首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary: Purpose: Interictal [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) reveals regional hypometabolism in 60–80% of patients with mesial temporal lobe epilepsy (MTLE). The extent of hypometabolism generally extends beyond the epileptogenic zone. The pathophysiology underlying this widespread change is unknown. This study evaluated the relation between hippocampal neuronal loss and hypometabolism in patients with MTLE.
Methods: Forty-three patients with MTLE after anterior temporal lobectomy were included. Pathology demonstrated mesial temporal sclerosis (n = 41) or endfolium sclerosis (n = 2). Interictal FDG-PET scans were graded by visual analysis on a scale ranging from normal (grade 1) to severe (grade 5) hypometabolism. Neuronal counting was performed in the subiculum, hippocampal subfields, and dentate granular cell layer (DG). Neuronal density of patients was compared with that of seven autopsy controls. Data were compared by using Student's t tests and Kruskal-Wallis one-way analysis of variance (ANOVA).
Results: Significant neuronal loss in CA1 through CA4 and DG was found in patients compared with controls. Neuronal density in the subiculum, CA1, CA4, and DG did not correlate with severity of hypometabolism. However, patients with abnormal FDG-PET had higher neuronal density in CA2 and CA3 versus patients with normal studies.
Conclusions: This study supports a previous observation that degree of FDG-PET hypometabolism does not parallel severity of hippocampal neuronal loss in MTLE.  相似文献   

2.
PURPOSE: This study is a retrospective analysis of the pathology of the hippocampus from patients with medically intractable temporal lobe epilepsy. We attempted to relate neuronal density, immunohistochemistry, electrophysiologic data, and surgical outcome. METHODS: Immunostaining patterns for neuropeptide Y, somatostatin, substance P, and dynorphin defined the immunohistochemical characteristics of the hippocampi. Neuronal densities were determined by microscopic cell counts. Sharp electrode recordings from dentate granule cells determined measures of inhibition and excitation. RESULTS: Patient hippocampi without evidence of sclerosis generally resembled autopsy controls on the basis of neuronal densities of hippocampal subfields and patterns of immunostaining. The nonsclerotic hippocampi were divisible into two subgroups on the basis of neuronal density correlations between hippocampal subfields, the excitability of dentate granule cells, etiology, and surgical outcome. Hippocampi with sclerosis were divisible into those with significant neuronal loss confined to area CA1 and those with neuronal loss throughout the hippocampus and dentate gyrus. In the former, the dentate gyrus resembled in morphology the nonsclerotic hippocampi but with slightly increased excitability of the dentate granule cells. The hippocampi with more extensive neuronal loss had changes in immunostaining patterns associated with the dentate gyrus, correlated with significant hyperexcitability of dentate granule cells. The surgical outcome, with the exception of one group, was good in approximately 70-90%. CONCLUSIONS: Hippocampi from patients with intractable temporal lobe epilepsy can be assigned to several groups on the basis of pathophysiology. Different pathologies may represent differing causative mechanisms of intractable temporal lobe epilepsy and be predictive of surgical outcome.  相似文献   

3.
Histological analysis of hippocampi removed en bloc during surgical treatment of temporal lobe epilepsy revealed a subgroup of patients with bulbous expansions of the CA1 pyramidal cell/subicular layers that were consistently accompanied by "tectonic" invaginations of the adjacent dentate gyrus. Most hippocampi containing the CA1/subicular anomaly and the tectonically deformed dentate gyrus exhibited minor cell loss compared to hippocampi with typical hippocampal sclerosis, and retrospective analysis revealed that conventional imaging methods usually failed to detect subtle hippocampal atrophy or abnormal signal characteristics in patients with this anomaly. Cells within the anomaly exhibited the spherical appearance of undifferentiated pyramidal layer neurons, and were immunopositive for the neuronal marker NeuN. Immunostaining for the synaptic marker beta-synuclein suggested abnormal dentate gyrus lamination in segments containing the pyramidal cell layer anomaly, but not in unaffected areas of the same specimens. Despite differences in the extent of neuronal loss between patients with hippocampal sclerosis and those with the CA1/subicular anomaly, the incidence of antecedent febrile seizures was similar in both groups. In a comparison group of hippocampi obtained at autopsy, structural irregularities were evident, but were consistently less disruptive to hippocampal architecture than the anomalies observed in epilepsy patients. We hypothesize that developmental malformation of the CA1 pyramidal cell/subicular layers may adversely influence the subsequent development of the adjacent dentate gyrus, and may render temporal lobe structures hyperexcitable and more vulnerable to relatively innocuous seizures and injuries. Thus, these presumably developmental hippocampal anomalies may serve as substrates for early febrile seizures and subsequent epilepsy.  相似文献   

4.
Limbic P300 potentials can be recorded within the mesial temporal lobes of patients with temporal lobe epilepsy (TLE). To delineate possible mechanisms of their generation and pathological alteration, we analysed limbic P300s in 55 TLE patients with and 29 without Ammon's horn sclerosis (AHS) and correlated their amplitudes with neuronal cell counts in 30 histopathological specimens. Limbic P300 amplitudes were reduced on the side of the epileptogenic focus only in patients with AHS. Moreover, in AHS patients, limbic P300 latencies were prolonged bilaterally; and in patients with left-sided AHS, amplitudes were reduced bilaterally. Both findings suggest bilateral functional deficits in TLE with unilateral AHS. Limbic P300 areas correlated significantly with neuronal densities of dentate gyrus granule cells but not hippocampal pyramidal cells in the CA1-4 (cornu ammonis) subfields. This finding points to a potential mechanism for the bilateral effects of unilateral AHS as both dentate gyri exhibit strong reciprocal contralateral connectivity.  相似文献   

5.
California sea lions (Zalophus californianus) are abundant human‐sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl‐stained neurons per hippocampus in the granule cell layer, hilus, and pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin immunoreactivity or Timm‐stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin‐immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. J. Comp. Neurol. 522:1691–1706, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Neuronal cell densities in surgically removed left or right hippocampal tissue of epileptic patients suffering from temporal lobe epilepsy were determined in CA1, CA4, and the dentate gyrus (DG). Mean densities showed no statistically significant left-right asymmetry in CA1 and the DG, consistent with findings by others. Mean densities did show previously unreported asymmetry in CA4; densities were significantly lower in the right CA4 than in the left. Another new finding is an asymmetry in regional intercorrelations: positive and significant correlations among the three subfields were obtained only in the left hippocampus. In addition, we confirmed previous findings of positive correlation between neuronal densities in CA1 and age of onset of habitual epilepsy, on either side. Taken together, the results suggest subtle left-right asymmetries in the vulnerability of the hippocampi to epilepsy-associated damage and/or higher neuronal connectivity or interdependence on the left than on the right.  相似文献   

7.
Objective[18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) is a valuable method for detecting focal brain dysfunction associated with epilepsy. Evidence suggests that a progressive decrease in [18F]FDG uptake occurs in the epileptogenic cortex with an increase in the duration of epilepsy. In this study, our aim was to use statistical parametric mapping (SPM) to test the validity of this relationship in a retrospective study of patients with temporal lobe epilepsy (TLE).Methods[18F]FDG-PET scans of 46 adult patients with pharmacoresistant unilateral TLE (25 RTLE and 21 LTLE) were subjected to SPM analysis.ResultsForty-six patients were diagnosed with nonlesional TLE, 16 of whom had hippocampal sclerosis (HS). The average duration of epilepsy was 17.4 ± 12.3 years (3–46 years), <5 years in 10 patients and ?10 years in 30 patients. Visual analysis of [18F]FDG-PET scans revealed hypometabolism in the epileptogenic temporal cortex in 31 (67%) patients. After SPM analysis of all [18F]FDG-PET images, hypometabolism was unilateral and reported in lateral and mesial structures of the epileptogenic temporal cortex in addition to the ipsilateral fusiform and middle occipital gyrus. Subsequent analysis revealed that temporal lobe hypometabolism was present only in patients with longer epilepsy duration (?10 years) in parahippocampal gyrus, uncus, and middle and superior temporal gyrus (P < 0.05 corrected). Epilepsy duration was inversely correlated with decreased glucose uptake in the inferior temporal gyrus, hippocampus, and parahippocampal gyrus of the epileptogenic temporal cortex (P < 0.05). Age at seizure onset did not affect the correlation between epilepsy duration and glucose uptake except in the inferior temporal gyrus (P < 0.05).ConclusionVoxel-based mapping supports the assertion that glucose hypometabolism of the epileptogenic temporal lobe cortex and other neighboring cortical regions increases with longer epilepsy duration in TLE.  相似文献   

8.
Summary: To assess the value of magnetic resonance imaging (MRI)-measured hippocampal volume in the detection of hippocampal sclerosis, we studied 28 patients undergoing anterior temporal lobectomy for medically intractable mesial temporal lobe epilepsy. Hippocampal volumetry and visual analysis of T2 signal change were performed using fast spin-echo T2-weighted MRI. Quantitative neuronal density measurements were performed in the resected hippocampal specimens. There was a significant correlation between MRI-measured absolute hippocampal volume (AHV) and neuronal density in CA1, CA2, and CA3 subfields (p<0. 0001, p < 0.01, and p < 0.05, respectively). Differential hippocampal volume (side-to-side volume difference) failed to detect bilateral atrophy in three patients, but the bilateral hippocampal atrophy was recognized by considering AHV in these patients. This study suggests that MRI-measured AHV can be of value in evaluating patients with mesial temporal lobe epilepsy, especially when there is no side-to-side difference in hippocampal volumetry.  相似文献   

9.
PURPOSE: In patients with mesial temporal lobe epilepsy (MTLE) it remains an unresolved issue whether the interictal decrease in N-acetyl aspartate (NAA) detected by proton magnetic resonance spectroscopy ((1)H-MRS) reflects the epilepsy-associated loss of hippocampal pyramidal neurons or metabolic dysfunction. METHODS: To address this problem, we applied high-resolution (1)H-MRS at 14.1 Tesla to measure metabolite concentrations in ex vivo tissue slices from three hippocampal subfields (CA1, CA3, dentate gyrus) as well as from the parahippocampal region of 12 patients with MTLE. RESULTS: In contrast to four patients with lesion-caused MTLE, we found a large variance of NAA concentrations in the individual hippocampal regions of patients with Ammon's horn sclerosis (AHS). Specifically, in subfield CA3 of AHS patients despite of a moderate preservation of neuronal cell densities the concentration of NAA was significantly lowered, while the concentrations of lactate, glucose, and succinate were elevated. We suggest that these subfield-specific alterations of metabolite concentrations in AHS are very likely caused by impairment of mitochondrial function and not related to neuronal cell loss. CONCLUSIONS: A subfield-specific impairment of energy metabolism is the probable cause for lowered NAA concentrations in sclerotic hippocampi of MTLE patients.  相似文献   

10.
Sata Y  Matsuda K  Mihara T  Aihara M  Yagi K  Yonekura Y 《Epilepsia》2002,43(9):1039-1048
PURPOSE: To evaluate the changes of the inhibitory neurotransmitter receptor system related to epileptogenesis by measuring central benzodiazepine receptors (BZDRs) in surgically resected specimens of temporal lobe epilepsy by using [(125)I]iomazenil autoradiography. METHODS: Surgically resected specimens were obtained from 66 temporal lobe epilepsy patients [51 with mesial temporal lobe epilepsy (MTLE) and 15 with non-MTLE] receiving no BZDs and seven MTLE patients receiving BZDs. BZDR densities in brain sections were measured by using [(125)I]iomazenil autoradiography. Cell densities were measured from cresyl violet-stained sections. RESULTS: Compared with non-MTLE patients, non-BZD-treated MTLE patients showed remarkable reduction of BZDR density in the pyramidal cell region of cornu ammonis (CA) 1, CA3, and CA4, and a smaller but significant reduction in CA2 and the molecular and granule cell layers of dentate gyrus (mDG). In the MTLE group, the BZDR density in the mDG correlated with that in lateral cortex. Significant correlations between BZDR density and cell density were found in all hippocampal regions. A significant difference in BZDR density/cell-density ratio was observed in CA1 region between MTLE and non-MTLE. BZD-treated patients tended to have lower BZDR densities than did non-BZD-treated patients, although the differences did not reach significance. In all MTLE cases, [(123)I]iomazenil singlephoton emission computed tomography (SPECT) showed decreased BZDR binding in MTL. CONCLUSIONS: In MTLE, BZDR densities decreased parallel to reduction in cell density in most hippocampal subfields, but BZDR density appeared to decrease in excess of neuron loss in CA1. [(125)I]iomazenil SPECT might be useful for detecting in vivo changes of BZDR density.  相似文献   

11.
OBJECTIVE: To examine the relationship of preoperative fluorodeoxyglucose (FDG)-PET asymmetry in temporal lobe metabolism and memory outcome after anterior temporal lobectomy (ATL). METHODS: In a university-based epilepsy surgery center, 60 ATL patients (27 left, 33 right) were divided into two groups: no/mild (n = 21) or moderate/ severe (n = 39) asymmetry in temporal lobe hypometabolism as determined by FDG-PET. All patients were nonretarded, at least 18 years of age, left-hemisphere speech dominant, without MRI abnormalities other than hippocampal atrophy, and with unilateral temporal lobe origin of intractable complex partial seizures. Neuropsychological measures of intelligence and verbal and visual memory function were assessed preoperatively and 6 months postoperatively. RESULTS: Left ATL patients with no/mild asymmetry in FDG-PET temporal lobe metabolism exhibited significantly greater verbal memory decline compared with left ATL patients with moderate/severe hypometabolism. There was no significant relationship between PET asymmetry and pre- to postsurgical IQ change. No significant relationship was observed between extent of PET hypometabolism and memory outcome for right ATL patients. CONCLUSIONS: FDG-PET asymmetry can be added to the preoperative clinical markers that appear useful in predicting verbal memory decline after left ATL.  相似文献   

12.
Various hippocampal malformations have been described in the context of widespread cortical malformations in patients with epilepsy. Isolated hippocampal malformations however are very rarely identified on MR imaging studies. Little is known about the epileptogenicity of these malformations and their pathologic appearance. We present a case with severe bilateral hippocampal malformations who underwent right temporal lobectomy due to intractable temporal lobe epilepsy. Postoperative examination of the resected hippocampus revealed abnormal shape of the dentate gyrus and an atypical convolution of the CA1 pyramidal cell-subicular layers. After surgery, the patient has been seizure free.  相似文献   

13.
This study aimed at quantitatively evaluating hippocampal central-type benzodiazepine receptors (BZRs) in the kainate model of temporal lobe epilepsy (TLE) by in vitro autoradiography (ARG) using [(125)I] Iomazenil (IMZ) specific ligand for central-type BZRs. Kainate (1 microg/0.5 microl) was injected into the left amygdala to induce limbic status epilepticus. One, three, or six months after injection, in vitro ARG with [(125)I] IMZ and cell counts were performed in the hippocampal CA1-4 regions and dentate gyrus ipsilateral to the kainate injection site, and were compared with the vehicle-injected control group. In all kainate-treated rats, clear pyramidal neuron loss was observed in left hippocampal areas CA1-4. Compared with the control group, progressive reduction of [(125)I] IMZ binding was also observed. This resulted in a marked binding decrease paralleling pyramidal neuron loss in hippocampal areas CA1 (down to 83% of control), CA2 (76%), CA3 (75%), and CA4 (90%) at 6 months after kainate administration. Conversely, [(125)I] IMZ binding significantly increased in the dentate gyrus (up to 106% of control) at 1 month, but returned to nearly normal at 3-6 months. These results suggest that central-type BZR neuroimaging is useful in detecting hippocampal sclerosis in the mesial TLE, though central BZR alterations differ depending on hippocampal subfields and post-seizure time-courses.  相似文献   

14.
Hippocampal sclerosis is the most common pathological finding associated with human temporal lobe epilepsy. Histochemical study with acetylcholinesterase (AChE) staining was used to investigate 7 surgically resected temporal lobes with hippocampal sclerosis from patients with temporal lobe epilepsy. In all 7 specimens, an abnormal but consistent pattern of staining was noted. In the hilum of the dentate gyrus, AChE-rich polymorphic cells were relatively preserved in comparison to the pyramidal neurons. In Ammon's horn, AChE fibers were lost in regions corresponding to the pyramidal cell dropout. AChE fibers were also lost along the inner portion of the molecular layer of the dentate gyrus, yet they were preserved within the outer portions of the molecular layer. These findings provide additional evidence for the relative selectivity of hippocampal pathology in human temporal lobe epilepsy.  相似文献   

15.
The intracarotid amobarbital sodium (Amytal) procedure (IAP) was performed for 46 patients with temporal lobe epilepsy (21 with left seizure foci; 25 with right seizure foci). After anteromedial temporal lobectomy, neuronal densities were established for hippocampal subfields CA1, CA2, and CA3; the hilum; and the dentate granule cell layer. Intracarotid amobarbital procedure memory results were related to CA3 neuronal loss only. Patients who did not demonstrate memory after injection contralateral to the seizure focus had significantly fewer cells in CA3 than patients who did. Additionally, a significant correlation was observed between the intracarotid amobarbital procedure memory examination raw score after injection contralateral to the seizure focus and CA3 cell density. Using chi 2 analysis, significant differences were documented in the frequency with which memory was demonstrated after injection contralateral to the seizure focus for groups of patients classified by degree of CA3 neuronal loss. This finding supports prior research showing subfield specificity in some memory processes.  相似文献   

16.
Changes in the subunit stoichiometry of the N-methyl-D-aspartate (NMDA) receptor (NMDAR) alters its channel properties, and may enhance or reduce neuronal excitability in temporal lobe epilepsy patients. This study determined whether hippocampal NMDA receptor subunit mRNA levels were increased or decreased in temporal lobe epilepsy patients compared with nonseizure autopsy cases. Hippocampal sclerosis (HS; n = 16), non-HS (n = 10), and autopsy hippocampi (n = 9) were studied for NMDAR1 (NR1) and NR2A-D mRNA levels by using semiquantitative in situ hybridization techniques, along with neuron densities. Compared with autopsy hippocampi, non-HS and HS patients showed increased NR2A and NR2B hybridization densities per dentate granule cell. Furthermore, non-HS hippocampi showed increased NR1 and NR2B mRNA levels per CA2/3 pyramidal neuron compared with autopsy cases. HS patients, by contrast, showed decreased NR2A hybridization densities per CA2/3 pyramidal neuron compared with non-HS and autopsy cases. These findings indicate that chronic temporal lobe seizures are associated with differential changes in hippocampal NR1 and NR2A-D hybridization densities that vary by subfield and clinical-pathological category. In temporal lobe epilepsy patients, these findings support the hypothesis that in dentate granule cells NMDA receptors are increased, and excitatory postsynaptic potentials should be strongly NMDA mediated compared with nonseizure autopsies. HS patients, by comparison, showed decreased pyramidal neuron NR2A mRNA levels, and this suggests that NMDA-mediated pyramidal neuron responses should be reduced in HS patients compared with non-HS cases.  相似文献   

17.
In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy   总被引:5,自引:0,他引:5  
BACKGROUND: The appearance of decreased 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) uptake in the mesial temporal region in temporal lobe epilepsy may simply reflect loss of gray matter due to hippocampal atrophy. Increased partial volume effects due to atrophic hippocampi may further increase appearance of hypometabolism. METHODS: The authors used a combination of MRI-PET coregistration, with MRI-based gray matter segmentation, and partial volume correction to improve the examination of hippocampal specific glucose uptake in FDG PET. The goal was to determine 1) if relative mesial temporal hypometabolism is an artifact of gray matter (hippocampal) atrophy, 2) whether hippocampal metabolism correlates with atrophy evaluated on MRI, and 3) if MRI-based partial volume correction influences measurement of hippocampal metabolic-volume relationships, including epilepsy lateralization. RESULTS: Findings showed that ipsilateral hippocampi of mesial temporal lobe epilepsy (MTLE) are relatively hypometabolic per unit of gray matter volume, and that hippocampal metabolism directly correlates with hippocampal volume. Specifically, partial volume corrected hippocampal metabolism correlated strongly (r = 0.613, p < 0.001) with hippocampal volume. Without partial volume correction, a weaker, but still significant, correlation was present (r = 0.482, p < 0.001). Degree of asymmetry was consistently greater and provided higher sensitivity of lateralization with partial volume vs non-partial volume corrected metabolic measurements. CONCLUSIONS: Although, decreased metabolism may occur in the absence of neuronal cell loss, hippocampal atrophy and presumed degree of neuronal cell loss appears to be a primary factor involved in the cause of decreased metabolism in epileptogenic hippocampi. Partial volume correction is recommended for optimal interpretation of hippocampal structure and function relationships.  相似文献   

18.
In patients with therapy-refractory temporal lobe epilepsy (TLE), alterations of glutamate receptors have been proposed as a mechanism for enhanced excitability. Using commercially available monoclonal antibodies specific for the N-methyl-d-aspartate (NMDA) receptor subunit NMDAR1 and for the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit GluR2(4), we have examined the distribution of these polypeptides in human hippocampal tissue that was surgically removed from patients with intractable TLE. Surgical specimens were classified according to the presence of Ammon’s horn sclerosis (AHS) or a focal lesion in the temporal lobe. Cell counts and a densitometric analysis of the immunoreactivity patterns were carried out for all hippocampal subfields. NMDAR1 and GluR2(4) levels were markedly reduced in patients with AHS, primarily in those subfields with substantial neuronal cell loss (in particular CA1, CA4 and CA3), compared to those seen in patients with focal lesions and in control specimens obtained at autopsy. In contrast, the molecular layer of the dentate gyrus (DG-ML) showed significantly higher levels of GluR2(4) immunoreactivity in AHS compared to control tissue, while NMDAR1 showed no significant up-regulation in this sublayer. When the receptor staining intensity was normalized for alterations in neuronal density, no significant alterations could be detected except for an increase in GluR2(4) in the DG-ML of patients with AHS. These changes may reflect synaptic reorganization observed in the DG-ML of specimens from patients with chronic intractable TLE. Received: 25 March 1996 / Revised, accepted: 10 June 1996  相似文献   

19.
Epileptic seizures are clinical manifestations of neuronal discharges characterized by hyperexcitability and/or hypersynchrony in the cortex and other subcortical regions. The pilocarpine (PILO) model of epilepsy mimics temporal lobe epilepsy (TLE) in humans. In the present study, we used a more selective approach: microinjection of PILO into the hilus of the dentate gyrus (H-PILO). Our main goal was to evaluate the behavioral and morphological alterations present in this model of TLE. Seventy-six percent of all animals receiving H-PILO injections had continuous seizures called status epilepticus (SE). A typical pattern of evolution of limbic seizures during the SE with a latency of 29.3 ± 16.3 minutes was observed using an analysis of behavioral sequences. During the subsequent 30 days, 71% of all animals exhibited spontaneous recurrent seizures (SRSs) during a daily 8-hour videotaping session. These SRSs had a very conspicuous and characteristic pattern detected by behavioral sequences or neuroethiological analysis. Only the animals that had SE showed positive Neo-Timm staining in the inner molecular layer of the dentate gyrus (sprouting) and reduced cell density in Ammon's horn pyramidal cell subfield CA1. However, no correlation between the intensity of sprouting and the mean number and total number of SRSs was found. Additionally, using Fluoro-Jade staining, we observed neurodegeneration in the hilus and pyramidal cell subfields CA3 and CA1 24 hours after SE. These data indicate that H-PILO is a reliable, selective, efficient, low-mortality model that mimics the acute and chronic behavioral and morphological aspects of TLE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号