首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. However, the mechanisms involved in matrix remodeling have not been elucidated. In this study, the authors aimed to evaluate the expression of the tissue inhibitors of matrix metalloproteinases (TIMPs) in human fibroblasts and whole tissues from IPF and normal lungs. They also determined the role of mitogen-activated protein kinase (MAPK) in TIMP3 expression. TIMP1, TIMP2, and TIMP3 were highly expressed in lung fibroblasts. Transforming growth factor (TGF)-beta1, a profibrotic mediator, induced strong up-regulation of TIMP3 at the mRNA and protein levels. The authors examined whether the MAPK pathway was involved in TGF-beta1-induced TIMP3 expression. TGF-beta1 induced the phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2. Biochemical blockade of p38 by SB203580, but not of the ERK MAPK pathway, inhibited the effect of this factor. The effect was also blocked by the tyrosine kinase inhibitor genistein and by antagonizing TGF-beta1 receptor type I (activin-linked kinase [ALK5]). In IPF tissues TIMP3 gene expression was significantly increased and the protein was localized to fibroblastic foci and extracellular matrix. Our findings suggest that TGF-beta1-induced TIMP3 may be an important mediator in lung fibrogenesis.  相似文献   

2.
3.
4.
5.
6.
T Mio  S Nagai  M Kitaichi  A Kawatani  T Izumi 《Chest》1992,102(3):832-837
We compared the doubling time of fibroblasts derived from idiopathic pulmonary fibrosis (usual interstitial pneumonia) (IPF [UIP]) lung tissues and control fibroblasts, cultured in usual growth medium, and examined the response of these fibroblasts to platelet-derived growth factor (PDGF) and prostaglandin E2 (PGE2). Ten fibroblast lines from open lung biopsy specimens of patients with IPF (UIP) and ten control fibroblast lines from surgically resected lung tissue of patients with limited lung diseases were established. The average doubling time of fibroblast lines was 32.0 +/- 6.0 h (mean +/- SD) in UIP and 33.2 +/- 10.4 h in controls, showing no difference between the two groups. To examine the responses of fibroblasts to PDGF and PGE2 and the differences between fibroblasts derived from fibrotic tissues with different intensity of fibrosis, lung specimens from five patients with IPF were subdivided into two groups, higher-intensity fibrotic lesions (H) and lower-intensity fibrotic lesions (L). The fibroblast lines were established separately. 3H-thymidine uptake with or without PDGF or PGE2 was examined. Results were expressed as the index of thymidine incorporation into the fibroblasts. There were no differences in the doubling times and the responses to PDGF and PGE2 between H and L. There were no differences between control and H regarding their response to PDGF. In response to PGE2, the growth inhibition for H was significantly decreased compared with the control (p less than 0.05). There was no difference in growth inhibition between H and L. The finding that PGE2 inhibits fibroblast proliferation less in UIP lung tissue suggests that fibroblasts from UIP were functionally altered cells or, to some extent, out of normal regulation. These results suggest an abnormal proliferation of fibroblasts observed in IPF (UIP).  相似文献   

7.
RATIONALE: Myofibroblasts are primary effector cells in idiopathic pulmonary fibrosis (IPF). Defining mechanisms of myofibroblast differentiation may be critical to the development of novel therapeutic agents. OBJECTIVE: To show that myofibroblast differentiation is regulated by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) activity in vivo, and to identify a potential mechanism by which this occurs. METHODS: We used tissue sections of surgical lung biopsies from patients with IPF to localize expression of PTEN and alpha-smooth muscle actin (alpha-SMA). We used cell culture of pten(-/-) and wild-type fibroblasts, as well as adenoviral strategies and pharmacologic inhibitors, to determine the mechanism by which PTEN inhibits alpha-SMA, fibroblast proliferation, and collagen production. RESULTS: In human lung specimens of IPF, myofibroblasts within fibroblastic foci demonstrated diminished PTEN expression. Furthermore, inhibition of PTEN in mice worsened bleomycin-induced fibrosis. In pten(-/-) fibroblasts, and in normal fibroblasts in which PTEN was inhibited, alpha-SMA, proliferation, and collagen production was upregulated. Addition of transforming growth factor-beta to wild-type cells, but not pten(-/-) cells, resulted in increased alpha-SMA expression in a time-dependent fashion. In pten(-/-) cells, reconstitution of PTEN decreased alpha-SMA expression, proliferation, and collagen production, whereas overexpression of PTEN in wild-type cells inhibited transforming growth factor-beta-induced myofibroblast differentiation. It was observed that both the protein and lipid phosphatase actions of PTEN were capable of modulating the myofibroblast phenotype. CONCLUSIONS: The results indicate that in IPF, myofibroblasts have diminished PTEN expression. Inhibition of PTEN in vivo promotes fibrosis, and PTEN inhibits myofibroblast differentiation in vitro.  相似文献   

8.
三种细胞因子表达在特发性肺纤维化中的作用   总被引:2,自引:0,他引:2  
目的 观察血小板衍生的生长因子(PDGF)、AA、BB及转化生长因子(TGF)β在特发性肺间质纤维化(IPF)支气管灌洗细胞及开胞肺活检标本的蛋白及基因表达,探索其在IPF发病中的作用。方法 用免疫组化方法检测7例IPF患支气管灌洗细胞PDGF,TGF-β蛋白和基因的表达。结果 在肺间质纤维化患支气管灌洗细胞中,PDGF-AA,PDGF-BB〉TGF-β均定位于肺泡巨噬细胞。三种不同的细胞因子  相似文献   

9.
Hepatocyte growth factor (HGF) is a growth factor that protects alveolar epithelial cells from pulmonary fibrosis in various animal models. We compared in vitro HGF production by human lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF, n = 8) and from control subjects (n = 6). Basal HGF secretion by IPF fibroblasts was decreased by 50% when compared with control fibroblasts (p < 0.05). HGF was secreted mainly in the cleaved mature form, both in IPF and control fibroblasts. HGF messenger RNA levels were reduced in IPF fibroblasts. Prostaglandin (PG) E2 secretion by IPF fibroblasts was low when compared with control subjects (p < 0.05). After the addition of PGE2 (10-6 M) or dibutyryl cyclic AMP (10-3 M), HGF secretion by IPF fibroblasts reached the level of control subjects. Inhibition of PGE2 synthesis with indomethacin reduced HGF secretion by control fibroblasts but had no effect on IPF fibroblasts. HGF secretion by control fibroblasts was also slightly inhibited by transforming growth factor (TGF)-beta1 and stimulated by anti-TGF-beta antibody, whereas both agents had no effect on IPF fibroblasts. Our results demonstrate a defect in HGF production by IPF fibroblasts that seems secondary to a defect in PGE2 secretion.  相似文献   

10.
细胞因子在特发性肺间质纤维化血管生成中的作用   总被引:1,自引:0,他引:1  
Cao B  Guo Z  Xu W  Zhu Y 《中华内科杂志》1999,38(12):814-816
目的 通过研究特发性肺间质纤维化(IPF)患者开胸肺活检标本中胰岛素样生长因子(IGF)-Ⅰ和血小板衍生长因子(PDGF)的表达,进一步阐明它们在IPF过程中的作用。方法 采用免疫组化和原位杂交方法,分别利用IGF-Ⅰ和PDGF的特异抗体和特异引物,检测其在IPF患者开胸肺活检标本中的要布和表达。结果 在IPF患者中,IGF-Ⅰ主要分布在肺动脉血管、新生血管的平涌肌细胞和内皮细胞。肺泡巨噬细胞、Ⅱ  相似文献   

11.
Collagen accumulation is a major feature of pulmonary fibrosis and other fibrotic lesions. We have studied the synthesis of collagens in fibroblasts cultured from normal and fibrotic human lung specimens and evaluated how it is affected by transforming growth factor-beta (TGF-beta). Fibroblasts were obtained from normal and fibrotic adult human lungs (n = 11; normal = 6, idiopathic pulmonary fibrosis = 5). They were exposed to TGF-beta and pulse-labeled with [3H]proline and [3H]glycine. Collagen production was measured as bacterial collagenase-susceptible radioactivity, and collagen mRNA levels were determined by a solution hybridization assay using labeled procollagen alpha 1[I] cDNA clone HF677 as probe. Synthesis of collagen types I, III, and V were assessed after separating them by DEAE-cellulose chromatography and SDS-polyacrylamide gel electrophoresis. The results showed that both normal and fibrotic lung fibroblasts synthesized similar amounts of collagen. Type I was the major collagen species synthesized by both normal and fibrotic cell types, and the relative proportion of type I, III, and V collagens was similar in both cell types. TGF-beta caused a two to fourfold increase in stimulation of collagen production and collagen mRNA levels, and no differences were detected in the response of normal and fibrotic lung fibroblasts. All collagen types were stimulated by the TGF-beta. TGF-beta did not increase fibroblast proliferation and the majority of normal and fibrotic lung cells exposed to TGF-beta remained in G1 phase of the cell cycle. We conclude that fibroblasts of normal and fibrotic human synthesize similar amounts of collagens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, we demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, we now demonstrate the presence of transforming growth factor beta 1 (TGF-beta 1), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-beta 1 may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-beta 1 is the alveolar macrophage, and we demonstrate the expression of abundant TGF-beta 1 mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.  相似文献   

13.
A Pardo  M Selman  R Ramírez  C Ramos  M Monta?o  G Stricklin  G Raghu 《Chest》1992,102(4):1085-1089
Several experiments have demonstrated low collagenolytic activity during the development of pulmonary fibrosis. In order to determine if fibroblasts play a role in this alteration, procollagenase and tissue inhibitor of metalloproteinases (TIMP) were quantified in fibroblasts derived from 12 human lung specimens (normal = 6, idiopathic pulmonary fibrosis [IPF] = 6). Under basal conditions, three cell strains from normal and three from fibrotic lung specimens did not synthesize collagenase and a similar number of normal and IPF-derived fibroblast strains produced the enzyme. However, the rate of enzyme synthesis among normal and fibrotic collagenase producing fibroblasts exhibited significant differences. Thus, whereas normal fibroblasts produced more than 300 ng/ml, fibrotic lung fibroblasts secreted approximately half of this amount (115 +/- 67 ng/ml). Phorbol myristate acetate (PMA) enhanced collagenase production in all of the 12 lung fibroblast lines tested. In four IPF fibroblasts, PMA increased collagenase secretion close to those of normal stimulated lung fibroblasts; however, a lower induction was observed in cell strains from two fibrotic lung specimens. There was a wide variation in TIMP production both in normal and fibrotic lung fibroblasts, and no statistically significant difference was observed. Under basal conditions, TIMP levels ranged from 329 to 16,911 ng/ml in normal lung cells, and from 377 to 17,557 in fibrotic lung fibroblasts. PMA induced a severalfold increase in all cell lines. These results suggest that there are subpopulations of lung fibroblasts with different potential to produce collagenase and TIMP in vitro, and that the predominance of low collagenase-producing subsets may contribute to the development of fibrosis.  相似文献   

14.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an appalling prognosis. The failure of anti-inflammatory therapies coupled with the observation that deranged epithelium overlies proliferative myofibroblasts to form the fibroblastic focus has lead to the emerging concept that IPF is a disease of deregulated epithelial-mesenchymal crosstalk. IPF is triggered by an as yet unidentified alveolar injury that leads to activation of transforming growth factor-β (TGF-β) and alveolar basement membrane disruption. In the presence of persisting injurious pathways, or disrupted repair pathways, activated TGF-β can lead to enhanced epithelial apoptosis and epithelial-to-mesenchymal transition (EMT) as well as fibroblast, and fibrocyte, transformation into myofibroblasts which are resistant to apoptosis. The resulting deposition of excess disrupted matrix by these myofibroblasts leads to the development of IPF.  相似文献   

15.
The expression of renin-angiotensin system components and the elevation of angiotensin-converting enzyme (ACE) in a number of fibrotic lung diseases suggests angiotensin II (AII) could play a role in the pathogenesis of pulmonary fibrosis. However, the effect of AII on lung fibroblasts has not previously been assessed and the mechanisms by which AII induces cell proliferation in mesenchymal cells are not fully understood. We have examined the ability of AII to stimulate fetal and adult human lung fibroblast proliferation in vitro. In particular, we have assessed the receptor subtypes involved and the possible autocrine role of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF), two recognized fibroblast mitogens. Angiotensin type 1 (AT1), but not type 2, receptors were identified on fetal and adult human lung fibroblasts by immunocytochemistry. AII (1 microM) increased DNA synthesis (determined by [(3)H]thymidine incorporation) in fetal and adult cells by 211 +/- 18% and 150 +/- 14%, respectively (p < 0.01), and was inhibited by a specific AT1 receptor antagonist, Losartan (74 +/- 14%). A proliferative response to AII was confirmed by direct cell counts. Subsequently, fibroblasts were incubated with neutralizing antibodies to TGF-beta and PDGF. Anti-TGF-beta antibodies inhibited AII-induced DNA synthesis by 73 +/- 13%. However, no effect was seen with anti-PDGF antibodies. In conclusion, we have shown that angiotensin II induces human lung fibroblast proliferation in vitro via activation of the AT1 receptor and involves the autocrine action of TGF-beta.  相似文献   

16.
Evolving concepts of apoptosis in idiopathic pulmonary fibrosis   总被引:1,自引:0,他引:1  
Idiopathic pulmonary fibrosis (IPF) is a chronic, relentlessly progressive fibrosing disease of the lung of unknown etiology. Significant progress has been made in recent years in elucidating key aspects of the pathobiology of IPF. Insights into disease pathogenesis have come from studies of cell biology, growth factor/cytokine signaling, animal models of pulmonary fibrosis, and human IPF cells and tissue. A consistent finding in the ultrastructural pathology of IPF is alveolar epithelial cell injury and apoptosis. Another consistent finding in the histopathology of human IPF, described as usual interstitial pneumonia, is the accumulation of aggregates of myofibroblasts in fibroblastic foci. The extent or profusion of fibroblastic foci in lung biopsies is strongly correlated with increased mortality in patients with IPF. There is emerging evidence that myofibroblasts in IPF/usual interstitial pneumonia, both in the in vivo microenvironment and during the process of differentiation in vitro, acquire resistance to apoptosis. Here, we review the current evidence and mechanisms for this apparent "apoptosis paradox" in the pathogenesis of IPF.  相似文献   

17.
Background[18F]-2-fluoro-2-deoxyglucose (FDG)-PET scan uptake is increased in areas of fibrosis and honeycombing in patients with idiopathic pulmonary fibrosis (IPF). Glucose transporter-1 (Glut-1) is known to be the main transporter for FDG. There is a paucity of data regarding the distribution of Glut-1 and the cells responsible for FDG binding in fibrotic lung diseases.MethodsWe applied immunofluorescence to localize Glut-1 in normal, IPF, and Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis lung tissue specimens as well as an array of 19 different lung neoplasms. In addition, we investigated Glut-1 expression in inflammatory cells from BAL fluid (BALF) from healthy volunteers, subjects with IPF, and subjects with HPS pulmonary fibrosis.ResultsIn normal lung tissue, Glut-1 immunoreactivity was seen on the surface of erythrocytes. In tissue sections from fibrotic lung diseases (IPF and HPS pulmonary fibrosis), Glut-1 immunoreactivity was present on the surface of erythrocytes and inflammatory cells. BALF inflammatory cells from healthy control subjects showed no immunoreactivity; BALF cells from subjects with IPF and HPS pulmonary fibrosis showed Glut-1 immunoreactivity associated with neutrophils and alveolar macrophages.ConclusionsGlut-1 transporter expression in normal lung is limited to erythrocytes. In fibrotic lung, erythrocytes and inflammatory cells express Glut-1. Together, these data suggest that FDG-PET scan uptake in IPF could be explained by enhanced inflammatory and erythrocytes uptake due to neovascularization seen in IPF and not an upregulation of metabolic rate in pneumocytes. Thus, FDG-PET scan may detect inflammation and neovascularization in lung fibrosis.  相似文献   

18.
In addition to parenchymal fibrosis, fibrotic remodeling of the distal airways has been reported in interstitial lung diseases. Mechanisms of airway wall remodeling, which occurs in a variety of chronic lung diseases, are not well defined and current animal models are limited. The authors quantified airway remodeling in lung sections from subjects with idiopathic pulmonary fibrosis (IPF) and controls. To investigate intratracheal bleomycin as a potential animal model for fibrotic airway remodeling, the authors evaluated lungs from C57BL/6 mice after bleomycin treatment by histologic scoring for fibrosis and peribronchial inflammation, morphometric evaluation of subepithelial connective tissue volume density, TUNEL (terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling) assay, and immunohistochemistry for transforming growth factor β1 (TGFβ1), TGFβ2, and the fibroblast marker S100A4. Lung mechanics were determined at 3 weeks post bleomycin. IPF lungs had small airway remodeling with increased bronchial wall thickness compared to controls. Similarly, bleomycin-treated mice developed dose-dependent airway wall inflammation and fibrosis and greater airflow resistance after high-dose bleomycin. Increased TUNEL(+) bronchial epithelial cells and peribronchial inflammation were noted by 1 week, and expression of TGFβ1 and TGFβ2 and accumulation of S100A4(+) fibroblasts correlated with airway remodeling in a bleomycin dose-dependent fashion. IPF is characterized by small airway remodeling in addition to parenchymal fibrosis, a pattern also seen with intratracheal bleomycin. Bronchial remodeling from intratracheal bleomycin follows a cascade of events including epithelial cell injury, airway inflammation, profibrotic cytokine expression, fibroblast accumulation, and peribronchial fibrosis. Thus, this model can be utilized to investigate mechanisms of airway remodeling.  相似文献   

19.
Mechanisms leading to fibroblast accumulation during pulmonary fibrogenesis remain unclear. Although there is in vitro evidence of lung alveolar epithelial-to-mesenchymal transition (EMT), whether EMT occurs within the lung is currently unknown. Biopsies from fibrotic human lungs demonstrate epithelial cells with mesenchymal features, suggesting EMT. To more definitively test the capacity of alveolar epithelial cells for EMT, mice expressing beta-galactosidase (beta-gal) exclusively in lung epithelial cells were generated, and their fates were followed in an established model of pulmonary fibrosis, overexpression of active TGF-beta1. beta-gal-positive cells expressing mesenchymal markers accumulated within 3 weeks of in vivo TGF-beta1 expression. The increase in vimentin-positive cells within injured lungs was nearly all beta-gal-positive, indicating epithelial cells as the main source of mesenchymal expansion in this model. Ex vivo, primary alveolar epithelial cells cultured on provisional matrix components, fibronectin or fibrin, undergo robust EMT via integrin-dependent activation of endogenous latent TGF-beta1. In contrast, primary cells cultured on laminin/collagen mixtures do not activate the TGF-beta1 pathway and, if exposed to active TGF-beta1, undergo apoptosis rather than EMT. These data reveal alveolar epithelial cells as progenitors for fibroblasts in vivo and implicate the provisional extracellular matrix as a key regulator of epithelial transdifferentiation during fibrogenesis.  相似文献   

20.
One form of idiopathic pulmonary fibrosis (IPF), usual intersitial pneumonia (UIP) is characterized pathologically by patchily distributed fibrotic areas in apparently normal parenchyma. Excessive accumulation of collagen and fibroblasts in fibrotic areas are shown histologically. Fibroblast proliferation is generally evaluated as a process following alveolitis. However, substantial alveolitis with increased inflammatory and immune cells were not observed in our UIP cases. To evaluate the possibility that fibroblasts in UIP are controlled by mechanisms other than normal paracrine regulation, proliferative features of lung fibroblast lines from UIP lung with regular growth medium, platelet derived growth factor (PDGF) and prostaglandin E2 (PGE2) were investigated. Ten fibroblast lines from open lung biopsy specimens of patients with IPF (UIP) and 10 control fibroblast lines from surgically resected lung tissues of patients with limited lung disease were established. The doubling time of fibroblast lines with regular growth medium was UIP:32.0 +/- 6.0 hrs. (mean +/- S.D.), normal control: 33.2 +/- 10.4 hrs. There was no difference between the groups. To examine growth promotion activity by PDGF and growth inhibition by PGE2, lung specimens from 4 patients with IPF were subdivided into tissue with high intensity fibrotic lesion (H) and low intensity fibrotic lesion (L), and the fibroblast lines were established separately. 3H-thymidine uptake with or without PDGF and PGE2 was examined, and results were expressed as the stimulation index. Growth promotion by PDGF was H: 1.97 +/- 1.19, L: 1.89 +/- 0.78, normal control: 2.29 +/- 0.55. There were no differences between groups. Growth inhibition by PGE2 was H: 0.88 +/- 0.24, L: 0.69 +/- 0.49, normal control: 0.44 +/- 0.33. Growth inhibition for H was significantly lower than control (p less than 0.05). Growth inhibition for L was lower than controls, but the difference was not statistically significant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号