首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
OBJECTIVE: We estimated the absorbed doses for (111)In-DTPA-D-Phe(1)-octreotide and (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide in the same patients in order to compare the potential effectiveness (tumour dose) and safety (kidney and red marrow dose) of these drugs for peptide-targeted radiotherapy of somatostatin receptor positive tumours. METHODS: Six patients with neuroendocrine tumours underwent quantitative (111)In-DTPA-D-Phe(1)-octreotide SPECT and (86)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide PET scan at intervals of 1 week. All studies were performed with a co-infusion of amino acids for renal protection. PET and SPECT were reconstructed using iterative algorithms, incorporating attenuation and scatter corrections. Tissue uptakes (IA%) were measured and used to calculate residence times. Absorbed doses to tissues were estimated and the maximal allowed activity, defined as either the activity delivering 23 Gy to the kidneys (MAA(K)) or 2 Gy to the red marrow (MAA(RM)), was calculated and the resulting tumour absorbed doses were computed. RESULTS: For the MAA(K) the mean absorbed dose to the red marrow was lower for (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide than for (111)In-DTPA-D-Phe(1)-octreotide (1.8+/-0.9 Gy vs. 6.4+/-1.6 Gy; P<0.001). The median absorbed dose to tumours for the MAA(K) was two-fold higher for (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide as compared to (111)In-DTPA-D-Phe(1)-octreotide (30.1 vs. 12.6 Gy; P<0.05). The median absorbed dose to tumours estimated for the MAA(RM) was 10-fold higher for (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide than for (111)In-DTPA-D-Phe(1)-octreotide (35.1 Gy vs. 3.9 Gy; P<0.05). CONCLUSIONS: This direct intra-patient comparison confirms that the use of (90)Y-DOTA-D-Phe(1)-Tyr(3)-octreotide is more appropriate for therapy of somatostatin receptor bearing tumours. When using (111)In-DTPA-D-Phe(1)-octreotide, the red marrow represents the major critical organ; this can result in significant toxicity if high activities have to be administered to obtain efficient tumour irradiation.  相似文献   

2.
Treatment with tumor-targeting substances is currently being evaluated in clinical trials. For patients with neuroendocrine tumors expressing somatostatin receptors, the 111In-labeled somatostatin analog [diethylenetriaminepentaacetic acid (DTPA)-DPhe1]-octreotide has been used with promising results. To further investigate the clinical effect of the injected conjugate, we analyzed the cellular distribution of 111In by ultrastructural autoradiography. METHODS: Seven patients with somatostatin receptor-expressing midgut carcinoid tumors scheduled for abdominal surgery were investigated by somatostatin receptor scintigraphy. During operation, tumor tissue samples and samples of normal intestine were collected, fixed, and processed for electron microscopy. A thin layer of film emulsion was applied on sections and after the exposure film was developed. The cellular distribution of silver precipitations indicating the presence of isotope was evaluated. RESULTS: Cell surface receptor binding and internalization of [111In-DTPA-D-Phe1]-octreotide in the tumor cells was easily revealed by silver precipitations in the film. Multiple silver grains were seen at the plasma membrane, in the cytoplasmic area among secretory granules and vesicular compartments, and in the perinuclear area. Silver grains were also regularly located in the nucleus. For all patients, the silver precipitation patterns from 111In decay were identical in all examined cells from removed tumors, and in most cells 111In could be seen in the nucleus. The specificity of the silver reaction products is supported by the observation that enterocytes in intestinal tissue specimens from near the tumor did not show any silver grains and no background labeling was seen in the plastic. CONCLUSION: After internalization through the somatostatin receptor system, 111In is translocated to the perinuclear area and into the nucleus. Whether the nuclide is still conjugated to the intact somatostatin analog or to part of it cannot be evaluated in this study. Despite the short irradiation range of 111In, the nuclear localization can explain its clinical effectiveness. The results from this study suggest that [111In-DTPA-D-Phe1]-octreotide may act as a powerful tumor cell-targeting substance.  相似文献   

3.
4.
Indium- 111 labelled DTPA-D-Phe1-octreotide (DTPA-OC, OctreoScan) has been introduced into clinical routine for the detection of somatostatin receptor (SSTR)-positive tumours, which are predominantly of neuroendocrine origin. Potential further applications in other SSTR-positive cancers (e.g. small cell lung cancer, breast cancer, melanoma) have been limited mainly by the restricted availability and the high radionuclide costs. Previous attempts to introduce technetium-99m labelled analogues of octreotide have not been very successful in terms of the labelling procedure, in vivo biodistribution and/or tumour detection capabilities. The aim of this study was to assess the performance of the new 99mTc-labelled analogue HYNIC-D-Phe1-Tyr3-octreotide (HYNIC-TOC), using tricine as co-ligand, for the detection of SSTR-positive tumours in patients in comparison with 111In-DTPA-OC. Overall, 13 patients were examined using 99mTc-tricine-HYNIC-TOC. Twelve patients had proven SSTR-positive tumours, while one patient presented with an SSTR-negative tumour. In 9 of the 13 patients both tracers (99mTc-tricine-HYNIC-TOC and 111In-DTPA-OC) were used. Serial whole-body scans, spot views and/or single-photon emission tomography studies were performed. Images were qualitatively and semi-quantitatively (ROI analyses) evaluated. The biodistribution of 99mTc-tricine-HYNIC-TOC in patients showed high physiological uptake in kidneys, moderate uptake in liver and spleen and little uptake in the gut. The tracer showed predominantly renal and negligible hepatobiliary excretion. Known SSTR-positive tumour sites showed rapid and intense tracer accumulation. 99mTc-tricine-HYNIC-TOC demonstrated rapid tissue uptake within the first hour after injection and had basically no significant clearance (<20%) from normal or tumour tissue thereafter. In contrast, 111In-DTPA-OC showed continuous clearance from normal tissues as well as renal and very little hepatobiliary excretion. Nevertheless, the patterns of accumulation of 99mTc-tricine-HYNIC-TOC in tumours and normal organs were comparable to those of 111In-DTPA-OC. A lesion-by-lesion comparison showed comparable tumour detection capabilities in intrahepatic tumour sites and superior capabilities of 99mTc-tricine-HYNIC-TOC in respect of extrahepatic lesions. In conclusion, 99mTc-tricine-HYNIC-TOC shows promise as a tracer for SSTR imaging, given its favourable clinical characteristics (specific and high receptor affinity, good biodistribution, renal excretion, low radiation exposure, high imaging quality, on-demand availability) and cost-effectiveness. 99mTc-tricine-HYNIC-TOC allows earlier diagnosis (10 min-4 h) compared with 111In-DTPA-OC (4-24 h).  相似文献   

5.
BACKGROUND: Therapeutic doses with Indium-111 (In-111)-DTPA-Octreotide are currently used in patients with somatostatin receptor positive tumours. It may result in tumour regression in some patients and this effect is ascribed to cell and receptor specific cytotoxicity by Auger or conversion electrons. Personnel being involved in this treatment may receive high radiation doses due to the emission of 173 keV and 247 keV photons. The aim of the present study was to assess the radiation dose to the personnel at different time intervals during treatment with Indium-111 Octreotide. METHODS: Five consecutive patients suffering from a neuroendocrine tumour were included in this dosimetry study. In total, 18 treatments with Indium-111 Octreotide have been given with a mean dose of 8000 MBq every three weeks. Three dosimeters (whole body, left and right hand) and a dose rate monitor were used to register doses and dose rates during labelling, administration and in-patient follow-up and whole body scintigraphy. These procedures were performed by a pharmacist, a nuclear physician and a technologist, respectively. RESULTS: The whole body dose received during the labelling procedure was 5 microSv. The mean total exposure time during administration, whole body scintigraphy and clinical follow-up was 47 minutes revealing a mean whole body dose of 45 microSv. The mean radiation dose to the hands was 60 microSv per treatment. CONCLUSIONS: The radiation risk to staff members and technologists seems to be very low during in-patient treatments with high dose Indium-111 Octreotide. According to the safety regulations no special radiation protection measures or personal dosimetry is required.  相似文献   

6.
The therapeutic effects of peptide receptor-based radionuclide therapy are extensively being investigated in rats bearing tumors. Both the dose to the tumor and the therapy-limiting dose to normal tissues, such as kidneys and bone marrow, are of interest for these preclinical studies. The aim of this work was to develop a generalized computational model for internal dosimetry in rats. METHODS: Mature rats were dissected and the relative positions, dimensions, and weights of all of their major organs were measured. A mathematic model was set up for the rat body and its internal organs to enable Monte Carlo radiation transport calculations to determine estimates for both tumor and organ self-doses as cross-organ doses for (90)Y, (111)In, and (177)Lu. The organs and body were mostly of ellipsoid shape with the axes given as the measured length, width, and height normalized to values that, together with the measured weights, are consistent with the recommended soft-tissue and bone densities. A spheric tumor of 0.25 g was positioned on the right femur. Calculations were performed with the Monte Carlo neutral particle transport code MCNP for the beta-emitters (maximum energy, 2.28 MeV) and (177)Lu (maximum energy, 0.497 MeV) and for the gamma-emissions from (177)Lu and from (111)In. The presented absorbed dose S values are used to calculate the absorbed dose estimates for the rat organs in a study on the biodistribution of (177)Lu-DOTA-Tyr(3)-octreotate (DOTA is 1,4,7,10-tetraazadodecane-N,N',N",N"'-tetraacetic acid). Three activity distributions were considered in the kidney: uniform in the whole kidney, in the cortex, or in the outer 1-mm-thick rim of the cortex. Isodose curves and dose volume histograms were calculated for the dose distribution to the kidneys. RESULTS: Depending on the activity distribution in the kidneys, the renal dose for (177)Lu-DOTA-Tyr(3)-octreotate is 0.13-0.17 mGy/MBq. CONCLUSION: The renal dose of 70-95 Gy for an injected activity of 555 MBq will likely cause radiation damage, although the higher amount of peptide with this activity may influence the dosimetry by partial receptor saturation. Dose volume histograms show that (111)In and (177)Lu are likely to have a higher threshold for renal damage than (90)Y.  相似文献   

7.
Twenty-seven patients with acute leukemia were examined at the time of diagnosis with MR imaging and in vivo T1 relaxation time measurements of the hemopoietic bone marrow. A 1.5 T whole body magnetic resonance scanner was used. Twenty of the patients had follow-up examinations in relation to chemotherapy. Bone marrow biopsies from the posterior iliac crest were obtained within a short time interval of all MR examinations. At the time of diagnosis, T1 relaxation times were increased significantly in all the leukemic patients, compared with 24 age-matched controls. A decrease in T1 relaxation time towards or into the normal range was observed in 10 patients who obtained remission. The T1 relaxation time remained prolonged in 6 patients who failed to obtain remission during chemotherapy. Four patients, who obtained remission with concomitant decrease of T1 values towards or into the normal range, also showed prolongation of T1 relaxation time in relation to leukemic relapse. The results indicate that changes observed in T1 relaxation times of the hemopoietic bone marrow in patients with acute leukemia reflect changes in disease activity, and, that serial measurements of T1 values may provide clinically useful information with the possibility for identification of residual disease in regions inaccessible for biopsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号