首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of dorsal column axons was studied after neonatal spinal overhemisection injury (right hemicord and left doral funiculus). Rat pups (N = 11) received this spinal lesion at the C2 level within 30 hours after birth. The cauda equina was exposed 3 months later in one group of chronic operates (N = 5) and in a group of normal adults (N = 2), and all spinal roots from L5 caudally were cut bilaterally; 4 days later the spinal cord and medulla were processed for Fink-Heimer impregnation of degenerating axons and terminals. In a second group of chronic operates (N = 6) and normal adult controls (N = 4) the left sciatic nerve was injected with a cholera toxin-HRP conjugate (C-HRP), followed by a 2-3 day transganglionic transport period, and then the spinal cord and medulla were processed with tetramethylbenzidine histochemistry. Both control groups have a consistent dense projection in topographically adjacent regions of the dorsal funiculus and gracile nucleus. However, there is no sign of axonal growth around the lesion in either group of chronic experimental operates. Instead, there is a decreased density of projection within the dorsal funiculus near the lesion site. Many remaining C-HRP labeled axons in the experimental operates have abnormal, thick varicosities and swollen axonal endings (5-10 microns x 10-30 microns) within the dorsal funiculus through several spinal segments caudal to the lesion. Ultrastructural analysis of the dorsal funiculus in three other chronic experimental operates reveals the presence of numerous vesicle filled axonal profiles and reactive endings which appear similar to the C-HRP labeled structures. Transganglionic labeling after C-HRP sciatic nerve injections (N = 4) and retrograde labeling of L4, L5 dorsal root ganglion neurons after fast blue injections of the gracile nucleus (N = 6) both suggest that all dorsal column axons project to the gracile nucleus in the newborn rat. Dorsal root ganglion (DRG) cell survival following the neonatal overhemisection injury was also examined in the L4 and L5 DRG. DRG neurons that project to the gracile nucleus were prelabeled by injecting fast blue into this nucleus at birth two days prior to the cervical overhemisection spinal injury. Both normal littermates (N = 9) and spinally injured animals (N = 12) were examined after postinjection survival periods of 10 or 22 days.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Plasticity of spinal systems in response to lumbosacral deafferentation has previously been described for the cat, by using immunocytochemistry to demonstrate plasticity of tachykinin systems and degeneration methods to demonstrate plasticity of descending systems. In this study, we describe the response to lumbosacral deafferentation in the adult rat. Application of immunocytochemical methods to visualize tachykinins (predominantly substance P magnitude of SP), serotonin (5-HT), and dopamine B-hydroxylase (DBH), the synthesizing enzyme for norepinephrine, permits us to compare the response of SP systems in rat and cat spinal cord and to examine the response of two descending systems, serotoninergic and noradrenergic, to deafferentation. We used image analysis of light microscopic preparations to quantify the immunoreaction product in the spinal cord in order to estimate the magnitude, time course and localization of changes induced by the lesion. The distribution of SP, serotoninergic (5-HT), and noradrenergic staining in the spinal cord of rat is very similar to that of the cat. Unilateral lumbosacral rhizotomy elicits a partial depletion, followed by a partial replacement of tachykinin immunoreactivity in laminae I and II. This response was similar to that described for the cat, although characterized by a longer time course, and, as in the cat, is likely due to plasticity of tachykinin containing interneurons. The same lesion elicits no depletion but a marked and permanent increase in 5-HT immunoreactivity in laminae I and II, which develops more rapidly than the response by the SP system. These results indicate sprouting or increased production of SP and 5-HT in response to deafferentation. No change was seen in DBH immunoreactivity, indicating that the noradrenergic system does not show plasticity in response to deafferentation. Our results demonstrate that dorsal rhizotomy evokes different effects in different systems in the adult spinal cord of the rat and thus suggests that the response of undamaged pathways to partial denervation of their target is regulated rather than random.  相似文献   

3.
Motor fibers of the accessory celiac and celiac vagal branches are derived from the lateral columns of the dorsal motor nucleus of the vagus nerve. These branches also contain sensory fibers that terminate within the nucleus of the tractus solitarii. This study traces the innervation of the intestines by using the tracer cholera toxin-horseradish peroxidase. In 53 rats, the tracer was injected into either the stomach, duodenum, jejunum, terminal ileum, cecum, or ascending colon. With all cecal injections, prominent retrograde labeling of cell bodies occurred bilaterally in the lateral columns of the dorsal motor nucleus of the vagus nerve above, at, and below the level of the area postrema. Dendrites of laterally positioned neurons projected medially and rostrocaudally within the dorsal motor nucleus of the vagus nerve and dorsomedially into both the medial subnucleus and parts of the commissural subnucleus of the nucleus of the tractus solitarii. Sensory terminal labeling occurred in the dorsolateral commissural subnucleus at the level of the rostral area postrema and the medial commissural subnucleus caudal to the area postrema. Additionally, there was sensory terminal labeling within a small confined area of the dorsomedial zone of the nucleus of the tractus solitarii immediately adjacent to the fourth ventricle at a level just anterior to the area postrema. Stomach injections labeled motoneurons of the medial column of the entire rostrocaudal extent of the dorsal motor nucleus of the vagus nerve and a sensory terminal field primarily in the subnucleus gelatinosus, with less intense labeling extending caudally into the medial and ventral commissural subnuclei. Dendrites of gastric motoneurons project rostrocaudally and mediolaterally within the dorsal motor nucleus of the vagus nerve and dorsolaterally within the nucleus of the tractus solitarii. They are most pronounced at the level of the rostral area postrema where many dendrites course dorsolaterally terminating primarily within the subnucleus gelatinosus. Injections of the duodenum labeled a small number of the cells within the medial aspects of the dorsal motor nucleus of the vagus nerve. Jejunal, ileal, and ascending colon injections labeled cells sparsely within the lateral aspects of the dorsal motor nucleus of the vagus nerve bilaterally. No afferent terminal labeling was evident after injection of these areas of the bowel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We studied the spinal projections of the medial and posterior articular nerves (MAN and PAN) of the knee joint in the cat with the aid of the transganglionic transport of horseradish peroxidase. The afferent fibers of the MAN entered the spinal cord via the lumbar dorsal roots L5 and L6 and those of the PAN entered via the dorsal roots L6 and L7. Within the dorsal root ganglia, most labeled neurons had small to medium diameters. A relatively higher number of medium-size cell bodies were labeled from the PAN than from the MAN. In the spinal cord labeled MAN afferent fibers and terminations were most dense in the L5 and L6 segments, and those of the PAN were most dense in L6 and L7, that is, in the respective segments of entry. Labeled afferent fibers from both nerves projected rostrally at least as far as L1 and caudally as far as S2. Labeled fibers were found in Lissauer's tract as well as in the dorsal column immediately adjacent to the dorsal horn. In the spinal gray matter, both nerves had two main projection fields, one in the cap of the dorsal horn in lamina I, the other in the deep dorsal horn in laminae V-VI and the dorsal part of lamina VII. Both nerves, but particularly the PAN, projected to the medial portion of Clarke's column. No projection was found to laminae II, III, and IV of the dorsal horn or to the ventral horn. Since these findings parallel observations on hindlimb muscle afferent fibers, the present data support the existence of a common pattern for the central distribution of deep somatic afferent fibers.  相似文献   

5.
目的研究Nogo—A在成年正常大鼠脊髓和背根节的分布。方法免疫组织化学方法(ABC法)和免疫荧光双标记法。结果正常成年大鼠的脊髓灰质分布有大量的Nogo—A免疫阳性的寡突胶质细胞、运动神经元和中间神经元,免疫阳性反应产物主要分布于细胞的胞体和部分突起中。Nogo—A广泛分布于穿行于脊髓白质的纤维包裹的髓鞘和轴突上。在脊髓前根、后根和坐骨神经的运动和感觉的有髓和无髓纤维也可观察到Nogo—A的表达。而背根神经节的神经元也大量表达Nogo—A,其强度由弱至强不等,广泛分布于大、中、小各类感觉神经元的胞质及突起中。结论Nogo—A在成年大鼠脊髓,背根神经节和外周神经纤维的广泛存在提示其在正常状态下的神经功能中可能起重要作用。  相似文献   

6.
This study presentsd mtelinated and unmyelinated axon counts from thoracic dorsal roots of rats whose spinal cords were hemisected at birth or at 1 year of age. Axonal numbers from a root on the unoperated side are compared to numbers from the root of the same segment on the operated side of the animal. Counts were made 3 segments cranially and 3 segments caudally from the hemisection. In animals hemisected at birth and sacrified at 3–8 months, there is a statistically significant increase in unmyelinated axons in roots of the operated as compared to the normal side. We interpret this as sprouting of unmyelinated axons. In animals hemisected at 1 year of age, the statistically significant change was a drop in myelinated axons in roots of the operated side. We interpret this as a loss of myelinated axon cell bodies due to axon section in the dorsal funiculus. Thus axonal sprouting occurs in young rats in our paradigm and a loss of myelinated axons occurs in older animals. We emphasize that different axonal populations respond to hemisection in different ways at different times.  相似文献   

7.
Changes in substance P in the cat spinal cord after deafferentation of the hindlimb were investigated using the peroxidase-antiperoxidase technique. Unilateral lumbosacral dorsal root section (L1-S3) is followed by a decrease in dorsal horn (laminae I, II and V) substance P reaction product which is most marked at 10-11 days. There is no observable change in the ventral horn. The 13 or 15 day survivors demonstrate an increase over that seen at 10-11 days, and still greater amounts appear in the dorsal horn of 1 month survivors. After 1 month there is little further observable increase. The location of the returned reaction product resembles that of normals, but differs in its staining characteristics. Substance P containing cell bodies are observed in normal animals and on intact and deafferented sides of experimentals, suggesting that interneurons and propriospinal fibers may be a source of the returning substance P reaction product. The decrease in dorsal horn substance P at short times after rhizotomy followed by an increase at longer times is consistent with axonal sprouting. If so, then the time course of sprouting parallels that of locomotor recovery and supports the hypothesis that the two phenomena are related.  相似文献   

8.
The present study was designed to relate functional locomotor outcome to the anatomical extent and localization of lesions in the rat spinal cord. We performed dorsal and ventral lesions of different severity in 36 adult rats. Lesion depth, spared total white matter, and spared ventrolateral funiculus were compared to the locomotor outcome, assessed by the BBB open-field locomotor score and the grid walk test. The results showed that the preservation of a small number of fibers in the ventral or lateral funiculus was related to stepping abilities and overground locomotion, whereas comparable tissue preservation in the dorsal funiculus resulted in complete paraplegia. The strongest relation to locomotor function was between the BBB score and the lesion depth as well as the BBB score and the spared white matter tissue in the region of the reticulospinal tract. Locomotion on the grid walk required sparing in the ventrolateral funiculus and additional sparing of the dorsolateral and dorsal funiculus, where the cortico- and rubrospinal tracts are located.  相似文献   

9.
Regeneration of dorsal root fibers into the adult rat spinal cord   总被引:1,自引:0,他引:1  
Regeneration of dorsal root nerve fibers into the spinal cord of adult rat was studied with the electron microscope after crushing the roots. Regenerated dorsal root myelinated fibers were observed in the substantia gelatinosa and posterior funiculi around the tenth week after lesion. Cytoplasmic processes of oligodendrocytes were often found close to the young myelinated nerve fibers. The astrocytic response subsided as regeneration progressed. Clusters of small, circular profile of cellular processess were found in the neuropil about the sixth week and are considered to be regenerated unmyelinated axons. At this period, groups of segments of cellular processes containing clear vesicles were also encountered in the substantia gelatinosa and resembled growth cones described in peripheral regenerating nerves.  相似文献   

10.
Summary Changes in the distribution of3H-quinuclidinylbenzilate (3 H-QNB),3 H-acetylcholine (3 H-ACh) and3 H-alpha-bungarotoxin (alpha-BTx) binding sites were studied with the use of quantitative in vitro autoradiography in the L4–L6 segments of rats 7 days after ventral L4–L6-rhizotomies and 24 hours after ligation of the dorsal roots L4–L6. The changes in the binding sites of these ligands and of3 H-etorphine binding sites were also studied in the dorsal roots of the rats operated with dorsal root ligation and in the sciatic nerves (around a ligature) in the rats operated with ventral rhizotomy. After ventral rhizotomy3 H-QNB binding sites in the ipsilateral motor neuron area were decreased by about 25% from 100±5 to 73±5 fmol/mg wet weight. After dorsal root ligation3 H-QNB binding sites in the ipsilateral posterior horn were reduced by about 30% from 91±5 to 64±7 fmol/mg wet weight. No significant changes in the binding of the other cholinergic ligands in the spinal cords were observed after the operations. In the dorsal root3 H-alpha-Btx and3 H-etorphine binding sites were higher on the distal side of the ligation (3.5±0.8 and 14±4 fmol/mg wet weight, respectively) than on the proximal side (0.7±0.5 and 2.4±1.2 fmol/mg wet weight, respectively).The same level of3 H-ACh (total, muscarinic and nicotinic) binding was observed on both sides of the ligation. In the sciatic nerve3 H-QNB and total, muscarinic and nicotinic ACh binding sites were higher on the proximal side of the ligation than on the distal side. Except for a small emergence of muscarinic-ACh binding distally to the ligation there were no changes in the number of binding sites in the sciatic nerve after the ventral rhizotomy.Muscarinic antagonist binding sites are probably located on the perikarya of the motor neurons and presynaptically on the primary afferents in the posterior horn and in the dorsal root. Cholinergic agonist binding sites in the spinal cord seem less sensitive to axonal damage than antagonist binding sites. Cholinergic and opioid receptors in peripheral nerves are transported in both anterograde and retrograde directions and their origin seems to be the dorsal root ganglion.  相似文献   

11.
Blocking the neurite growth inhibitor Nogo-A by neutralizing antibodies improves functional recovery after partial spinal cord injury. In parallel, regeneration and sprouting of cortico- and rubrospinal projections are increased and may partially explain the enhanced functional recovery. The serotonergic raphe-spinal tract, which plays a key regulatory role for spinal motor circuits, has not been analysed in detail with regard to its response to Nogo-A function blocking antibody treatment after spinal cord injury. We studied the effect of 2 weeks of intrathecal Nogo-A antibody application after partial thoracic spinal cord injury on the lamina-specific restitution of the serotonergic (5-HT) raphe-spinal projections to the mid-lumbar grey matter. Nine weeks after the lesion, the number of 5-HT fibres in Rexed's laminae 4 and 7 and the number of 5-HT-positive varicosities on motoneurons in lamina 9 returned to their lamina-specific preinjury levels in Nogo-A antibody-treated rats. By contrast, control antibody-treated animals showed only a moderate increase in 5-HT fibre density in the respective laminae, and the number of 5-HT-positive varicosities on motoneurons remained low. Our results suggest that the Nogo-A antibody-induced recovery of descending serotonergic projections to the grey matter is lamina-specific and molecular cues must be present to guide the growing axons to the correct target areas. This appropriate restitution of the serotonergic innervation below the lesion site probably contributes to the impressive recovery of motor function.  相似文献   

12.
Splanchnic afferent projections to the spinal cord and gracile nucleus were labeled following the application of HRP to the central cut end of the major splanchnic nerve. Labeled afferent fibers were detected in the ipsilateral dorsal column, in Lissauer's tract (LT), in laminae 1, 5, 7, and 10, and in the dorsal gray commissure at T1-T13 levels of the spinal cord. Afferent projections were not identified in laminae 2-4. Collaterals from LT projected ventrally along the lateral and medial margins of the dorsal horn (called lateral and medial pathways, respectively). Afferents in the lateral pathway formed small bundles, spaced rostrocaudally at intervals of 300-1,000 microns, which passed medially at the base of the dorsal horn into laminae 5, 7, and 10 and to the contralateral spinal cord. Some afferents in the lateral pathway projected to the intermediolateral nucleus where labeled sympathetic preganglionic neurons were located. Afferents in the medial pathway entered the lateral aspect of the dorsal column and projected as a group near the midline rostrally to the medulla. The dorsal column pathway terminated in the ventral gracile nucleus in four or five clusters, each occupying a region ranging in size from 0.01-0.1 mm3 and separated in the rostrocaudal axis by distances of 400-800 microns. These clusters were concentrated in the middle and caudal portions of the nucleus below the obex. A comparison of the present results with those from earlier experiments on the central projections of afferent fibers from the heart, kidney, and pelvic organs demonstrates a consistent pattern of visceral afferent termination in the thoracolumbar and sacral segments of the spinal cord. This is not unexpected, since visceral afferent pathways to different organs perform similar functions, such as the transmission of nociceptive information and the initiation of autonomic reflexes.  相似文献   

13.
Transganglionic transport of wheatgerm agglutinin conjugated horse-radish peroxidase (WGA-HRP) was used to reveal the central distribution of terminals of primary afferent fibers from peripheral nerves innervating the hind leg of the rat. In separate experiments the sizes and locations of cutaneous peripheral receptive fields were determined by electrophysiological recording techniques for each of the nerves that had been labeled with WGA-HRP. By using digital image analysis, the sizes and positions of the peripheral receptive fields were correlated with the areas of superficial dorsal horn occupied by terminals of primary afferents from each of these receptive fields. Data were obtained from the posterior cutaneous nerve of the thigh, lateral sural, sural, saphenous, superficial peroneal, and tibial nerves. The subdivisions of the sciatic nerve, the sural, lateral sural, superficial peroneal, and tibial nerves each projected to a separate and distinct region of the superficial dorsal horn and collectively formed a "U"-shaped zone of terminal labeling extending from lumbar spinal segments L2 to the caudal portions of L5. The gap in the "U" extended from L2 to the L3-4 boundary and was occupied by terminals from the saphenous nerve. Collectively, all primary afferents supplying the hindlimb occupied the medial 3/4 of the superficial dorsal horn with terminals from the tibial nerve lying most medially and occupying the largest of all the terminal fields. Afferents from the superficial peroneal lay in a zone between the medially situated tibial zone and the more laterally placed sural zone. Afferents from the posterior cutaneous nerve were located most caudally and laterally. Terminal fields from the posterior cutaneous and saphenous nerves differed from the others in having split representations caused presumably by their proximity to the mid-axial line of the limb. Comparisons between the peripheral and the central representations of each nerve revealed that 1 mm2 of surface area of the superficial dorsal horn serves approximately 600-900 mm2 of hairy skin and roughly 300 mm2 of glabrous skin. The vast majority of terminal labeling observed in the dorsal horn was found in the marginal layer and substantia gelatinosa, suggesting that small diameter afferents have an orderly somatotopic arrangement in which each portion of the skin surface is innervated by afferent fibers that terminate in preferred localities within the dorsal horn.  相似文献   

14.
15.
Sprouting of peptidergic nociceptive and descending supraspinal projections to the dorsal horn following spinal cord injury (SCI) has been proposed as a mechanism of neuropathic pain. To identify structural changes that could initiate or maintain SCI pain, we used a complete transection model in rats to examine how structural remodeling in the dorsal horn rostral to the lesion relates to distance from injury, laminar region, and duration of injury. The major classes of C-fiber primary afferents differed greatly in their susceptibility to structural and chemical changes and their ability to undergo plasticity. Peptidergic primary afferents showed a widespread loss throughout the dorsal horn of segments approaching the injury site. Some of this loss may have been due to decreased neuropeptide expression. The reduction in peptidergic fibers was transient, indicating compensatory sprouting and perhaps also increased neuropeptide expression within the cord. Nonpeptidergic afferents expressing GFRalpha1 were largely unaffected by SCI. In contrast, in GFRalpha2-expressing nonpeptidergic afferents SCI caused a permanent loss of dorsal horn innervation. Unexpectedly, GFRalpha2 was transiently induced throughout deeper laminae but this was not due to upregulation of GFRalpha2 in dorsal root ganglia. We also observed permanent sprouting of catecholamine terminals of supraspinal origin. This was restricted to the superficial laminae. Our results show that SCI caused a loss of sensory input as well as structural remodeling such that the balance of nociceptive inputs and descending modulation was permanently altered. These changes may contribute to mechanisms rostral to the site of SCI that trigger and maintain neuropathic pain.  相似文献   

16.
The expression and localization of the insulin receptor (IR) was examined in rat dorsal root ganglia (DRG) and spinal cord using Western blotting, in situ hybridization and immunocytochemistry. Western blotting showed that the molecular weight of the IR beta subunit was higher in PNS than that found in CNS. Both IR mRNA and protein expressions were highest in small-sized sensory DRG neurons and myelinated sensory root fibers expressed higher levels of IR protein than myelinated anterior root fibers. In the spinal cord, IR immunoreactive neurons were present in lateral lamina V and in lamina X, suggesting the presence of IR in nociceptive pathways. Electronmicroscopy of DRGs revealed a polarized localization of the IR in abaxonal Schwann cell membranes, outer mesaxons in close vicinity to tight junctions of both myelinating and non-myelinating Schwann cells and to plasma membranes of sensory neurons. From these findings, we speculate that insulin may play a role in sensory fibers involved in nociceptive function often perturbed in diabetic neuropathy. The high expression of IR localizing to tight junctions of dorsal root mesaxons of DRGs may suggest a regulatory role on barrier functions compensating for the lack of a blood-nerve barrier in dorsal root ganglia. This is consistent with the colocalization of IR with tight junctions of the paranodal barrier and endoneurial endothelial cells in peripheral nerve.  相似文献   

17.
Reorganization of descending motor tracts in the rat spinal cord   总被引:6,自引:0,他引:6  
Following lesion of the central nervous system (CNS), reinnervation of denervated areas may occur via two distinct processes: regeneration of the lesioned fibres or/and sprouting from adjacent intact fibres into the deafferented zone. Both regeneration and axonal sprouting are very limited in the fully mature CNS of higher vertebrates, but can be enhanced by neutralizing the neurite outgrowth inhibitory protein Nogo-A. This study takes advantage of the distinct spinal projection pattern of two descending tracts, the corticospinal tract (CST) and the rubrospinal tract (RST), to investigate if re-innervation of denervated targets can occur by sprouting of anatomically separate, undamaged tracts in the adult rat spinal cord. The CST was transected bilaterally at its entry into the pyramidal decussation. Anatomical studies of the RST in IN-1 antibody-treated rats showed a reorganization of the RST projection pattern after neutralization of the myelin associated neurite growth inhibitor Nogo-A. The terminal arborizations of the rubrospinal fibres, which are normally restricted to the intermediate layers of the spinal cord, invaded the ventral horn but not the dorsal horn of the cervical spinal cord. Moreover, new close appositions were observed, in the ventral horn, onto motoneurons normally receiving CST projections. Red nucleus microstimulation experiments confirmed the reorganization of the RST system. These observations indicate that mature descending motor tracts are capable of significant intraspinal reorganization following lesion and suggests the expression of cues guiding and/or stabilizing newly formed sprouts in the adult, denervated spinal cord.  相似文献   

18.
This study investigated the feasibility of using a peripheral nerve autograft (NAG) to promote and guide regeneration of sensory axons from the caudal lumbar dorsal roots to the rostral dorsal column following a lower thoracic cordotomy in adult rats. After a left hemicordotomy at the T13 vertebra level and ipsilateral L3 and L4 rhizotomies, a peripheral NAG (peroneal nerve) was connected to the distal roots stumps, then implanted into the left dorsal column 10 mm rostral to hemicordotomy site (n = 12). After surgery, all animals of the experimental group experienced complete anesthesia in their left hindlimb. Three months later, a slight response to nociceptive stimulation reappeared in L3 and/or L4 dermatomes in 6 of the 12 experimental animals. None of these animals exhibited self-mutilation. Nine months after surgery, we performed retrograde tracing studies by injecting horseradish peroxidase (HRP) into the left dorsal column 30 mm rostral to the NAG implantation site. In eight animals, we found HRP-stained neurons in the left L3 and/or L4 dorsal root ganglia (DRG). The mean number of HRP-stained neurons per DRG was 71 +/- 92 (range 2-259). In control groups, no HRP-stained neurons were found in L3 or L4 DRG. Histological analysis of the NAG showed evidence of axonal regeneration in all 8 animals with positive retrograde labeling of DRG neurons. However, we did not find a statistical correlation between the number of HRP-stained neurons and the degree of sensory recovery. This study demonstrates that an NAG joining dorsal roots to the dorsal column, thus shunting the original CNS-PNS junction, can support regeneration of central axons from DRG primary sensory neurons into the dorsal column over distances of at least 30 mm despite the inhibitory influence of the CNS white matter.  相似文献   

19.
Excitotoxicity due to excessive synaptic glutamate release is featured in many neurological conditions in which neuronal death occurs. Whether activation of primary sensory pathways can ever produce sufficient over-activity in secondary sensory neurons in the dorsal horn of the spinal cord to induce cell death, however, has not been determined. In this study, we asked whether activity in myelinated afferents (A fibers), which use glutamate as a transmitter, can induce cell death in the dorsal horn. Using stereological estimates of neuron numbers from electron microscopic sections, we found that stimulation of A-fibers in an intact sciatic nerve at 10 Hz, 20 Hz, and 50 Hz in 10-minute intervals at a stimulus strength that activates both Abeta and Adelta fibers resulted in the loss of 25% of neurons in lamina III, the major site of termination of large Abeta fibers, but not in lamina I, where Adelta fibers terminate. Furthermore, sciatic nerve lesions did not result in detectable neuron loss, but activation of A fibers in a previously sectioned sciatic nerve did cause substantial cell death not only in lamina III but also in laminae I and II. The expansion of the territory of A-fiber afferent-evoked cell death is likely to reflect the sprouting of the fibers into these laminae after peripheral nerve injury. The data show, therefore, that primary afferent A-fiber activity can cause neuronal cell death in the dorsal horn with an anatomical distribution that depends on whether intact or injured fibers are activated. Stimulation-induced cell death potentially may contribute to the development of persistent pain.  相似文献   

20.
Calretinin (CR). a recently identified calcium-binding protein, is present in nervous tissue, including sensory pathways, where it may play an important role in regulation of cellular activity. Using immunocytochemistry, we examined the cellular localization of CR in dorsal root ganglia (DRG) and spinal cord of normal rats and after multiple unilateral dorsal root ganglionectomies. In DRG, CR-immunoreactive cell bodies and axons were a small subpopulation (10%) of medium- to large-sized neurons. In the spinal cord, CR-like immunoreactivity (LI) in neurons and fibers was found in all laminae except motoneurons. Dense fiber networks were also found in Clarke's column. The densest staining of both cell bodies and fibers was in the superficial laminae, especially lamina II, and in the lateral spinal and lateral cervical nuclei. CR-immunoreactive fibers were also observed in the fasciculi cuneatus and gracilis. Fasciculus gracilis exhibited the greatest number of labeled axons at the lumbosacral levels, but few labeled axons were found at the rostral thoracic and cervical levels. In contrast, the corticospinal tract at the base of the dorsal column was devoid of CR-immunoreactive fibers. Unilateral multiple lumbar ganglionectomies resulted in a loss of CR-LI in the dorsal columns ipsilateral to the surgery. In the spinal gray matter ipsilateral to the ganglionectomies, CR-LI was reduced in Clarke's column and slightly enhanced in the medial third of lamina II. Our observations demonstrate a unique distribution pattern of CR-LI compared to other calcium-binding proteins in the spinal cord, and suggest a role for CR in nociceptive and proprioceptive pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号