首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physiologically-plausible multiple-input, single-output (MISO) neuron models that consist of five components each: (1) feedforward Volterra kernels transforming the input spike trains into the synaptic potential, (2) a feedback kernel transforming the output spikes into the spike-triggered after-potential, (3) a noise term capturing the system uncertainty, (4) an adder generating the pre-threshold potential, and (5) a threshold function generating output spikes. It is shown that this model is equivalent to a generalized linear model with a probit link function. To reduce model complexity and avoid overfitting, statistical model selection and cross-validation methods are employed to choose the significant inputs and interactions between inputs. The model is applied successfully to the hippocampal CA3–CA1 population dynamics. Such a model can serve as a computational basis for the development of hippocampal prostheses.  相似文献   

2.
3.
Measurement of variability dynamics in cortical spike trains   总被引:2,自引:0,他引:2  
We propose a method for the time-resolved joint analysis of two related aspects of single neuron variability, the spiking irregularity measured by the squared coefficient of variation (CV(2)) of the ISIs and the trial-by-trial variability of the spike count measured by the Fano factor (FF). We provide a calibration of both estimators using the theory of renewal processes, and verify it for spike trains recorded in vitro. Both estimators exhibit a considerable bias for short observations that count less than about 5-10 spikes on average. The practical difficulty of measuring the CV(2) in rate modulated data can be overcome by a simple procedure of spike train demodulation which was tested in numerical simulations and in real spike trains. We propose to test neuronal spike trains for deviations from the null-hypothesis FF=CV(2). We show that cortical pyramidal neurons, recorded under controlled stationary input conditions in vitro, comply with this assumption. Performing a time-resolved joint analysis of CV(2) and FF of a single unit recording from the motor cortex of a behaving monkey we demonstrate how the dynamic change of their quantitative relation can be interpreted with respect to neuron intrinsic and extrinsic factors that influence cortical variability in vivo. Finally, we discuss the effect of several additional factors such as serial interval correlation and refractory period on the empiric relation of FF and CV(2).  相似文献   

4.
Throughout the brain, neurons encode information in fundamental units of spikes. Each spike represents the combined thresholding of synaptic inputs and intrinsic neuronal dynamics. Here, we address a basic question of spike train formation: how do perithreshold synaptic inputs perturb the output of a spiking neuron? We recorded from single entorhinal principal cells in vitro and drove them to spike steadily at ~5 Hz (theta range) with direct current injection, then used a dynamic‐clamp to superimpose strong excitatory conductance inputs at varying rates. Neurons spiked most reliably when the input rate matched the intrinsic neuronal firing rate. We also found a striking tendency of neurons to preserve their rates and coefficients of variation, independently of input rates. As mechanisms for this rate maintenance, we show that the efficacy of the conductance inputs varied with the relationship of input rate to neuronal firing rate, and with the arrival time of the input within the natural period. Using a novel method of spike classification, we developed a minimal Markov model that reproduced the measured statistics of the output spike trains and thus allowed us to identify and compare contributions to the rate maintenance and resonance. We suggest that the strength of rate maintenance may be used as a new categorization scheme for neuronal response and note that individual intrinsic spiking mechanisms may play a significant role in forming the rhythmic spike trains of activated neurons; in the entorhinal cortex, individual pacemakers may dominate production of the regional theta rhythm.  相似文献   

5.
Spike trains flowing into the periaqueductal gray (PAG) might be discriminated from one another by PAG neurons on the basis of the distribution or sequence of their respective interspike intervals. The various sequences of interspike intervals characteristic of spontaneous PAG unit activities were assessed in a preliminary experiment. These sequences were then simulated by means of appropriate mathematical functions. These functions allowed the production of stimulation trains that were applied to two PAG sites to induce spike trains with similar sequences in order to reveal the sensitivity of PAG neurons to the stochastic structure of afferent spike trains. We placed emphasis on parameters of the spike train that proved to be altered independently of any alteration of the corresponding parameters in the stimulation train. The mean pulse rate is the simplest example of such a parameter as it was never altered in the stimulation train. Alterations of either the distribution or sequence of pulses in the stimulation train were found to affect the mean discharge rate in a number of cases (30-40% of the cases). Despite their moderate degree (20-30% mean rate alteration) such differential effects could correspond to stimulation-induced differential behavioral effects as was shown in a previous study. Furthermore, a specific dependence of the generated spike trains on the sequential structure of the stimulation train was observed in some cases when appropriate stimulation trains were simultaneously applied to another PAG stimulation site. This fact is worth considering in relation to the integrative function of the PAG neuronal network.  相似文献   

6.
The normalized auto- and cross-covariance functions of discrete-time stochastic point process, used for quantitatively analyzing neuronal spike trains, were derived from the corresponding functions of general stochastic process using Kronecker delta functions. The auto-correlation and cross-correlation properties can be described as numerical differences on a monotonic scale ranging from -1 -1 to +1. A segmental integration method and a significance test for the normalized cross-covariance function estimate are suggested. Examples from real spike trains are illustrated, and Monte Carlo methods are used for controls and for testing the algorithms and computer programs.  相似文献   

7.
We propose an efficient algorithm to compute the smoothed correlogram for the detection of temporal relationship between two spike trains. Unlike the conventional histogram-based correlogram estimations, the proposed algorithm operates on continuous time and does not bin either the spike train nor the correlogram. Hence it can be more precise in detecting the effective delay between two recording sites. Moreover, it can take advantage of the higher temporal resolution of the spike times provided by the current recording methods. The Laplacian kernel for smoothing enables efficient computation of the algorithm. We also provide the basic statistics of the estimator and a guideline for choosing the kernel size. This new technique is demonstrated by estimating the effective delays in a neuronal network from synthetic data and recordings of dissociated cortical tissue.  相似文献   

8.
Favored patterns in spontaneous spike trains.   总被引:1,自引:0,他引:1  
Y H Ku  X Q Wang 《Brain research》1991,559(2):241-248
By using the modified detection method, favored patterns can be detected in a total of 44 spontaneous spike trains. Among these the 'periodical burst' discharge of one sympathetic preganglionic neuron and the 'fast-slow' alternative discharge of some hypothalamic neurons have visible characteristics, hence we use them to test the reliability of our method by comparing the detected patterns with the non-sequential interval histograms and oscillograms of the spike trains. The comparisons show that our method is reliable. The spike trains of nucleus raphe magnus (NRM) and the locus coeruleus (LC) have no visible characteristics; from these the following results have been observed: (1) all spike trains have one or more favored patterns; (2) some spike trains from neurons in the same nucleus have common fragments of favored patterns; (3) the favored patterns in spike trains recorded from different nuclei are different from each other; (4) some favored patterns in spike trains of the NRM neurons remain unchanged from beginning to end in 35-min records and their repetitions are relatively stable; and (5) microinjection of normal saline or normal serum into the LC has no significant influence on the occurrence of favored patterns in 35-min records of spike trains of the LC neurons. The above results indicate that the favored patterns in spike trains are objective and regular phenomena with relative stability. It seems likely that favored pattern may be used (as an index of the neuronal activity) in combination with the microinjection technique, etc., for various studies including studies on neural coding.  相似文献   

9.
Statistical inference has an important role in analysis of neural spike trains. While current approaches are mostly model-based, and designed for capturing the temporal evolution of the underlying stochastic processes, we focus on a data-driven approach where statistics are defined and computed in function spaces where individual spike trains are viewed as points. The first contribution of this paper is to endow spike train space with a parameterized family of metrics that takes into account different time warpings and generalizes several currently used metrics. These metrics are essentially penalized L(p) norms, involving appropriate functions of spike trains, with penalties associated with time-warpings. The second contribution of this paper is to derive a notion of a mean spike train in the case when p=2. We present an efficient recursive algorithm, termed Matching-Minimization algorithm, to compute the sample mean of a set of spike trains. The proposed metrics as well as the mean computations are demonstrated using an experimental recording from the motor cortex.  相似文献   

10.
Y Q Chen  Y H Ku 《Brain research》1992,578(1-2):297-304
By using 'the modified detection method', our previous study has shown that all spontaneous spike trains recorded from several areas of brain and spinal cord have favored patterns (FPs). The present study further shows that: (1) all newly detected spike trains from substantia nigra zona compacta, nucleus periventricularis hypothalami and nucleus hypothalamicus posterior also have FPs, and some spike trains from neurons in the same nucleus have a common favored pattern (CF, i.e. they share the same FP), indicating that FP and CF in spike trains are common phenomena; (2) all serial correlation coefficients of FP repetitions (in serial order) in different spike trains detected are less than 0.3 (close to 0), revealing that the repetition of FPs is a renewal process; (3) in different periods of the spike trains evoked by electroacupuncture (EA), the number of different FPs and the number of repetitions of the same representative FP either increase or decrease along with the change of firing rate. The tendencies of these changes are very similar, but after EA the repetitions of different FPs in the same spike trains change differently, showing that different (hidden) responses exist at the same time. The above results suggest that the FPs in spike trains may represent various neural codes, and 'the modified detection method of FP' can pick up more information from spike trains than the firing rate analysis, hence it is a very useful tool for the study of neural coding.  相似文献   

11.
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains.  相似文献   

12.
The assessment of stationarity of firing rate in neural spike trains is important but is often performed only visually. Facing the growing amount of neural data generated by multi-electrode recording, there is a need for an automatic method to identify and disqualify spike trains with highly nonstationary firing rates. In this report, we propose a simple test of nonstationarity, associated with an indicator quantifying the degree of nonstationary in a spike train. This method is compared to the Mann-Kendall test of trend detection and the Runs test on simulated and real spike trains.  相似文献   

13.
Neurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is more regular than previously assumed and that this regularity can affect motor behaviour. We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. For high convergence ratios, the irregularity induced spike rate acceleration depends on short-term depression (STD) at the Purkinje cell synapses. At low convergence ratios, or for synchronised Purkinje cell input, the firing rate increase is independent of STD. The transformation of input irregularity into output spike rate occurs in response to artificial input spike trains as well as to spike trains recorded from Purkinje cells in tottering mice, which show highly irregular spiking patterns. Our results suggest that STD may contribute to the accelerated CN spike rate in tottering mice and they raise the possibility that the deficits in motor control in these mutants partly result as a pathological consequence of this natural form of plasticity.  相似文献   

14.
Determining how a particular neuron, or population of neurons, encodes information in their spike trains is not a trivial problem, because multiple coding schemes exist and are not necessarily mutually exclusive. Coding schemes generally fall into one of two broad categories, which we refer to as rate and temporal coding. In rate coding schemes, information is encoded in the variations of the average firing rate of the spike train. In contrast, in temporal coding schemes, information is encoded in the specific timing of the individual spikes that comprise the train. Here, we describe a method for testing the presence of temporal encoding of information. Suppose that a set of original spike trains is given. First, surrogate spike trains are generated by randomizing each of the original spike trains subject to the following constraints: the local average firing rate is approximately preserved, while the overall average firing rate and the distribution of primary interspike intervals are perfectly preserved. These constraints ensure that any rate coding of information present in the original spike trains is preserved in the members of the surrogate population. The null-hypothesis is rejected when additional information is found to be present in the original spike trains, implying that temporal coding is present. The method is validated using artificial data, and then demonstrated using real neuronal data.  相似文献   

15.
Short-term synaptic plasticity (STP) is widely thought to play an important role in information processing. This major function of STP has recently been challenged, however, by several computational studies indicating that transmission of information by dynamic synapses is broadband, i.e., frequency independent. Here we developed an analytical approach to quantify time- and rate-dependent synaptic information transfer during arbitrary spike trains using a realistic model of synaptic dynamics in excitatory hippocampal synapses. We found that STP indeed increases information transfer in a wide range of input rates, which corresponds well to the naturally occurring spike frequencies at these synapses. This increased information transfer is observed both during Poisson-distributed spike trains with a constant rate and during naturalistic spike trains recorded in hippocampal place cells in exploring rodents. Interestingly, we found that the presence of STP in low release probability excitatory synapses leads to optimization of information transfer specifically for short high-frequency bursts, which are indeed commonly observed in many excitatory hippocampal neurons. In contrast, more reliable high release probability synapses that express dominant short-term depression are predicted to have optimal information transmission for single spikes rather than bursts. This prediction is verified in analyses of experimental recordings from high release probability inhibitory synapses in mouse hippocampal slices and fits well with the observation that inhibitory hippocampal interneurons do not commonly fire spike bursts. We conclude that STP indeed contributes significantly to synaptic information transfer and may serve to maximize information transfer for specific firing patterns of the corresponding neurons.  相似文献   

16.
The rate function underlying single-trial spike trains can vary from trial to trial. We propose to estimate the amplitude and latency variability in single-trial neuronal spike trains on a trial-by-trial basis. The firing rate over a trial is modeled by a family of rate profiles with trial-invariant waveform and trial-dependent amplitude scaling factors and latency shifts. Using a Bayesian inference framework we derive an iterative fixed-point algorithm from which the single-trial amplitude scaling factors and latency shifts are estimated. We test the performance of the algorithm on simulated data and then apply it to actual neuronal recordings from the sensorimotor cortex of the monkey.  相似文献   

17.
In most neural systems, neurons communicate by means of sequences of action potentials or 'spikes'. Information encoded by spike trains is often quantified in terms of the firing rate which emphasizes the frequency of occurrence of action potentials rather than their exact timing. Common methods for estimating firing rates include the rate histogram, the reciprocal interspike interval, and the spike density function. In this study, we demonstrate the limitations of these aforementioned techniques and propose a simple yet more robust alternative. By convolving the spike train with an optimally designed Kaiser window, we show that more robust estimates of firing rate are obtained for both low and high-frequency inputs. We illustrate our approach by considering spike trains generated by simulated as well as experimental data obtained from single-unit recordings of first-order sensory neurons in the vestibular system. Improvements were seen in the prevention of aliasing, phase and amplitude distortion, as well as in the noise reduction for sinusoidal and more complex input profiles. We review the generality of the approach, and show that it can be adapted to describe neurons with sensory or motor responses that are characterized by marked nonlinearities. We conclude that our method permits more robust estimates of neural dynamics than conventional techniques across all stimulus conditions.  相似文献   

18.
We develop a method from semiparametric statistics (Cox, 1972) for the purpose of tracking links and connection strengths over time in a neuronal network from spike train data. We consider application of the method as implemented in Masud and Borisyuk (2011), and evaluate its use on data generated independently of the Cox model hypothesis, in particular from a spiking model of Izhikevich in four different dynamical regimes. Then, we show how the Cox method can be used to determine statistically significant changes in network connectivity over time. Our methodology is demonstrated using spike trains from multi-electrode array measurements of networks of cultured mammalian spinal cord cells.  相似文献   

19.
Neuronal coding and spiking randomness   总被引:1,自引:0,他引:1  
Fast information transfer in neuronal systems rests on series of action potentials, the spike trains, conducted along axons. Methods that compare spike trains are crucial for characterizing different neuronal coding schemes. In this paper we review recent results on the notion of spiking randomness, and discuss its properties with respect to the rate and temporal coding schemes. This method is compared with other widely used characteristics of spiking activity, namely the variability of interspike intervals, and it is shown that randomness and variability provide two distinct views. We demonstrate that estimation of spiking randomness from simulated and experimental data is capable of capturing characteristics that would otherwise be difficult to obtain with conventional methods.  相似文献   

20.
A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号