首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cortical connections of area V4 in the macaque   总被引:1,自引:0,他引:1  
To determine the locus, full extent, and topographic organization of cortical connections of area V4 (visual area 4), we injected anterograde and retrograde tracers under electrophysiological guidance into 21 sites in 9 macaques. Injection sites included representations ranging from central to far peripheral eccentricities in the upper and lower fields. Our results indicated that all parts of V4 are connected with occipital areas V2 (visual area 2), V3 (visual area 3), and V3A (visual complex V3, part A), superior temporal areas V4t (V4 transition zone), MT (medial temporal area), and FST (fundus of the superior temporal sulcus [STS] area), inferior temporal areas TEO (cytoarchitectonic area TEO in posterior inferior temporal cortex) and TE (cytoarchitectonic area TE in anterior temporal cortex), and the frontal eye field (FEF). By contrast, mainly peripheral field representations of V4 are connected with occipitoparietal areas DP (dorsal prelunate area), VIP (ventral intraparietal area), LIP (lateral intraparietal area), PIP (posterior intraparietal area), parieto-occipital area, and MST (medial STS area), and parahippocampal area TF (cytoarchitectonic area TF on the parahippocampal gyrus). Based on the distribution of labeled cells and terminals, projections from V4 to V2 and V3 are feedback, those to V3A, V4t, MT, DP, VIP, PIP, and FEF are the intermediate type, and those to FST, MST, LIP, TEO, TE, and TF are feedforward. Peripheral field projections from V4 to parietal areas could provide a direct route for rapid activation of circuits serving spatial vision and spatial attention. By contrast, the predominance of central field projections from V4 to inferior temporal areas is consistent with the need for detailed form analysis for object vision.  相似文献   

2.
The dorsomedial visual area (DM), a subdivision of extrastriatecortex located near the dorsal midline, is characterized byheavy myelination and a relative emphasis on peripheral vision.To date, DM remains the least understood of the three primarytargets of projections from the striate cortex (V1) in New Worldmonkeys. Here, we characterize the responses of DM neurons inanaesthetized marmosets to drifting sine wave gratings. Most(82.4%) cells showed bidirectional sensitivity, with only 6.9%being strongly direction selective. The distribution of orientationsensitivity was bimodal, with a distinct population (correspondingto over half of the sample) formed by neurons with very narrowselectivity. When compared with a sample of V1 units representinga comparable range of eccentricities, DM cells revealed a preferencefor much lower spatial frequencies, and higher speeds. End inhibitionwas extremely rare, and the responses of many cells summatedover distances as large as 30°. Our results suggest cleardifferences between DM and the two other main targets of V1projections, the second (V2) and middle temporal (MT) areas,with cells in DM emphasizing aspects of visual information thatare likely to be relevant for motor control.  相似文献   

3.
On grounds of electrophysiological mapping, cytoarchitecture, myeloarchitecture and callosal and thalamic connectivity, we have identified two cortical areas in the posterior parietal cortex of the ferret: posterior parietal caudal and rostral (PPc and PPr). These areas occupy the lateral and suprasylvian gyri, from the cingulate sulcus (medially) to the suprasylvian sulcus (laterally) and lie between visual areas 18 and 21 (posteriorly) and the somatosensory areas (anteriorly). Within both areas a coarse representation of the visual field was found and within PPr there was also a representation of the body. Each representation mirrors those within neighboring areas. Cytoarchitectonic and myeloarchitectonic fields within this cortical region did not correspond in any simple way to the physiological representations. The architectonic differences correlate to differential callosal connectivity, with predominant connectivity corresponding to the upper hemifield/head representations. PPr and PPc receive thalamic projections from a different, but overlapping, complement of thalamic nuclei. The superimposition of somatic and visual maps in PPr might relate to the probable role of this area in transforming retinal-centered to body-centered spatial coordinates. The organization of the parietal areas in the ferret resembles that of the flying fox and might unveil a common organizational plan from which the primate posterior parietal cortex evolved.  相似文献   

4.
OBJECT: The lateral occipital cortex in humans is known as the "extrastriate visual cortex." It is, however, an unexplored field of research, and the anatomical nomenclature for its surface has still not been standardized. This study was designed to investigate whether the lateral occipital cortex in humans has retinotopic representation. METHODS: Four right-handed patients with a diagnosis of intractable epilepsy from space-occupying lesions in the occipital lobe or epilepsy originating in the occipital lobe received permanently implanted subdural electrodes. Electrical cortical stimulation was applied directly applied to the brain through metal electrodes by using a biphasic stimulator. The location of each electrode was measured on a lateral skull x-ray study. Each patient considered a whiteboard with vertical and horizontal median lines. The patient was asked to look at the midpoint on the whiteboard. If a visual hallucination or illusion occurred, the patient recorded its outline, shape, color, location, and motion on white paper one tenth the size of, and with vertical and horizontal median lines similar to those on, the whiteboard. Polar angles and eccentricities of the midpoints of the phosphenes from the coordinate origin were measured on the paper. On stimulation of the lateral occipital lobe, 44 phosphenes occurred. All phosphenes were circular or dotted, with a diameter of approximately 1 cm, except one that was like a curtain in the peripheral end of the upper and lower visual fields on stimulation of the parietooccipital region. All phosphenes appeared in the visual field contralateral to the cerebral hemisphere stimulated. On stimulation of the lateral occipital lobe, 22 phosphenes moved centrifugally or toward a horizontal line. From three-dimensional scatterplots and contour maps of the polar angles and eccentricities in relation to the x-ray coordinates of the electrodes, one can infer that the lateral occipital cortex in humans has retinotopic representation. CONCLUSIONS: The authors found that phosphenes induced by electrical cortical stimulation of the lateral occipital cortex represent retinotopy. From these results one can assert that visual field representation with retinotopic relation exists in the extrastriate visual cortex.  相似文献   

5.
The anatomical and physiological substrata of eye-hand coordination during reaching were studied through combined anatomical and physiological techniques. The association connections of parietal areas V6A and PEc, and those of dorso-rostral (F7) and dorso-caudal (F2) premotor cortex were studied in monkeys, after physiological characterization of the parietal regions where retrograde tracers were injected. The results show that parieto-occipital area V6A is reciprocally connected with F7, and receives a smaller projection from F2. Local parietal projections to V6A arise from areas MIP and, to a lesser extent, 7m, PEa and PEC: On the contrary, parietal area PEc is strongly and reciprocally connected with the part of F2 located close to the pre-central dimple (pre-CD). Local parietal projections to PEc come from a distributed network, including PEa, MIP, PEci and, to a lesser extent, 7m, V6A, 7a and MST. Premotor area F7 receives parietal projections mainly from 7m and V6A, and local frontal projections mainly from F2. On the contrary, premotor area F2 in the pre-CD zone receives parietal inputs from PEc and, to a lesser extent, PEci, while in the peri-arcuate zone F2 receives parietal projections from PEa and MIP. Local frontal projections to F2 pre-CD mostly stem from F4, and, to a lesser extent, from F7 and F3, and CMAd; those addressed to peri-arcuate zone of F2 arise mainly from F5 and, to a lesser extent, from F7, F4, dorsal (CMAd) and ventral (CMAv) cingulate motor areas, pre-supplementary (F6) and supplementary (F3) motor areas. The distribution of association cells in both frontal and parietal cortex was characterized through a spectral analysis that revealed an arrangement of these cells in the form of bands, composed of cell clusters, or 'columns'. The reciprocal connections linking parietal and frontal cortex might explain the presence of visually related and eye-position signals in premotor cortex, as well as the influence of information about arm position and movement direction in V6A and PEC: The association connections identified in this study might carry sensory as well motor information that presumably provides a basis for a re-entrant signaling. This might be necessary to match retinal-, eye- and hand-related information underlying eye-hand coordination during reaching.  相似文献   

6.
Organization of the Second Visual Area in the Megachiropteran Bat Pteropus   总被引:1,自引:0,他引:1  
The organization of peristriate cortex was studied in nine flyingfoxes (genus Pteropus). Based on receptive field mapping andarchitectonic data, we reported on the organization of the secondvisual area (V2). V2 forms a continuous belt 2–4 mm widebordering V1 anteriorty. In each hemisphere, V2 contains a preciselyorganized representation of the entire contralateral visualfield. The vertical meridian of the visual field (VM), and ashort strip of the ipsilateral hemifield are represented atthe posterior border of V2, with V1. The area centralis is representedapproximately at the center of the posterior border of V2. Ateach mediolateral level, progressively more peripheral portionsof the visual field are represented as V2 is crossed from posteriorto anterior. The representation of the upper quadrant is continuous,and confined to the lateral half of V2. In contrast, the representationof the lower quadrant is split along a line running from thetemporal edge of the field of vision to the optic disk. As aresult of this arrangement, the portions of the lower quadrantclose to the VM are represented medially, and those away fromthe VM laterally in V2. The entire representation of the horizontalmeridian is located in lateral V2, and is not split betweenmedial and lateral V2 as in primates. The linear cortical magnificationfactor (CMF) decays by a factor of 3–5 from the centralto the peripheral repre-sentation. The CMF is anisotropic, andequal distances in the visual field are magnified twice as muchparallel to the V1/V2 border than perpendicular to this border.Moreover, points in the lower quadrant are magnified relativeto symmetrical points in the upper quadrant. V2 is histologicallydistinct from all surrounding areas in both cytochrome oxidase-and Nissl-stained sections. These results suggest that V2 isan homologous area common to all archontans, and imply thatmuch of the variability reported among mammals may be due totechnical factors, rather than true species differences.  相似文献   

7.
Area V4 in Cebus monkey: extent and visuotopic organization   总被引:2,自引:2,他引:0  
We used electrophysiological mapping and myeloarchitectural criteria in order to define the location, extent and visual topography of the fourth visual area (V4) in anesthetized and paralyzed Cebus monkey. Based on these criteria, the borders of V4 with surrounding areas were defined both on the dorsal and ventral cortical surfaces. In addition, to better visualize the visuotopic organization and to evaluate its regularity, we constructed bidimensional maps and projected the recording sites onto them. Area V4 has an almost complete representation of the binocular visual field with the lower visual field represented dorsally (V4d) and the upper field ventrally (V4v). We found this representation to be more extensive than those previously described. The representation of the central portion of the visual field is largely expanded in comparison with that of the periphery. This emphasis in central vision could be related with the involvement of V4 in the ventral stream of visual information processing. Receptive field size increases with increasing eccentricity, while cortical magnification factor decreases. The cortical magnification factor measured along isopolar lines is, on average, 1.5-2.0 times greater than that measured along the isoeccentric lines, suggesting the existence of a small anisotropy in central and peripheral V4.   相似文献   

8.
Inferior temporal cortex is perhaps the highest visual processingarea and much anatomical work has focused on its connectionswith other visual areas in temporal and occipital cortex. Herewe report connections of inferior temporal cortex with regionsin the frontal and parietal lobes. Inferior temporal areas TEOand TE were injected with WGA-HRP and 3H-AA, respectively, orvice versa, in 1-week-old infant and 3–4–year-oldadult monkeys (Macaca mulatta). The results indicated that whereasTEO has more extensive connections with parietal areas, TE hasmore extensive connections with prefrontal areas. Thus, in theintraparietal sulcus, area TEO is connected with areas LIPd,LIPv, and V3A, and with the as yet undefined region betweenLIPv and V3A, whereas the connections of TE are predominantlywith LIPd, and to a lesser extent with LIPv. In the prefrontalcortex, area TE is connected with areas 8 and 45 in the inferiorlimb of the anterior bank of the arcuate sulcus, with area 12on the inferior prefrontal convexity, and with areas 11 and13 on the orbital surface. By contrast, the connections of areaTEO are limited to areas 8, 45, and 12. Furthermore, withinprefrontal cortex, the projections from areas TEO and TE terminatein different layers in areas 8 and 45, such that those fromTEO terminate in all layers, whereas those from TE terminatein layers I and V/VI only. In contrast to the connections ofareas TEO and TE with various medical temporal-lobe and subcorticalstructures, which are immature in infant monkeys (Webster etal., 1991, 1993b), the connections with parietal and prefrontalareas appear adult-like as early as 1 week of age.  相似文献   

9.
The connections of the middle temporal area (MT) were investigated in the marmoset, one of the smallest primates. Reflecting the predictions of studies that modeled cortical allometric growth and development, we found that in adult marmosets MT is connected to a more extensive network of cortical areas than in larger primates, including consistent connections with retrosplenial, cingulate, and parahippocampal areas and more widespread connections with temporal, frontal, and parietal areas. Quantitative analyses reveal that MT receives the majority of its afferents from other motion-sensitive areas in the temporal lobe and from the occipitoparietal transition areas, each of these regions containing approximately 30% of the projecting cells. Projections from the primary visual area (V1) and the second visual area (V2) account for approximately 20% of projecting neurons, whereas "ventral stream" and higher-order association areas form quantitatively minor projections. A relationship exists between the percentage of supragranular layer neurons forming the projections from different areas and their putative hierarchical rank. However, this relationship is clearer for projections from ventral stream areas than it is for projections from dorsal stream or frontal areas. These results provide the first quantitative data on the connections of MT and extend current understanding of the relationship between cortical anatomy and function in evolution.  相似文献   

10.
Area prostriata is a poorly understood cortical area located in the anterior portion of the calcarine sulcus. It has attracted interest as a separate visual area and progenitor for the cortex of this modality. In this report we describe a direct projection from area prostriata to the rostral cingulate motor cortex (M3) that forms the fundus and lower bank of the anterior part of the cingulate sulcus. Injections of retrograde tracers in M3 resulted in labeled neurons in layers III, V and VI of prostriate cortex. However, injections of anterograde tracers in M3 did not demonstrate axon terminals in area prostriata. This connection was organized topographically such that the rostral part of M3 received input from the dorsal region of prostriate cortex, whereas middle and caudal levels of M3 received input from more ventral locations. Injections of retrograde and anterograde tracers in the caudal cingulate motor cortex (M4) did not produce labeling in prostriate cortex. Cytoarchitectural analysis confirmed the identity of area prostriata and further clarified its extent and borders with the parasubiculum of the hippocampal formation rostrally, and V1 of the visual cortex caudally. This linkage between cortex bordering V1 and cortex giving rise to a component of the corticofacial and corticospinal pathways demonstrates a more direct visuomotor route than visual association projections coursing laterally.  相似文献   

11.
Priming of motion direction and area V5/MT: a test of perceptual memory   总被引:2,自引:2,他引:0  
Presentation of supraliminal or subliminal visual stimuli that can (or cannot) be detected or identified can improve the probability of the same stimulus being detected over a subsequent period of seconds, hours or longer. The locus and nature of this perceptual priming effect was examined, using suprathreshold stimuli, in subjects who received repetitive pulse transcranial magnetic stimulation over the posterior occipital cortex, the extrastriate motion area V5/MT or the right posterior parietal cortex during the intertrial interval of a visual motion direction discrimination task. Perceptual priming observed in a control condition was abolished when area V5/MT was stimulated but was not affected by magnetic stimulation over striate or parietal sites. The effect of transcranial magnetic stimulation (TMS) on priming was specific to site (V5/MT) and to task - colour priming was unaffected by TMS over V5/MT. The results parallel, in the motion domain, recent demonstrations of the importance of macaque areas V4 and TEO for priming in the colour and form domains.  相似文献   

12.
Large sectors of polymodal cortex project to the hippocampal formation via convergent input to the entorhinal cortex. The present study reports an additional access route, whereby several cortical areas project directly to CA1. These are parietal areas 7a and 7b, area TF medial to the occipitotemporal sulcus (OTS), and a restricted area in the lateral bank of the OTS that may be part of ventromedial area TE. These particular cortical areas are implicated in visuospatial processes; and their projection to and convergence within CA1 may be significant for the elaboration of 'view fields', for the postulated role of the hippocampal formation in topographic learning and memory, or for the snapshot identification of objects in the setting of complex visuospatial relationships. Convergence of vestibular and visual inputs (from areas 7b and 7a respectively) would support previous physiological findings that hippocampal neurons respond to combinations of whole-body motion and a view of the environment. The direct corticohippocampal connections are widely divergent, especially those from the temporal areas, which extend over much of the anteroposterior axis of the hippocampal main body. Divergent connections potentially influence large populations of CA1 pyramidal neurons, consistent with the suggestion that these neurons are involved in conjunctive coding. The same region of ventromedial TE, besides the direct connections to CA1, also gives rise to direct projections to area V1, and may correspond to a functionally specialized subdivision, perhaps part of VTF.  相似文献   

13.
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.  相似文献   

14.
Electrophysiological and neuroimaging studies have shown that attention to visual motion can increase the responsiveness of the motion- selective cortical area V5 and the posterior parietal cortex (PP). Increased or decreased activation in a cortical area is often attributed to attentional modulation of the cortical projections to that area. This leads to the notion that attention is associated with changes in connectivity. We have addressed attentional modulation of effective connectivity using functional magnetic resonance imaging (fMRI). Three subjects were scanned under identical stimulus conditions (visual motion) while varying only the attentional component of the task. Haemodynamic responses defined an occipito-parieto-frontal network, including the, primary visual cortex (V1), V5 and PR A structural equation model of the interactions among these dorsal visual pathway areas revealed increased connectivity between V5 and PP related to attention. On the basis of our analysis and the neuroanatomical pattern of projections from the prefrontal cortex to PP we attributed the source of modulatory influences, on the posterior visual pathway, to the prefrontal cortex (PFC). To test this hypothesis we included the PFC in our model as a 'modulator' of the pathway between V5 and PP, using interaction terms in the structural equation model. This analysis revealed a significant modulatory effect of prefrontal regions on V5 afferents to posterior parietal cortex.   相似文献   

15.
While the receptive field properties of single neurons in the inferior parietal cortex have been quantitatively described from numerous electrical measurements, the visual topography of area 7a and the adjacent dorsal prelunate area (DP) remains unknown. This lacuna may be a technical byproduct of the difficulty of reconstructing tens to hundreds of penetrations, or may be the result of varying functional retinotopic architectures. Intrinsic optical imaging, performed in behaving monkey for extended periods of time, was used to evaluate retinotopy simultaneously at multiple positions across the cortical surface. As electrical recordings through an implanted artificial dura are difficult, the measurement and quantification of retinotopy with long-term recordings was validated by imaging early visual cortex (areas V1 and V2). Retinotopic topography was found in each of the three other areas studied within a single day's experiment. However, the ventral portion of DP (DPv) had a retinotopic topography that varied from day to day, while the more dorsal aspects (DPd) exhibited consistent retinotopy. This suggests that the dorsal prelunate gyrus may consist of more than one visual area. The retinotopy of area 7a also varied from day to day. Possible mechanisms for this variability across days are discussed as well as its impact upon our understanding of the representation of extrapersonal space in the inferior parietal cortex.  相似文献   

16.
We describe representations of the visual field in areas 18, 19 and 21 of the ferret using standard microelectrode mapping techniques. In all areas the azimuths are represented as islands of peripheral visual field surrounded by central visual field representation. The zero meridian was found at the 17/18 and 19/21 borders; at the 18/19 and anterior border of 21 the relative periphery of the visual field was found. In areas 18 and 19, elevations are represented in a smooth medio-lateral progression from lower to upper visual field. In several cases the elevations in area 21 evidenced a similar medio-lateral progression; however, in others the elevations exhibited a split representation of the horizontal meridian. Anatomically determined callosal connections coincided with the representation of azimuths near the zero meridian. Medio-lateral bands of callosal connectivity that straddle the 17/18 and 19/21 borders are connected by bridges of callosally projecting cells. Acallosal cortical islands corresponded to the peripheral visual field and were found straddling the 18/19 border and the anterior border of area 21. The results are discussed in relation to callosal connectivity and retinotopy in extrastriate visual cortex and to proposed homologies of carnivore and primate visual cortex.  相似文献   

17.
The posterior parietal cortex (PPC) has been proposed to play a critical role in exerting top-down influences on occipital visual areas. By inducing activity in the PPC (angular gyrus) using transcranial magnetic stimulation (TMS), and using the phosphene threshold as a measure of visual cortical excitability, we investigated the functional role of this region in modulating the activity of the visual cortex. When triple-pulses of TMS were applied over the PPC unilaterally, the intensity of stimulation required to elicit a phosphene from the visual cortex (area V1/V2) was reduced, indicating an increase in visual cortical excitability. The increased excitability that was observed with unilateral TMS was abolished when TMS was applied over the PPC bilaterally. Our results provide a demonstration of the top-down modulation exerted by the PPC on the visual cortex and show that these effects are subject to interhemispheric competition.  相似文献   

18.
We compared aspects of shape representation in extrastriate visual areas V2 and V4, which are both implicated in shape processing and belong to different hierarchical levels. We recorded responses of cells in awake, fixating monkeys to matched sets of contour and grating stimuli of low or intermediate complexity. These included simple stimuli (bars and sinusoids) and more complex stimuli (angles, intersections, arcs, and non-Cartesian gratings), all scaled to receptive field size. The responses of cells within each area were substantially modulated by each shape characteristic tested, with substantial overlap between areas by many response measures. Our analyses revealed many clear and reliable differences between areas in terms of the effectiveness of, and response modulation by, various shape characteristics. Grating stimuli were on average more effective than contour stimuli in V2 and V4, but the difference was more pronounced in V4. As a population, V4 showed greater response modulation by some shape characteristics (including simple shape characteristics) and V2 showed greater response modulation by many others (including complex shape characteristics). Recordings from area V1 demonstrated complex shape selectivity in some cells and relatively modest population differences in comparison with V2. Altogether, the representation of 2-dimensional shape characteristics revealed by this analysis varies substantially among the 3 areas. But surprisingly, the differences revealed by our analyses, individually or collectively, do not parallel the stepwise organization of the anatomical hierarchy. Commonalities of visual shape representation across hierarchical levels may reflect the replication of neural circuits used in generating complex shape representations at multiple spatial scales.  相似文献   

19.
A method of using functional magnetic resonance imaging (fMRI) to measure retinotopic organization within human cortex is described. The method is based on a visual stimulus that creates a traveling wave of neural activity within retinotopically organized visual areas. We measured the fMRI signal caused by this stimulus in visual cortex and represented the results on images of the flattened cortical sheet. We used the method to locate visual areas and to evaluate the spatial precision of fMRI. Specifically, we: (i) identified the borders between several retinotopically organized visual areas in the posterior occipital lobe; (ii) measured the function relating cortical position to visual field eccentricity within area V1; (iii) localized activity to within 1.1 mm of visual cortex; and (iv) estimated the spatial resolution of the fMRI signal and found that signal amplitude falls to 60% at a spatial frequency of 1 cycle per 9 mm of visual cortex. This spatial resolution is consistent with a linespread whose full width at half maximum spreads across 3.5 mm of visual cortex.   相似文献   

20.
Descending corticofugal projections are thought to play a critical role in shaping the responses of subcortical neurons. Here, we examine the origins and targets of ferret auditory corticocollicular projections. We show that the ectosylvian gyrus (EG), where the auditory cortex is located, can be subdivided into middle, anterior, and posterior regions according to the pattern of cytochrome oxidase staining and immunoreactivity for the neurofilament antibody SMI32. Injection of retrograde tracers in the inferior colliculus (IC) labeled large layer V pyramidal cells throughout the EG and adjacent sulci. Each region of the EG has a different pattern of descending projections. Neurons in the primary auditory fields in the middle EG project to the lateral nucleus (LN) of the ipsilateral IC and bilaterally to the dorsal cortex and dorsal part of the central nucleus (CN). The projection to these dorsomedial regions of the IC is predominantly ipsilateral and topographically organized. The secondary cortical fields in the posterior EG target the same midbrain areas but exclude the CN of the IC. A smaller projection to the ipsilateral LN also arises from the anterior EG, which is the only region of auditory cortex to target tegmental areas surrounding the IC, including the superior colliculus, periaqueductal gray, intercollicular tegmentum, and cuneiform nucleus. This pattern of corticocollicular connectivity is consistent with regional differences in physiological properties and provides another basis for subdividing ferret auditory cortex into functionally distinct areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号