, crossover study was designed to determine the effect of CYP2C19 reduced function variants on exposure to active metabolites of, and platelet response to, prasugrel and clopidogrel.

METHODS

Ninety healthy Chinese subjects, stratified by CYP2C19 phenotype, were randomly assigned to treatment with prasugrel 10 mg or clopidogrel 75 mg for 10 days followed by 14 day washout and 10 day treatment with the other drug. Eighty-three subjects completed both treatment periods. Blood samples were collected at specified time points for measurement of each drug''s active metabolite (Pras-AM and Clop-AM) concentrations and determination of inhibition of platelet aggregation (IPA) by light transmittance aggregometry. CYP2C19 genotypes were classified into three predicted phenotype groups: rapid metabolizers [RMs (*1/*1)], heterozygous or intermediate metabolizers [IMs (*1/*2, *1/*3)] and poor metabolizers [PMs (*2/*2, *2/*3)].

RESULTS

Pras-AM exposure was similar in IMs and RMs (90% CI 0.85, 1.03) and slightly lower in PMs than IMs (90% CI 0.74, 0.99), whereas Clop-AM exposure was significantly lower in IMs compared with RMs (90% CI 0.62, 0.83), and in PMs compared with IMs (90% CI 0.53, 0.82). IPA was more consistent among RMs, IMs and PMs in prasugrel treated subjects (80.2%, 84.2% and 80.2%, respectively) than in clopidogrel treated subjects (59.7%, 56.2% and 36.8%, respectively; P < 0.001).

CONCLUSIONS

Prasugrel demonstrated higher active metabolite exposure and more consistent pharmacodynamic response across all three predicted phenotype groups compared with clopidogrel, confirming observations from previous research that CYP2C19 phenotype plays an important role in variability of response to clopidogrel, but has no impact on response to prasugrel.  相似文献   

5.
AIMS: The aim of the present study was to investigate if subjects with one normal and one non-functional CYP2C19 allele (intermediate metabolizers; IMs) metabolized carisoprodol differently than individuals with two normal CYP2C19 alleles (extensive metabolizers; EMs) We also wanted to investigate whether the use of oral contraceptives influences the metabolism of carisoprodol in EMs and IMs. Impairing effects on psychomotor coordination and feelings of sedation were studied by comparing IMs with EMs following their ingestion of a single dose of 700 mg carisoprodol. METHODS: Thirty-seven healthy Caucasian volunteers participated in the study, of whom 25 were not using any drugs known to interact with CYP2C19, including two poor metabolizers (PMs) (CYP2C19 *2/*2 or CYP2C19 *2 /*4), 11 IMs (CYP2C19 *1/*2 or CYP2C19 *1/*4) and 12 EMs (CYP2C19 *1/*1); the remaining 12 participants were six EMs and six IMs using oral contraceptives. A single oral dose of 700 mg of carisoprodol was given, and blood drug concentrations were followed for 11 h and 45 min. During this time period, different pharmacodynamic measurements were made. RESULTS: IMs had a longer elimination half life (T&frac;) (127 min; 95% confidence interval (CI) 95, 159) than EMs (96 min; 95% CI 84, 107) and a larger area under the concentration-time curve from 0 to infinity (AUC0-) for carisoprodol (16.3 g h ml–1 ; 95% CI 11.9, 20.7) than EMs (11.3 g h ml–1 ; 95% CI 7.8, 14.8). The use of oral contraceptives was accompanied by larger AUC0- for carisoprodol in both EMs (18.5 g h ml–1; 95% CI 10.7, 26.3) and IMs (26.0 g h ml–1 ; 95% CI 18.8, 33.2). EMs using oral contraceptives also had a longer T&frac; (117 min; 95% CI 92, 143) and higher maximum carisoprodol concentration than EMs not using oral contraceptives. No significant differences in pharmacodynamic parameters were found between subjects in the different genotype groups or between users and non-users of oral contraceptives. CONCLUSIONS: Subsequent to a single-dose administration of carisoprodol, the carisoprodol AUC was approximately 45% larger in CYP2C19 IMs than in EMs. The use of oral contraceptives increased the AUC by approximately 60% in both EMs and IMs. Despite these pharmacokinetic effects, no significant differences with respect to the CYP2C19 IM and EM genotypes were observed in the acute impairing effects of a single dose of carisoprodol.  相似文献   

6.
OBJECTIVE: To determine the role of cytochrome P(450) (CYP)2C19 in N-demethylation of amitriptyline (AT) in healthy Chinese subjects.METHODS: One hundred and one subjects were genotyped for CYP2C19 using polymerase chain reaction-restriction fragment length polymorphism analysis. Twelve unrelated adult men (19.7+/-0.6 years, 61.8+/-3.8 kg) were chosen and orally given a single dose of 50 mg AT, and the blood samples were drawn from a forearm vein at 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 24, 48, 72, and 96 h after AT administration. Plasma concentrations of AT and nortriptyline (NT) were determined using high-performance liquid chromatography with an ultraviolet detector.RESULTS: The mean area under the plasma concentration-time curve (AUC(AT)) of CYP2C19 poor metabolizers (PMs, n=6) was significantly higher than that of CYP2C19 extensive metabolizers (EMs, n=6) (2207+/-501 ng/ml x h(-1) vs 1596+/-406 ng/ml x h(-1), P<0.05). In contrast, the mean AUC(NT(0-)(infinity)()) of PMs was significantly lower than that of EMs (294+/-70 ng/ml x h(-1) vs 684+/-130 ng/ml x h(-1), P<0.0001). Other pharmacokinetic parameters such as clearance, half-life, maximum plasma concentration, and time to peak plasma concentration showed no significant difference between PMs and EMs (0.41+/-0.12 l /h x kg(-1) vs 0.50+/-0.15 l /h x kg(-1), 25.0+/-6.2 h vs 24.1+/-4.4 h, 96+/-25 ng/ml vs 75+/-27 ng/ml, 4.0+/-1.4 h vs 3.7+/-1.5 h, respectively).CONCLUSION: The genetic defects of CYP2C19 have a significant effect on AT pharmacokinetics, and CYP2C19 plays an important role in N-demethylation of AT in vivo at a clinically therapeutic dose.  相似文献   

7.

Purpose

Icotinib hydrochloride {4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4-quinazoline hydrochloride}, a novel epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), was designed for the treatment of non-small cell lung cancer (NSCLC). In the present study, we investigated the influence of the CYP2C19*2 and CYP2C19*3 alleles on the pharmacokinetics of icotinib in healthy Chinese volunteers.

Methods

In a single-dose pharmacokinetic study, 12 healthy Chinese volunteers received an oral dose of 600?mg of icotinib. Plasma was sampled for up to 72?h post-dose, followed by quantification of icotinib by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS-MS).

Results

Five subjects genotyped as homozygous extensive metabolizers (CYP2C19*1/*1), 6 subjects genotyped as heterozygous extensive metabolizers (CYP2C19*1/*2 or CYP2C19*1/*3), and 1 subject genotyped as a poor metabolizer (CYP2C19*2/*3) and was withdrawn from the research because of urticaria. The mean icotinib AUC0-∞ and Cmax (14.56 ±5.31?h?mg/L and 2.32?±?0.49?μg/mL) in homozygous EMs was 1.56 and 1.41-fold lower than that in heterozygous EMs (22.7?±?6.11 and 3.28?±?0.48, P?=?0.046 and 0.047). The mean CL/F (44.18?±?12.17?L/h) in homozygous EMs was 1.55-fold higher than that in heterozygous EMs (28.42?±?9.23?L/h, P?=?0.013).

Conclusions

The data showed that the pharmacokinetics of icotinib differ significantly between homozygous EMs and heterozygous EMs in CYP2C19.  相似文献   

8.
The enzyme activities of CYP2D6 and CYP2C19 show a genetic polymorphism, and the frequency of poor metabolizers (PMs) on these enzymes depends on races. In the present study, the frequencies of mutant alleles and PMs in each race were analyzed based on information from published studies, considering the genetic polymorphisms of CYP2D6 and CYP2C19 as the causal factors of racial and inter-individual differences in pharmacokinetics. As a result, it was shown that there were racial differences in the frequencies of each mutant allele and PMs. The frequencies of PMs on CYP2D6 are 1.9% of Asians and 7.7% of Caucasians, and those of PMs on CYP2C19 are 15.8% of Asians and 2.2% of Caucasians. Based on the results, it was suggested that there would be racial differences in the frequencies of PM subjects whose blood concentrations might be higher for drugs metabolized by these enzymes. Additionally, it was suggested that enzyme activities would vary according to the number of functional alleles even in subjects judged to be extensive metabolizers (EMs). In the bridging study, genetic information regarding CYP2D6 and CYP2C19 of the subjects will help extrapolate foreign clinical data to a domestic population.  相似文献   

9.
The aim of the current study was to compare the pharmacokinetics of phenobarbital (PB) in extensive metabolizers (EMs) and poor metabolizers (PMs) of S-mephenytoin. Ten healthy volunteers (5 EMs and 5 PMs) were given 30 mg PB daily for 14 days. PB and p-hydroxyphenobarbital (p-OHPB) in serum and urine were measured by high-performance liquid chromatography (HPLC). Urinary excretion (12.5% versus 7.7%) and formation clearance (29.8 versus 21.1 mL/h) of p-OHPB, one of the main metabolites of PB, were significantly lower (p < .05) in PMs than in EMs. However, area under the serum concentration-time curve (153.3 in the EMs versus 122.9 microg x h/mL in the PMs), total (210.8 versus 254.9 mL/h) and renal clearance (53.1 versus 66.1 mL/h) of PB were identical between the two groups. To compare the inducibility of CYP2C19, mephenytoin was also given prior to and on the last day of PB treatment. The urinary level of 4'-hydroxymephenytoin was analyzed by a validated gas chromatograpy/mass spectrometry (GC/MS) method. The mephenytoin hydroxylation index did not change in either EMs (1.42 versus 1.42) or PMs (341.4 versus 403.5), showing that CYP2C19 was not induced by treatment with PB. These results indicated that the p-hydroxylation pathway of PB co-segregates with the CYP2C19 metabolic polymorphism. However, the overall disposition kinetics of PB were not different between EMs and PMs, and therefore polymorphic CYP2C19 seems have no major clinical implications.  相似文献   

10.
Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans   总被引:3,自引:0,他引:3  
CYP2D6 is involved in the O-demethylation metabolic pathway of venlafaxine in humans. In this study, we investigated whether this isozyme is stereoselective. Plasma samples from seven CYP2D6 extensive metabolizers (EMs) and five CYP2D6 poor metabolizers (PMs), collected during a period without and with coadministration of quinidine, were analysed. Subjects were administered venlafaxine hydrochloride 18.75 mg orally every 12 h for 48 h on two occasions (1 week apart); once alone and once during the concomitant administration of quinidine sulphate every 12 h. Blood and urine samples were collected under steady-state conditions over one dosing interval (12 h). The present results show that, although CYP2D6 catalyses the O-demethylation of both enantiomers of venlafaxine, it displays a marked stereoselectivity towards the (R)-enantiomer. The oral clearance of (R)-venlafaxine was found to be nine-fold higher in EMs compared to PMs [median (range) 173 (29-611) l/h versus 20 (16-24) l/h, P < 0.005], while it was two-fold higher for (S)-venlafaxine [73 (32-130) l/h versus 37 (21-44) l/h, P < 0.05]. In EMs, quinidine decreased (R)- and (S)-venlafaxine oral clearance by 12-fold ( 0.05) and four-fold ( 0.05), respectively. In contrast, quinidine did not have any effects on renal clearance of (R)-venlafaxine [4 (2-10) l/h for venlafaxine alone versus 5 (0.6-7) l/h for venlafaxine + quinidine] and of (S)-venlafaxine [4 (1-7) l/h for venlafaxine alone versus 3 (0.4-6) l/h for venlafaxine + quinidine]. The coadministration of quinidine to EMs resulted in an almost complete inhibition of the partial metabolic clearance of (R)-venlafaxine to O-demethylated metabolites [127 (10-493) l/h down to 1 (0.1-3) l/h, 0.05], while a seven-fold reduction was measured for (S)-venlafaxine [47 (14-94) l/h versus 7 (1-19) l/h, 0.05]. In PMs, coadministration of quinidine did not significantly change oral clearance and partial metabolic clearance of (R)- and (S)-venlafaxine to its various metabolites. In contrast, data obtained on the partial metabolic clearance of (R)- and (S)-venlafaxine to N-demethylated metabolites, a reaction which is mediated by CYP3A4, suggest a lack of stereoselectivity of this enzyme.  相似文献   

11.

AIMS

The aim was to explore the role of CYP2C19 polymorphism in short-term rabeprazole-based triple therapy against Helicobacter pylori infection.

METHODS

Patients with H. pylori infection were tested for CYP2C19 genotype as poor metabolizers (PMs) or extensive metabolizers (EMs, homozygous EM or heterozygous EM) and given rabeprazole for 7 days. Antibiotics (clarithromycin and amoxicillin) were given on days 1–4, days 4–7, or days 1–7. A direct link model with an effect compartment was used in the population pharmacokinetic–pharmacodynamic analysis. The status of H. pylori infection was evaluated.

RESULTS

Rabeprazole clearance was lower in CYP2C19 PMs than in EMs (with average values of 10.7 vs. 16.8 l h−1 in PMs and EMs, respectively), resulting in higher plasma levels in the former group. The values of EC50 and keo of gastrin response increased with multiple doses of rabeprazole. The keo values were lower in CYP2C19 PMs than in EMs on day 1 (0.012 vs. 0.017 × 10−4 l min−1), and higher than in EMs on day 4 (0.804 vs. 0.169 × 10−4 l min−1) of rabeprazole treatment. The predicted gastrin-time profile showed a higher response in CYP2C19 PMs than in EMs on days 4 and 7. Helicobacter pylori was eradicated in all CYP2C19 PMs except in one patient infected by a resistant strain. In contrast, in CYP2C19 EMs the eradication rates ranged from 58 to 85%.

CONCLUSIONS

CYP2C19 genotypes play a role in H. pylori eradication therapy. Rabeprazole-based short-term triple therapy may be applicable in CYP2C19 PMs for H. pylori eradication.  相似文献   

12.
A method for simultaneous phenotyping and genotyping for CYP2D6 and CYP2C19 was tested. Six healthy volunteers were selected (three extensive and three poor metabolisers for CYP2D6). CYP2D6 was probed with dextromethorphan and metoprolol and CYP2C19 was probed with omeprazole. Blood samples were collected and analysed for dextromethorphan, dextrorphan, metoprolol, alpha-hydroxymetoprol, omeprazole and 5-hydroxyomeprazole by HPLC. Genotyping was performed for both CYP2D6 and CYP2C19. Generally, plasma levels could be measured up to 8 h post-dose except for alpha-hydroxymetoprolol in poor metabolizers (PMs) and dextromethorphan in extensive metabolizers (EMs) (35% below quantification limit). The correlation between the metabolic ratio based on timed individual measurements and the metabolic ratio based on the AUC0-12 values was significant at 3 h post-dose for all probes. In conclusion, the following procedure is suggested: administer metoprolol (100 mg) and omeprazole (40 mg); after 3 h, take a blood sample to assess the genotype and the metabolic ratio for CYP2D6 (metoprolol over alpha-hydroxymetoprolol) and CYP2C19 (omeprazole over 5-hydroxyomeprazole) in plasma. With this procedure, all necessary information on the individual CYP2D6 and CYP2C19 metabolising capacity can be obtained in a practical, single-sample approach.  相似文献   

13.
OBJECTIVE: Our objective was to study the enantioselective pharmacokinetics of metoprolol in CYP2D6 ultra-rapid metabolizers (UM) compared with extensive (EM) and poor (PM) metabolizers to quantify differential effects of metoprolol enantiomers on the beta1-adrenoreceptor blockade. METHODS: Twenty-nine healthy individuals were selected based on their CYP2D6 genotype, and 100 mg racemic metoprolol was administered. Plasma concentrations of R- and S-metoprolol and the metabolites SS-, SR-, RS-, and RR-hydroxymetoprolol were quantified by high-performance liquid chromatography. RESULTS: Mean (+/-SD) AUCs of S-metoprolol were 190 +/- 99 ng/ml.h in UMs, 366 +/- 158 in EMs, and 1,804 +/- 300 in PMs. For R-metoprolol, the AUCs were 127 +/- 72 ng/ml.h in UMs, 261 +/- 126 in EMs, and 1,746 +/- 319 in PMs. The concentrations of R-metoprolol and S-metoprolol, respectively, needed to obtain a half-maximum reduction in heart rate were estimated as 20 and 21 ng/ml in PMs, 11 and 17 ng/ml in EMs, and 7 and 11 ng/ml in UMs. CONCLUSION: A slight enantiopreference towards metabolism of R-metoprolol by CYP2D6 was observed in EMs and even more in the UM group, but the effect was far from being enantioselective.  相似文献   

14.
OBJECTIVES AND METHODS: We assessed the relationship between the metabolism of R- and S-mephobarbital (MPB) and genetic polymorphisms of cytochrome P450 (CYP) 2C19 and CYP2B6. Nine homozygous extensive metabolizers (homo-EMs, 2C19*1/2C19*1) of CYP2C19, ten heterozygous EMs (hetero-EMs, 2C19*1/2C19*2, 2C19*1/2C19*3) and eleven poor metabolizers (PMs, 2C19*2/2C19*2, 2C19*3/2C19*3, 2C19*2/2C19*3) recruited from a Japanese population, received an oral 200 mg-dose of racemic MPB. Blood and urine samples were collected, and R-MPB, S-MPB and the metabolites, phenobarbital (PB) and 4'-hydroxy-MPB, were measured. Each subject was also genotyped for CYP2B6 gene. RESULTS: The mean area under the plasma concentration-time curve (AUC) of R-MPB was 92-fold greater in PMs than in homo-EMs. R/S ratios for AUC of MPB were much higher in PMs than in EMs (homo- and hetero-). The cumulative urinary excretion of 4'-hydroxy-MPB up to 24 h postdose was 21-fold less in PMs than in homo-EMs. The metabolic ratio of AUCPB/(AUCS-MPB + AUCR-MPB) was higher in PMs than in EMs (homo- and hetero-). In addition, this metabolic ratio was lower in the carriers of CYP2B6*6 compared with that in its non-carriers. CONCLUSIONS: Our results indicate that the 4'-hydroxylation of R-MPB is mediated via CYP2C19 and that the rapid 4'-hydroxylation of R-MPB results in a marked difference in the pharmacokinetic profiles between R-MPB and S-MPB in the different CYP2C19 genotypic individuals. In addition, a minor fraction of the interindividual variability in PB formation from MPB may be explainable by the CYP2B6*6 allele.  相似文献   

15.
AIMS: Lansoprazole is a substrate of CYP2C19 and CYP3A. The aim of this study was to compare the inhibitory effects of clarithromycin, an inhibitor of CYP3A on the metabolism of lansoprazole between CYP2C19 genotypes. METHODS: A two-way randomized double-blind, placebo-controlled crossover study was performed. Eighteen volunteers, of whom six were homozygous extensive metabolizers (EMs), six were heterozygous EMs and six were poor metabolizers (PMs) for CYP2C19, received two 6-day courses of either clarithromycin 800 mg or placebo daily in a randomized fashion with a single oral dose of lansoprazole 60 mg on day 6 in all cases. Plasma concentrations of lansoprazole and its metabolites, 5-hydroxylansoprazole and lansoprazole sulphone were monitored up to 24 h after dosing. RESULTS: During placebo administration, the mean AUC0, infinity of lansoprazole in homozygous EMs, heterozygous EMs and PMs were 4652 (95% CI, 2294, 7009) ng ml(-1) h, 8299 (4784, 11814) ng ml(-1) h and 25293 (17643, 32943) ng ml(-1) h (P < 0.001), respectively. Clarithromycin treatment significantly increased Cmax by 1.47-fold, 1.71-fold and 1.52-fold and AUC0, infinity of lansoprazole by 1.55-fold, 1.74-fold, and 1.80-fold in these genotype groups, respectively, whereas elimination half-life was prolonged only in PMs. The clarithromycin-mediated percent increase in pharmacokinetic parameters such as Cmax, AUC0, infinity or elimination half-life did not differ between the three CYP2C19 genotypes. CONCLUSIONS: The present study indicates that there are significant drug interactions between lansoprazole and clarithromycin in all CYP2C19 genotype groups probably through CYP3A inhibition. The bioavailability of lansoprazole might, to some extent, be increased through inhibition of P-glycoprotein during clarithromycin treatment.  相似文献   

16.
BACKGROUND: The cytochrome P450 isoenzymes CYP2C19 and CYP2D6 catalyze reactions involved in the metabolism of many widely used drugs. Their polymorphisms give rise to important interindividual and interethnic variability in the metabolism and disposition of several therapeutic agents and may cause differences in clinical response to some drugs. Individuals who carry two null alleles of either gene are known as poor metabolizers (PMs), while those who carry more than two copies of the functional CYP2D6 gene are ultrarapid metabolizers (UMs). AIM: The aim of the current study was to genotype Israelis from four different ethnic backgrounds with respect to CYP2C19 and CYP2D6. STUDY DESIGN: Polymorphisms of the CYP2C19 and CYP2D6 genes were determined by genotyping the four ethnic groups using PCR and/or restriction fragment length polymorphism (RFLP) analysis. The groups consisted of three Jewish communities, Yemenite Jews (n = 36), Sephardic Jews (n = 47), Ethiopian Jews (n = 28), and one Arabian population, Bedouins (n = 50). RESULTS: CYP2C19*2 allele frequencies ranged from 12.0 to 19.6% among the four ethnic groups. Within the study population, the CYP2C19*3 gene was only found in one Bedouin individual, in the heterozygous state (CYP2C19*1/*3). In each group, one individual was homozygous for CYP2C19*2, and were predicted to be PMs. The data revealed a high prevalence of CYP2D6*2, *4, *10, *41, and gene duplication, followed by *5 and *17, while *3 was very rare. The frequencies of the CYP2D6*4, *10, and *17 alleles and CYP2D6 gene duplication were significantly different among the four groups. However, the CYP2D6*2, *3, and *5 and *41 alleles showed similar frequencies in the four groups. Four (8.5%) Sephardic Jews and one (2.0%) Bedouin were found with the genotype CYP2D6*4/*4 (two null alleles), and were thus presumably PMs. A total of 15 individuals, distributed in all groups, were found with functional CYP2D6 gene duplications. The frequencies of predicted UMs (duplication of CYP2D6) were 17.8% (5/28) and 12.8% (6/47) in Ethiopian Jews and Sephardic Jews, respectively, which were higher than that of Yemenite Jews (5.6%, 2/36) and Bedouins (4.0%, 2/50). CONCLUSIONS: This is the first study of the CYP2D6 gene polymorphism in Israeli ethnic groups, either Jewish or Arab. Furthermore, this is also the first study of the CYP2C19 gene polymorphism in Jewish or Arab subgroups living in Israel. The frequencies of various alleles for the CYP2D6 gene are significantly different among the ethnic groups in Israel. These new findings may have important clinical implications in administrating drugs metabolized by CYP2D6 and for CYP2D6-related adverse drug reactions in the Israeli population.  相似文献   

17.
The effects of cytochrome P450 (CYP)2C19 activity and cigarette smoking on the single oral dose pharmacokinetics of quazepam were studied in 20 healthy Japanese volunteers. Twelve subjects were extensive metabolizers (EMs), and 8 subjects were poor metabolizers (PMs) by CYP2C19 as determined by the PCR-based genotyping. Nine subjects were smokers (>10 cigarettes/d), and 11 subjects were nonsmokers. The subjects received a single oral 20-mg dose of quazepam, and blood samplings and evaluation of psychomotor function were conducted up to 72 hours after dosing. Plasma concentrations of quazepam and its active metabolite 2-oxoquazepam (OQ) were measured by HPLC. There were significant differences between EMs and PMs in the peak plasma concentration (mean +/- SD: 34.5 +/- 16.6 versus 66.2 +/- 19.2 ng/mL, P < 0.01) and total area under the plasma concentration-time curve (490.1 +/- 277.5 vs 812.1 +/- 267.2 ng x h/mL, P < 0.05) of quazepam. The pharmacokinetic parameters of OQ and pharmacodynamic parameters were not different between the 2 groups. Smoking status did not affect the pharmacokinetic parameters of quazepam and OQ or pharmacodynamic parameters. The present study suggests that the single oral dose pharmacokinetics of quazepam are influenced by CYP2C19 activity but not by cigarette smoking.  相似文献   

18.
AIMS: Rabeprazole is known to be a substrate of CYP2C19. Our objective was to evaluate the possible effect of an inhibitor of CYP2C19, fluvoxamine, and compare the inhibitory effect of fluvoxamine on the metabolism of rabeprazole between CYP2C19 genotypes. METHODS: A two-way randomized double-blind, placebo-controlled crossover study was performed. Twenty-one volunteers, of whom seven were homozygous extensive metabolizers (EMs), eight were heterozygous EMs and six were poor metabolizers (PMs) for CYP2C19, received two 6-day courses of either fluvoxamine 50 mg or placebo daily in a randomized fashion with a single oral dose of rabeprazole 20 mg on day 6 in all cases. Plasma concentrations of rabeprazole and its metabolite rabeprazole thioether were monitored up to 24 h after dosing. RESULTS: During placebo administration, the mean AUCs(0,infinity) of rabeprazole in homozygous EMs, heterozygous EMs and PMs were 882 (95% CI, 602, 1162) ng ml-1h , 1214 (975, 1453) ng ml-1 h and 2762 (2482, 3042) ng ml-1 h (P<0.001), respectively. Fluvoxamine treatment increased AUC(0,infinity) of rabeprazole and rabeprazole thioether by 2.8-fold (P<0.001) and 5.1-fold (P<0.01) in homozygous EMs, and by 1.7-fold (P<0.01) and 2.6-fold (P<0.01) in heterozygous EMs, and significantly prolonged the elimination half-life of rabeprazole and rabeprazole thioether in homozygous EMs and in heterozygous EMs, whereas no difference in any pharmacokinetic parameters was found in PMs. There was a significant difference in fluvoxamine-mediated percentage increase in AUC(0,infinity) of rabeprazole and rabeprazole thioether between CYP2C19 genotypes. CONCLUSIONS: The present study indicates that there are significant drug interactions between rabeprazole and fluvoxamine in EMs of CYP2C19. It is predominantly involved in rabeprazole and rabeprazole thioether metabolism in EMs. Therefore, CYP2C19 is the key determinant of rabeprazole disposition in EMs.  相似文献   

19.
OBJECTIVE: Our objective was to evaluate the effect of CYP2D6 phenotype in the enantioselective metabolism of tramadol in Spanish healthy human volunteers. METHODS: A single oral 100mg dose of racemic tramadol was administered to five subjects who were poor metabolizers (PMs) and 19 subjects who were extensive metabolizers (EMs), whose phenotypes were determined by the use of the racemic tramadol metabolic rate. The pharmacokinetic parameters were estimated from plasma concentrations of the enantiomers of tramadol and their main phase I metabolites, O-desmethyltramadol (M1) and N-desmethyltramadol (M2). Epinephrine plasma concentrations were also determinated. RESULTS: The plasma concentrations of both tramadol enantiomers were consistently higher in PMs than in EMs of CYP2D6, with 1.98- and 1.74-fold differences in the mean area under the plasma concentration-time curves (AUC), respectively. The values for oral clearance of (+)- and (--)-tramadol were 1.91- and 1.71-fold greater in PMs, which were related to differences in both O-desmethylation and N-desmethylation in the two CYP2D6 metabolizer phenotypes. The mean AUC values of (+)-M1 and (--)-M1 were 4.33- and 0.89-fold greater in EMs, and it was related to similar differences in the formation rate constant. On the other hand, the differences were 7.40- and 8.69-fold greater in PMs for M2 enantiomers due to the involvement of CYP2D6 in their subsequent biotransformation. The time course of epinephrine systemic concentrations was completely different between both groups of metabolizers. In EMs plasma concentrations of epinephrine increased after tramadol administration whereas in PMs no effect was observed. CONCLUSIONS: The polymorphic CYP2D6 appears to be a major enzyme involved in the metabolism of tramadol enantiomers. The N-desmethylation pathway was indirectly affected by CYP2D6 phenotypic differences. Epinephrine showed a good correlation with the pharmacokinetics of the opioid component of tramadol, (+)-M1 and was found to be useful for its pharmacodynamic profiling.  相似文献   

20.
Lansoprazole is a substrate of CYP2C19 and CYP3A4. The aim of this study was to compare the inhibitory effects of fluvoxamine, an inhibitor of CYP2C19, on the metabolism of lansoprazole between CYP2C19 genotypes. Eighteen volunteers--of whom 6 were homozygous extensive metabolizers (EMs), 6 were heterozygous EMs, and 6 were poor metabolizers (PMs) for CYP2C19--received three 6-day courses of either daily 50 mg fluvoxamine or placebo in a randomized fashion with a single oral 60-mg dose of lansoprazole on day 6 in all cases. Plasma concentrations of lansoprazole and its metabolites, 5-hydroxylansoprazole and lansoprazole sulfone, were monitored up to 24 hours after the dosing. During placebo administration, there was a significant difference in the area under the plasma concentration-time curve from time 0 to infinity (AUC(0-infinity)) of lansoprazole between CYP2C19 genotypes. Fluvoxamine treatment increased AUC(0-infinity) of lansoprazole by 3.8-fold (P < .01) in homozygous EMs and by 2.5-fold (P < .05) in heterozygous EMs, whereas no difference in any pharmacokinetic parameters was found in PMs. There was a significant difference in the fluvoxamine-mediated percentage increase in the AUC(0-infinity) of lansoprazole between CYP2C19 genotypes. The present study indicates that there are significant drug interactions between lansoprazole and fluvoxamine in EMs. CYP2C19 is predominantly involved in lansoprazole metabolism in EMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号