首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of intrathecally administered arginine-vasopressin (AVP) and substance P (SP) on adrenal medullary secretion of epinephrine were examined in anesthetized Sprague-Dawley rats. Plasma epinephrine levels were measured in blood samples taken directly from the adrenal vein using a novel micropuncture technique. The blood samples (20-30 microliter in volume) were taken before, and 2 min, 15 min and 30 min after intrathecal injections of AVP, SP or vehicle only. Plasma was assayed for epinephrine using high pressure liquid chromatography. Adrenal venous epinephrine levels were not significantly altered by the intrathecal administration of AVP, thereby suggesting that adrenal epinephrine secretion is not involved in the cardiovascular responses previously reported to occur following similar doses of intrathecal AVP. Intrathecal SP administration, while causing blood pressure responses similar to those produced by AVP, resulted in significant increases in adrenal vein epinephrine. This finding suggests that activation of adrenal secretion of epinephrine may contribute to SP-initiated blood pressure changes.  相似文献   

2.
Chronic hyponatremia is known to cause inhibition of pituitary vasopressin (AVP) and oxytocin (OT) secretion in response to most physiological stimuli, as well as a marked inhibition of synthesis of these peptides. Because many studies have implicated neurohypophyseal peptides in the regulation of pituitary prolactin (PRL) secretion, we investigated the effects of chronic hyponatremia on basal and stimulus-induced PRL secretion in rats. Hyponatremia was induced by subcutaneous infusion of 1-deamino-[8-D-arginine]-vasopressin (dDAVP) (5ng/h) to rats fed a nutritionally balanced liquid diet, and plasma [Na+] was maintained ≤115 mmol/l for 10–12 days. After this period, hyponatremic rats and normonatremic controls fed the same diet without dDAVP were subjected to one of the following stimuli known to stimulate PRL release in rats: 3 min exposure to ether, hemorrhage (20 ml/kg), intravenous injection of 5-hydroxytryptophane (5-HTP, 10 mg/kg), or intravenous injection of estradiol (5 μg/kg). A baseline blood sample was collected before each stimulus, and 3–6 additional blood samples were collected at selected intervals after the stimulus. Baseline levels of plasma PRL were not different between normonatremic and hyponatremic rats. However, PRL responses induced by ether or estradiol, but not those induced by hemorrhage or 5-HTP, were very significantly blunted in the chronically hyponatremic rats. Plasma AVP and OT responses were measured as an index of magnocellular secretion, but did not correlate with the PRL responses for any of the stimuli tested. Our results therefore demonstrate that ether- and estradiol-induced PRL release can be osmotically inhibited, but the mechanisms underlying this inhibition appear to be relatively independent of effects on magnocellular AVP and OT secretion. This allows the possibility that either some parvocellular systems regulating PRL secretion are osmosensitive, or alternatively that other substances released from the neural lobe may selectively modulate pituitary PRL release in response to some, but not all, stimuli.  相似文献   

3.
The aim of the present investigations was to study the influence of substance P (a member of a family of peptides known as tachykinins) on basal and K(+)-evoked vasopressin (AVP) and oxytocin (OT) release from rat hypothalamo-neurohypophysial system in vitro as well as to determine whether this effect of substance P is sensitive to melatonin.The present results show that substance P stimulates basal AVP and OT release from isolated hypothalamo-neurohypophysial system, when used at the concentrations of 10(-6) and 10(-7)M/l. At the concentration of 10(-9)M/l, however, substance P was found to stimulate the in vitro secretion of AVP, but not that of OT. Melatonin diminished basal release of AVP; it also significantly inhibited the substance P-stimulated secretion of AVP and OT. K(+)-evoked release of the neurohypophysial hormones was not further modified by either substance P or melatonin.The present results show that the stimulatory effect of substance P on basal release of AVP and OT from rat hypothalamo-neurohypophysial system in vitro is sensitive to inhibitory influence of melatonin.  相似文献   

4.
Naloxone, an opiate receptor antagonist, was used to determine whether opioid peptides modulate release of oxytocin (OT) or vasopressin (AVP) in the rat after expulsion of the fetus, i.e. parturition. We measured the concentrations of AVP and OT in plasma and in the neurointermediate lobe of the pituitary of pregnant rats given naloxone (5 mg/kg, s.c.) or saline on day 20 of gestation, and on day 21 either before or during the expulsive stage of labor. Non-pregnant rats in diestrus were giben naloxone for comparison. On days 20 and 21 of gestation, before the onset of parturition, plasma [AVP] but not [OT] was elevated, compared to the non-pregnant controls. After delivery of the first two pups, plasma [OT] approximatelyy doubled, whereas plasma [AVP] remained unchanged. Blocking the action of endogenous opioid peptides with naloxone caused an elevation of plasma [OT] in pregnant animals on days 20 and 21 of gestation and during parturition. Naloxone, however, did not alter plasma [AVP] in either parturient or preparturient animals. In contrast, [AVP], but not [OT], was increased in plasma of non-pregnant rats given naloxone. The content of OT in the neuro-intermediate lobe was similar in pregnant and non-pregnant rats and was unaffected delivery of the first two pups. However, AVP content and the ratio of AVP/OT in the pituitary were lower in pregnant animals before during delivery than in the non-pregnant controls. The content of neither hormone was altered by naloxone. Thus, AVP release apparently increase and pituitary stores of this peptide are decreased by day 20 gestation, when labor has not yet begun. In contrast, OT secretion becomes elevated only during delivery. Inhibition of OT release by opioid peptides may: (1) allow preferential release of AVP during pregnancy; and (2) prevent depletion of pituitary stores of OT and neuronal fatigue during the 1–2 h period of parturition in the rat.  相似文献   

5.
Oxytocin (OT) effect on ghrelin-stimulated neuropeptide Y (NPY) secretion was evaluated in 12 normal men. Tests: ghrelin (1 mug/kg B.W. as an intravenous bolus); OT (2 mIU/min infusion); ghrelin plus OT; normal saline. Plasma NPY did not change during saline or OT infusions, whereas it showed a significant 29% increase vs baseline at 15 min after ghrelin injection. When OT was present, ghrelin-induced NPY increment was completely abolished. Results show that oxytocin modulates the NPY response to ghrelin, whereas it is unable to produce direct inhibitions of basal circulating NPY levels.  相似文献   

6.
《Neuropeptides》2014,48(6):387-397
Galanin (Gal) and galanin-like peptide (GALP) may be involved in the mechanisms of the hypothalamo-neurohypophysial system. The aim of the present in vitro study was to compare the influence of Gal and GALP on vasopressin (AVP) and oxytocin (OT) release from isolated rat neurohypophysis (NH) or hypothalamo-neurohypophysial explants (Hth–NH). The effect of Gal/GALP on AVP/OT secretion was also studied in the presence of galantide, the non-selective galanin receptors antagonist.Gal at concentrations of 10−10 M and 10−8 M distinctly inhibited basal and K+-stimulated AVP release from the NH and Hth–NH explants, whereas Gal exerted a similar action on OT release only during basal incubation. Gal added to the incubation medium in the presence of galantide did not exert any action on the secretion of either neurohormone from NH and Hth–NH explants.GALP (10−10 M and 10−9 M) induced intensified basal AVP release from the NH and Hth–NH complex as well as the release of potassium-evoked AVP from the Hth–NH. The same effect of GALP has been observed in the presence of galantide. GALP added to basal incubation medium was the reason for stimulated OT release from the NH as well as from the Hth–NH explants. However, under potassium-stimulated conditions, OT release from the NH and Hth–NH complexes has been observed to be distinctly impaired. Galantide did not block this inhibitory effect of GALP on OT secretion.It may be concluded that: (i) Gal as well as GALP modulate AVP and OT release at every level of the hypothalamo-neurohypophysial system; (ii) Gal acts in the rat central nervous system as the inhibitory neuromodulator for AVP and OT release via its galanin receptors; (iii) the stimulatory effect of GALP on AVP and OT release is likely to be mediated via an unidentified specific GALP receptor(s).  相似文献   

7.
The present study investigated the involvement of the oxytocinergic neurones that project into the central amygdala (CeA) in the control of electrolyte excretion and hormone secretion in unanaesthetised rats subjected to acute hypertonic blood volume expansion (BVE; 0.3 M NaCl, 2 ml/100 g of body weight over 1 min). Oxytocin and vasopressin mRNA expression in the paraventricular (Pa) and supraoptic nucleus (SON) of the hypothalamus were also determined using the real time‐polymerase chain reaction and in situ hybridisation. Male Wistar rats with unilaterally implanted stainless steel cannulas in the CeA were used. Oxytocin (1 μg/0.2 μl), vasotocin, an oxytocin antagonist (1 μg/0.2 μl) or vehicle was injected into the CeA 20 min before the BVE. In rats treated with vehicle in the CeA, hypertonic BVE increased urinary volume, sodium excretion, plasma oxytocin (OT), vasopressin (AVP) and atrial natriuretic peptide (ANP) levels and also increased the expression of OT and AVP mRNA in the Pa and SON. In rats pre‐treated with OT in the CeA, previously to the hypertonic BVE, there were further significant increases in plasma AVP, OT and ANP levels, urinary sodium and urine output, as well as in gene expression (AVP and OT mRNA) in the Pa and SON compared to BVE alone. Vasotocin reduced sodium, urine output and ANP levels, although no changes were observed in plasma AVP and OT levels or in the expression of the AVP and OT genes in both hypothalamic nuclei. The results of the present study suggest that oxytocin in the CeA exerts a facilitatory role in the maintenance of hydroelectrolyte balance in response to changes in extracellular volume and osmolality.  相似文献   

8.
The endocannabinoid system includes important signaling molecules that are involved in several homeostatic and neuroendocrine functions. In the present study, we evaluated the effects of the type 1 cannabinoid (CB1) receptor antagonist, rimonabant (10 mg/kg, p.o.), on hormone secretion, neuronal activation and mRNA expression in the hypothalamus following isotonic (I-) or hypertonic (H-) extracellular volume expansion (EVE). The total nitrate content in the PVN and SON was also assessed under the same experimental conditions. Our results showed that OT and AVP plasma concentrations were increased in response to H-EVE, while decreased AVP levels were found following I-EVE. Accordingly, both I- and H-EVE stimulated oxytocinergic neuronal activation, as evidenced by the increased number of c-Fos/OT double labeled neurons in the hypothalamus. The vasopressinergic cells of the PVN and SON, however, were only activated in response to H-EVE. Furthermore, increased amounts of both AVP and OT mRNAs were found in the hypothalamus following EVE. Pretreatment with rimonabant significantly potentiated hormone secretion and also vasopressinergic and oxytocinergic neuronal activation induced by EVE, although decreased AVP and OT mRNA expression was found in the hypothalami of rimonabant pretreated groups. In addition, the nitrate content in the PVN and SON was not altered in response to EVE or rimonabant pretreatment. Taken together, these results suggest that the CB1 receptor may modulate several events that contribute to the development of appropriate responses to increased fluid volume and osmolality.  相似文献   

9.
The present study evaluated the involvement of glucocorticoid in the activation of vasopressinergic and oxytocinergic neurons of hypothalamic nuclei and plasma levels of vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP) and corticosterone (CORT) in response to both isotonic and hypertonic blood volume expansion (BVE). Rats were subjected to isotonic (0.15 M NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 M NaCl, 2 ml/100 g b.w., i.v.) BVE with or without pre-treatment with dexamethasone (1 mg/kg, i.p.). Results showed that isotonic BVE increased OT, ANP and CORT, and decreased AVP plasma levels. On the other hand, hypertonic BVE enhanced AVP, ANP, OT, and CORT plasma concentrations. Both hypertonic and isotonic BVE induced an increase in the number of Fos-OT double-labeled magnocellular neurons in the PVN and SON. Pre-treatment with dexamethasone reduced OT secretion, as well as Fos-OT immunoreactive neurons in response to both isotonic and hypertonic BVE. We also observed that dexamethasone pre-treatment had no effect on AVP secretion in response to hypertonic BVE, although this effect was associated with a blockade of Fos expression in the vasopressinergic magnocellular neurons in the PVN and SON. In conclusion, these data suggest that, not only the rapid OT release from storages, but also the oxytocinergic cellular activation induced by BVE are modulated by glucocorticoids. However, this pattern of response was not observed for AVP cells, suggesting that dexamethasone is not likely to influence rapid release of AVP but seems to modulate the activation of these neurons in response to hypertonic BVE.  相似文献   

10.
V Coiro  P Chiodera 《Brain research》1989,491(1):169-172
The present study was carried out in order to determine whether angiotensin II (ANG II) exerts its stimulatory effect on plasma concentration of arginine vasopressin (AVP) and adrenocorticotrophic hormone (ACTH) by interacting with a (gamma-aminobutyric acid) GABAergic pathway. For this purpose, the effect of the GABAergic agonist sodium valproate (600 mg in 3 divided doses p.o.) on the ACTH and AVP responses to ANG II (infusion for 60 min of successively increasing doses of 4, 8 and 16 ng/kg min; each dose for 20 min) administration was evaluated in 7 normal men. In all subjects control ANG II tests were performed with a placebo instead of sodium valproate. ANG II induced a significant increase of AVP at 60 min and ACTH at 90 min after the beginning of infusion. The pretreatment with sodium valproate reduced significantly both ANG II-induced AVP and ACTH rises, without changing the time course of the hormonal responses. These data suggest the involvement of a GABAergic mechanism in regulation of both AVP and ACTH responses to ANG II in man.  相似文献   

11.
Naloxone, an opiate receptor antagonist, was used to determine whether opioid peptides modulate release of oxytocin (OT) or vasopressin (AVP) in the rat after expulsion of the fetus, i.e. parturition. We measured the concentrations of AVP and OT in plasma and in the neurointermediate lobe of the pituitary of pregnant rats given naloxone (5 mg/kg, s.c.) or saline on day 20 of gestation, and on day 21 either before or during the expulsive stage of labor. Non-pregnant rats in diestrus were given naloxone for comparison. On days 20 and 21 of gestation, before the onset of parturition, plasma [AVP] but not [OT] was elevated, compared to the non-pregnant controls. After delivery of the first two pups, plasma [OT] approximately doubled, whereas plasma [AVP] remained unchanged. Blocking the action of endogenous opioid peptides with naloxone caused an elevation of plasma [OT] in pregnant animals on days 20 and 21 of gestation and during parturition. Naloxone, however, did not alter plasma [AVP] in either parturient or preparturient animals. In contrast, [AVP], but not [OT], was increased in plasma of non-pregnant rats given naloxone. The content of OT in the neuro-intermediate lobe was similar in pregnant and non-pregnant rats and was unaffected by delivery of the first two pups. However, AVP content and the ratio of AVP/OT in the pituitary were lower in pregnant animals before and during delivery than in the non-pregnant controls. The content of neither hormone was altered by naloxone. Thus, AVP release apparently increases and pituitary stores of this peptide are decreased by day 20 of gestation, when labor has not yet begun.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Of heuristic value in understanding the neurochemistry of major depression is whether the hypothalamo-pituitary-adrenocortical (HPA) axis hyperactivity that occurs in this illness can be related to putative neurotransmitter dysfunction(s). Cholinergic neurotransmission stimulates hypothalamic corticotropin releasing hormone (CRH) and arginine vasopressin (AVP) secretion, both of which stimulate pituitary corticotropin (ACTH) secretion, but whether the HPA axis in humans is activated only by doses of cholinergic agonists that produce noxious side effects remains controversial. To test the hypothesis of increased cholinergic sensitivity in major depression, physostigmine (PHYSO), a reversible cholinesterase inhibitor, was administered to patients and control subjects at a dose that elevated plasma ACTH, cortisol, and AVP concentrations but produced few or no side effects. Exogenous AVP also was administered to determine if it would augment the effect of low-dose PHYSO on the HPA axis. Twelve premenopausal or estrogen-replaced female major depressives, 12 individually matched female control subjects, eight male major depressives, and eight matched male control subjects underwent four test sessions 5-7 days apart: PHYSO (8 microg/kg IV), AVP (0.08 U/kg IM), PHYSO + AVP, and saline control. Serial blood samples were taken before and after pharmacologic challenge and analyzed for ACTH1-39, cortisol, and AVP. Estradiol and testosterone were also measured at each test session. PHYSO (8 microg/kg) significantly increased plasma ACTH, cortisol, and AVP, while producing no side effects in approximately half the subjects and predominantly mild side effects in the other half. These hormone increases following PHYSO occurred primarily in the female depressives and the male control subjects and were not significantly related to the presence or absence of side effects. The greater the ACTH and AVP responses to PHYSO, the stronger their correlation, suggesting that AVP may have been acting as a secretagogue for ACTH. Administered AVP significantly increased the secretion of ACTH in the patients and control subjects to a similar degree, and AVP given after PHYSO did not augment the HPA axis response to a greater degree in the depressives than in the control subjects. Plasma estradiol and testosterone were within the normal range for all four groups of subjects and were not significantly related to their HPA axis hormone responses. The study results support the hypothesis of heightened cholinergic sensitivity in premenopausal female, but not in male, patients with major depression. The low dose of PHYSO used may represent a useful paradigm for central cholinergic stimulation of the HPA axis.  相似文献   

13.
The recent observation that the central oxytocin (OT) receptor has high affinity for both OT and arginine vasopressin (AVP) raises the possibility that it may be involved in some of the central actions of AVP. Repeated intracerebroventricular (icv) injections of AVP in rats evoke an unusual sensitization phenomenon in that a first exposure to the peptide enhances the sensitivity (sensitization) of the brain to a second exposure. This report investigates the possibility that the OT receptor may be involved in the mediation of the phenomenon of sensitization, using OT, a specific OT receptor agonist, [Thr4, Gly7]OT, and a specific OT receptor antagonist, d(CH2)5, [Tyr(Me)2, Thr4, Tyr-NH29]OVT (compound 6; cpd 6), as well as a V1 AVP receptor antagonist, d(CH2)5Tyr(Me)AVP. Peptides were injected icv in conscious, adult male Sprague-Dawley rats. The data showed that: 1) a first icv AVP injection (10 pmol/5μl) enhanced the sensitivity of the rat brain to the motor response of a second AVP injection (10 pmol/5 μl) given 24 h later; 2) injection of d(CH2)5Tyr(Me)AVP (100 pmol/5 μl icv) but not cpd 6, (100 pmol/5 μl icv) 2 min prior to the first AVP injection, blocked AVP-induced sensitization; 3) a first injection of OT or [Thr4, Gly7]OT (10 pmol/5 μl) enhanced the sensitivity of the brain to the motor actions of a subsequent AVP injection given 24 h later; 4) the magnitude of this cross-sensitization induced by OT pretreatment varied with dose and appeared to be ten times more potent than the sensitization induced by a first AVP injection; 5) injection of cpd 6 (100 pmol/5 μl) but not d(CH2)5Tyr(Me)AVP (100 pmol/5 μl icv) 2 min prior to the first OT injection (1 pmol/5 μl) blocked the cross-sensitization induced by OT; 6) an injection of OT (100 to 1,000 pmol/5 μl) or [Thr4, Gly7]OT (10 pmol/5 μl) in rats that had been cross-sensitized with OT or [Thr4, Gly7]OT pretreatment did not evoke enhanced motor responses; 7) OT injected 2 min prior to the second AVP injection in AVP-sensitized rats did not block the enhanced AVP-induced motor responses; 8) AVP-induced [3H]inositol monophosphate accumulation in septal slices was also enhanced in rats cross-sensitized by OT pretreatment. These results suggest that while pre-exposure of the rat brain to both AVP and OT alters the responsiveness of the rat brain to subsequent AVP exposures, AVP sensitization appears to be mediated via the V1 AVP receptor, whereas cross-sensitization by OT may be mediated via the OT receptor. The ability of OT to alter the responsiveness of the rat brain to subsequent AVP injection suggests a role for this peptide in modulating central AVP actions.  相似文献   

14.
Oxytocin (OT) release within the brain is thought to play a major role in inducing maternal behaviour in a number of mammalian species but little is known about the sites of release which are important in this respect. We have investigated whether the paraventricular nucleus of the hypothalamus (PVN) is a site of OT action on maternal behaviour in the sheep. In vivo microdialysis and retrodialysis was used to determine whether OT is released in the region of the PVN during the post-partum induction of maternal behaviour and if its release at this site can stimulate maternal behaviour in non-pregnant animals. In vivo sampling showed that OT concentrations increased significantly in the region of PVN at birth. When OT was retrodialysed bilaterally into the PVN (1 or 10 μM) of multiparous ewes treated with progesterone and oestradiol to stimulate lactation, maternal behaviour was induced in a significant number of animals (1 μM, 6/8 and 10 μM, 5/8) compared with controls (0/8 ewes). Similar infusions of the ring structure of OT, tocinoic acid (TOC—10 μM), also induced maternal behaviour in a significant proportion of animals (5/6 ewes) as did intracerebroventricular (ICV) OT (6/8 ewes) and artificial stimulation of the vagina and cervix (VCS, 8/9 ewes). On the other hand, vasopressin (AVP) 1 μM did not induce maternal behaviour in any ewes and a 10 μM dose only induced it in 2/8 animals. The neurochemical changes accompanying the above treatments were also investigated. Noradrenaline concentrations increased in the PVN after the retrodialysis administration of OT 1 μM and 10 μM, TOC 10 μM and AVP 1 μM, OT ICV and VCS. Dopamine concentrations were also increased by OT 10 μM, TOC 10 μM, AVP 1 μM and OT ICV. Aspartate and glutamate concentrations were significantly reduced by retrodialysis infusions of OT 1 μM and AVP 1 and 10 μM but not by any other treatment. Finally, the retrodialysis infusions of OT and TOC, as well as ICV OT, significantly increased plasma OT release whereas AVP infusions did not. These results provide evidence that OT is released in the PVN during parturition and is important for the induction of maternal behaviour. It seems probable that OT release at this site has a positive feedback effect on both parvocellular and magnocellular OT neurones to facilitate co-ordinated OT release both in central OT terminal regions (to facilitate maternal behaviour) and peripherally into the blood (to facilitate uterine contractions/milk let down). The potential functional roles for the actions of OT on monoamine and amino acid transmitter release in the PVN are discussed.  相似文献   

15.
Alpha-2-adrenoceptor activation may lower adrenocorticotropic hormone (ACTH) by reducing secretagogue input and/or increasing the release of an inhibitory factor (CIF). To investigate this, we gave clonidine, an alpha-2-agonist, to seven horses, and collected pituitary venous blood every minute for 20 min before treatment and 40 min after treatment. Six horses were given saline vehicle. Mean secretion rates of corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP) and ACTH were calculated before and during four 5-min then two 10-min periods after clonidine or saline. Reduction in ACTH secretion without corresponding changes in CRH and/or AVP would imply the presence of CIF. Secretion rates of ACTH (P = 0.008) and AVP (P = 0.0005) fell after clonidine and remained lower than baseline values for 20 min and 10 min, respectively. The CRH secretion rate decreased slightly but not significantly after clonidine. In controls, hormone secretion rates did not alter during the experiment. Multiple linear regression showed that CRH and AVP secretion accounted for 69% (treated) or 45% (controls) of the variation in ACTH secretion (P < 0.0001 for each). CRH alone contributed 80% (treated) or 76% (controls) of the fit to this model, which is consistent with the concept that CRH 'sets the gain' of the response of corticotrophs to fluctuations in AVP. Accordingly, minute-to-minute changes in pituitary concentrations of AVP and ACTH were synchronous when all data were considered (% concordant changes: controls, 68%, P < 0.0001; treated, 76%, P < 0.0001) and the percentage of concordant movement was unaffected by clonidine (before 72%; after 73%; P = 0.80). In treated horses but not controls, the ratio between the secretion rates of ACTH and AVP fell (P = 0.009), while the ACTH : CRH ratio tended to fall after clonidine, implying reduced responsiveness to stimulation. Moreover, one horse showed a drop in ACTH and a rise in CRH and AVP secretion after clonidine. We conclude that in horses alpha-2-adrenoceptor activation lowers ACTH secretion primarily by reducing the secretion of AVP and possibly CRH. While there was some evidence that a CIF may participate in the clonidine-induced suppression of ACTH, the subtlety of the discordance between ACTH and its secretagogues in most horses and the rarity of complete dissociation indicate that it does not play a major role.  相似文献   

16.
Comparison of posterior pituitary responses to stress in rat strains with contrasting emotionality has revealed an inverse relationship between oxytocin (OT) responses and emotional reactivity. The plasma OT and arginine-vasopressin (AVP) responses to stress were determined in two psychogenetically selected strains of rat, Roman high avoidance (RHA) and Roman low avoidance (RLA), RLA's being more emotionally reactive than RHA's. Following 1 min immobilisation stress, plasma levels of OT were significantly higher in RHA's compared to RLA's. This finding correlates with the previous demonstration of a sex difference in the OT stress response, females having a higher response than males. Plasma levels of AVP were not significantly modified by immobilization in either strain of rat. However, control levels of AVP were markedly raised in both male and female RHA's.  相似文献   

17.
The effects of centrally injected orexin-A on plasma adrenocorticotropin (ACTH) and corticosterone levels and corticotropin releasing factor (CRF) and arginine vasopressin (AVP) mRNA in the parvocellular cells of the paraventricular nucleus (PVN) of the rat were investigated. In animals implanted previously with a lateral brain ventricle and femoral artery cannula, a single i.c.v. injection of orexin-A (10 microg/rat) resulted in a rapid, significant increase in plasma ACTH and corticosterone concentrations. Plasma ACTH reached a peak (12.5-fold greater than basal levels) at 30 min, which was maintained over 120 min before declining towards control levels by 240 min. Plasma corticosterone concentrations reached a peak (6.7-fold greater than basal levels) at 30 min. Orexin-A at a higher dose (30 microg/rat) also produced a rapid increase in plasma ACTH and corticosterone concentrations. The area under the curve for plasma levels of ACTH was similar for both doses of orexin-A. In a second study, orexin-A (10 microg/rat) was injected i.c.v. and brains and pituitaries were rapidly removed after 240 min. In situ hybridization histochemistry revealed that CRF and AVP mRNA levels were significantly increased in the parvocellular cells of the PVN. Pro-opiomelanocortin mRNA levels in the pituitary gland were not significantly elevated in response to orexin-A. These results suggest that orexin-A is able to act centrally to activate the hypothalamic-pituitary-adrenal axis involving stimulation of both CRF and AVP expression.  相似文献   

18.
This study aimed to evaluate the roles of metabotropic glutamate receptors (mGluRs) in the anteroventral third ventricular region (AV3V; a pivotal area for osmotic responses and PGE2 actions) in regulating AVP secretion and cardiovascular function. In conscious and unrestrained rats, we examined the effects of AV3V infusion of t-ACPD (an agonist for mGluRs) and 8-bromo (Br)-cAMP (an agonist for cAMP associated with mGluR action) on plasma and cardiovascular variables, and the effects of MCPG (an antagonist for mGluRs) on the responses to t-ACPD, PGE2, and hyperosmolality. AV3V infusion of t-ACPD or 8-Br-cAMP produced dose-dependent rises in plasma AVP, arterial pressure and heart rate after 5 or 15 min, without altering plasma osmolality, sodium, potassium or chloride. t-ACPD administration into the cerebral ventricle had no effects on the variables. The plasma AVP and arterial pressure responses to AV3V t-ACPD infusion were blocked by preadministration of MCPG 15 min before the infusion. MCPG treatment was also potent at inhibiting the augmentation of plasma AVP elicited by AV3V infusion of PGE2, although its pressor and tachycardiac actions were not influenced. MCPG application, however, had no effect on either the increases in plasma AVP or arterial pressure in response to the enhanced plasma osmolality induced by i.v. infusion of hypertonic saline or their stable levels during isotonic saline infusion. Histological analysis showed that the AV3V drug infusion sites were located in structures such as the median or medial preoptic nucleus and periventricular nucleus. These results suggest that AV3V mGluRs may act to potentiate AVP release and cardiovascular function when stimulated in the basal state, and may participate in the hormone secretion prompted by AV3V PGE2, despite probable negligible contributions to the mechanisms responsible for the PGE2 cardiovascular effects or the phenomenon provoked by osmotic load.  相似文献   

19.
Normonatremic and chronically hyponatremic rats were pretreated with naloxone (5 mg/kg) or isotonic (1 50 mM) NaCI, then were given i.v. injections of 2 M NaCl (2 ml) or were hemorrhaged (20 ml/kg). Baseline and post-stimulus blood samples were withdrawn through indwelling jugular venous catheters. Baseline levels of plasma vasopressin (AVP) and oxytocin (OT) were similar in both normonatremic and hyponatremic rats and did not change after naloxone pretreatment. Increases in plasma AVP and OT levels in response to both hypertonic saline and hemorrhage were markedly blunted in the hyponatremic rats compared to the normonatremic rats. Naloxone pretreatment caused augmented AVP and OT secretion in response to hypertonic saline stimulation and hemorrhage in both the normonatremic and hyponatremic rats; the magnitude of the naloxone augmentations in the hyponatremic rats were sufficient to normalize the OT response to hypertonic saline and both the OT and AVP responses to hemorrhage. Our results therefore suggest that endogenous opioids are likely involved in the inhibition of stimulus-induced AVP and OT release that accompanies chronic hypoosmolality.  相似文献   

20.
Role of the neurohypophysis in psychological stress   总被引:2,自引:0,他引:2  
Effects of different psychological stimuli on oxytocin (OT) and vasopressin (AVP) secretion are reviewed in animals and in humans. The secretion of neuropituitary hormones is also discussed in various psychiatric diseases such an anorexia nervosa, bipolar disorder, schizophrenia and obsessive-compulsive disorder. AVP and OT are secreted into the hypophyseal portal circulation by neurons which project from the paraventricular nucleus to the external zone of the median eminence. AVP and OT-containing neurons in the suprachiasmatic and paraventricular nuclei project to limbic areas, including the hippocampus, the subiculum, the ventral nucleus of the amygdala and the nucleus of the diagonal band. Specific AVP receptors which are pharmacologically different from the pressor and antidiuretic AVP receptors have been found in the anterior pituitary. OT receptors have been identified in a variety of forebrain sites. The neurohypophyseal secretion is regulated by the cholinergic muscarinic, histaminergic and beta-adrenergic systems. Stress alters the secretion of one or more of the hypothalamic factors which interact at the pituitary to increase the secretion of ACTH. AVP and OT have been shown to modulate the effect of Corticotropin-Releasing Factor (CRF) on ACTH secretion and appear to play a key role in mediating the ACTH response to stress. Although AVP is a relatively weak secretagogue for ACTH, it markedly potentiates the activity of CRF both in vitro and in vivo. The role of OT is more complex. In vitro, OT stimulates ACTH release at high doses whereas in human it inhibits ACTH secretion at low doses. The type of stressor appear to determine the relative importance of these secretatogues in ACTH response. Several recent studies indicate that psychological stressors display a similar degree of variety of secretagogue release patterns as was found earlier for physical stressors. A bewildering array of technique produces a bewildering array of conclusions. In rats, OT may be an important secretagogue during a novel stimulus, whereas the role for AVP is less clear. Indeed two studies out of ten suggest a stimulating role for AVP. In response to frustration and submission, OT and AVP are secreted. Regarding social isolation, results are difficult to interpret and the role of AVP could be species-dependent. In contrast plasma OT levels do not change. After restraint, ACTH release is primarily mediated by the active increase of OT and AVP does not appear to play a role. When restraint is associated with moderate levels of physical components and during immobilisation, all two secretagogs are involved in the ACTH response. With fear, ACTH response appears to be driven by OT. In humans, one study indicates that high emotionality women increase plasma OT in response to uncontrollable noise. Various neuroendocrine dysregulations have been observed in psychiatric disease. Either an increase or a decrease of the hypothalamic-pituitary-adrenal (HPA) function have been described in several illnesses. Effects of OT appear to be reciprocal to the effects of AVP. OT has been called the "amnestic" neuropeptide due to its capacity to attenuate memory consolidation and retrieval. AVP exhibits a central activating action on mood, memory and selective attention. Underweight patients with anorexia nervosa have abnormally high levels of centrally directed AVP and reduced OT levels. These modifications could enhance the retention of cognitive distortions of aversive consequences of eating. Patients with bipolar disorder show a biphasic secretion of AVP. Depressive episodes are associated with decreased vasopressinergic activity whereas manic episodes involve an increased release. AVP might be responsible for an increased catecholamine activity. In addition, lithium could act as an antagonist to AVP. In schizophrenic patients, studies using the apomorphine stimulation suggest increased oxytoninergic and decreased vasopressinergic functions. These findings are consistent with the beneficial role of AVP on schizophrenic symptoms noted in several trials. The increased OT could be responsible for "positive" symptomatology such as delusions and hallucinations. Obsessive compulsive disorder (OCD) includes a range of cognitive and behavioral disturbances that could be influenced by OT. In animals, several studies have emphasized the role of AVP in promoting repetitive grooming behaviors and maintaining conditioned response to aversive stimuli. In OCD patients, one study have reported that AVP/OT ratio was negatively correlated with symptom severity. However, an independent report found similar AVP concentrations in OC patients without a personal or family history of tic disorder and in normal subjects. Whether these modifications are only a consequence of the central disturbances or whether those peptides could participate in the pathogenesis of these affections remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号