首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current steering in partial tripolar (pTP) mode has been shown to improve pitch perception and spectral resolution with cochlear implants (CIs). In this mode, a fraction (σ) of the main electrode current is returned within the cochlea and steered between the basal and apical flanking electrodes (with a proportion of α and 1 − α, respectively). Pitch generally decreases when α increases from 0 to 1, although the salience of pitch change varies across CI users. This study aimed to identify the mechanism of pitch changes with pTP-mode current steering and the factors contributing to the intersubject variability in pitch-ranking sensitivity. The electrical fields were measured for steered pTP stimuli on the same main electrode with α = 0, 0.5, and 1 in five implanted ears using electrical field imaging (EFI). The related excitation patterns were also measured physiologically using evoked compound action potential (ECAP) and psychophysically using psychophysical forward masking (PFM). Consistent with the pitch-ranking results in this study, the EFI, ECAP, and PFM centroids shifted apically with increasing α. An apical shift was also observed for the PFM peak but not for the EFI or ECAP peak. The pattern width was similar with different α values within a given measure (e.g., EFI, ECAP, or PFM), but the ECAP patterns were broader than the EFI and PFM patterns, possibly because ECAP was measured with smaller σ values than EFI and PFM. The amount of pattern shift with α depended on σ (i.e., the total amount of current used for steering) but was not correlated with the pitch-ranking sensitivity across subjects. The results revealed that the pitch changes elicited by pTP-mode current steering were not only driven by the shifts of excitation centroid.  相似文献   

2.
The perceptual effects of electrode spanning (i.e., the use of nonadjacent return electrodes) in partial tripolar (pTP) mode were tested on a main electrode EL8 in five cochlear implant (CI) users. Current focusing was controlled by σ (the ratio of current returned within the cochlea), and current steering was controlled by α (the ratio of current returned to the basal electrode). Experiment 1 tested whether asymmetric spanning with α = 0.5 can create additional channels around standard pTP stimuli. It was found that in general, apical spanning (i.e., returning current to EL6 rather than EL7) elicited a pitch between those of standard pTP stimuli on main electrodes EL8 and EL9, while basal spanning (i.e., returning current to EL10 rather than EL9) elicited a pitch between those of standard pTP stimuli on main electrodes EL7 and EL8. The pitch increase caused by apical spanning was more salient than the pitch decrease caused by basal spanning. To replace the standard pTP channel on the main electrode EL8 when EL7 or EL9 is defective, experiment 2 tested asymmetrically spanned pTP stimuli with various α, and experiment 3 tested symmetrically spanned pTP stimuli with various σ. The results showed that pitch increased with decreasing α in asymmetric spanning, or with increasing σ in symmetric spanning. Apical spanning with α around 0.69 and basal spanning with α around 0.38 may both elicit a similar pitch as the standard pTP stimulus. With the same σ, the symmetrically spanned pTP stimulus was higher in pitch than the standard pTP stimulus. A smaller σ was thus required for symmetric spanning to match the pitch of the standard pTP stimulus. In summary, electrode spanning is an effective field-shaping technique that is useful for adding spectral channels and handling defective electrodes with CIs.  相似文献   

3.
In cochlear implants (CIs), standard partial tripolar (pTP) mode reduces current spread by returning a fraction of the current to two adjacent flanking electrodes within the cochlea. Symmetric electrode spanning (i.e., separating both the apical and basal return electrodes from the main electrode by one electrode) has been shown to increase the pitch of pTP stimuli, when the ratio of intracochlear return current was fixed. To explain the pitch increase caused by symmetric spanning in pTP mode, this study measured the electrical potentials of both standard and symmetrically spanned pTP stimuli on a main electrode EL8 in five CI ears using electrical field imaging (EFI). In addition, the spatial profiles of evoked compound action potentials (ECAP) and the psychophysical forward masking (PFM) patterns were also measured for both stimuli. The EFI, ECAP, and PFM patterns of a given stimulus differed in shape details, reflecting the different levels of auditory processing and different ratios of intracochlear return current across the measurement methods. Compared to the standard pTP stimuli, the symmetrically spanned pTP stimuli significantly reduced the areas under the curves of the normalized EFI and PFM patterns, without shifting the pattern peaks and centroids (both around EL8). The more focused excitation patterns with symmetric spanning may have caused the previously reported pitch increase, due to an interaction between pitch and timbre perception. Being able to reduce the spread of excitation, pTP mode symmetric spanning is a promising stimulation strategy that may further increase spectral resolution and frequency selectivity with CIs.  相似文献   

4.
The membranous utricle sac of the red-eared turtle was mounted in a piezoelectric actuated platform mounted on the stage of a light microscope. The piezoelectric actuator oscillated the base of the neuroepithelium along a linear axis. Displacements were in the plane of the utricle and consisted of a linear sinusoidal-sweep signal starting at 0 and increasing to 500 Hz over 5 s. This inertial stimulus caused measurable shear displacement of the otoconial layer’s dorsal surface, resulting in shear deformation of the gelatinous and column filament layers. Displacements of the otoconial layer and a reference point on the neuroepithelium were filmed at 2,000 frames/s with a high-speed video camera during oscillations. Image registration was performed on the video to track displacements with a resolution better than 15 nm. The displacement waveforms were then matched to a linear second-order model of the dynamic system. The model match identified two system mechanical parameters—the natural circular frequency ωn and the damping ratio ζ—that characterized the utricle dynamic response. The median values found for the medial-lateral axis on 20 utricles with 95 % confidence intervals in parenthesis were as follows: ωn = 374 (353, 396) Hz and ζ = 0.50 (0.47, 0.53). The anterior-posterior axis values were not significantly different: ωn = 409 (390, 430) Hz and ζ = 0.53 (0.48, 0.57). The results have two relevant and significant dynamic system findings: (1) a higher than expected natural frequency and (2) significant under damping. Previous to this study, utricular systems were treated as overdamped and with natural frequencies much lower that measured here. Both of these system performance findings result in excellent utricle time response to acceleration stimuli and a broad frequency bandwidth up to 100 Hz. This study is the first to establish the upper end of this mechanical system frequency response of the utricle in any animal.  相似文献   

5.
Cochlear implant (CI) users usually exhibit marked across-electrode differences in detection thresholds with “focused” modes of stimulation, such as partial-tripolar (pTP) mode. This may reflect differences either in local neural survival or in the distance of the electrodes from the modiolus. To shed light on these two explanations, we compared stimulus-detection thresholds and gap-detection thresholds (GDTs) at comfortably loud levels for at least four electrodes in each of ten Advanced Bionics CI users, using 1031-pps pulse trains. The electrodes selected for each user had a wide range of stimulus-detection thresholds in pTP mode. We also measured across-electrode variations in both stimulus-detection and gap-detection tasks in monopolar (MP) mode. Both stimulus-detection and gap-detection thresholds correlated across modes. However, there was no significant correlation between stimulus-detection and gap-detection thresholds in either mode. Hence, gap-detection thresholds likely tap a source of across-electrode variation additional to, or different from, that revealed by stimulus-detection thresholds. Stimulus-detection thresholds were significantly lower for apical than for basal electrodes in both modes; this was only true for gap detection in pTP mode. Finally, although the across-electrode standard deviation in stimulus-detection thresholds was greater in pTP than in MP mode, the reliability of these differences—assessed by dividing the across-electrode standard deviation by the standard deviation across adaptive runs for each electrode—was similar for the two modes; this metric was also similar across modes for gap detection. Hence across-electrode differences can be revealed using clinically available MP stimulation, with a reliability comparable to that observed with focused stimulation.  相似文献   

6.
Objective: This study investigated categorical loudness scaling in a large group of cochlear implant (CI) recipients. Design: Categorical loudness was measured for individually determined sets of current amplitudes on apical, mid and basal electrodes of the Nucleus array. Study sample: Thirty adult subjects implanted with the Nucleus CI. Results: Subjects were generally reliable in categorical loudness scaling. As expected, current levels eliciting the same loudness categories differed across subjects and electrodes in many cases. After scaling the electric levels to remove differences in dynamic ranges across subjects and electrodes, the across-subject loudness functions for the three electrodes were very similar. Conclusions: Scaled electric current to remove differences in dynamic range, as implemented in the Nucleus processor, ensures uniform loudness across the array and CI recipients. The results also showed that categorical loudness scaling for electric stimulation was similar to that for acoustic stimulation in normal hearing subjects. These findings could be used as a guide for aligning electric and acoustic loudness in CI recipients with contralateral hearing.  相似文献   

7.
OBJECTIVE: The number of spectral channels is the number of discriminable pitches heard as current is delivered to distinct locations along the cochlea. This study aimed to determine whether cochlear implant users could hear additional spectral channels using current "steering." Current steering involves the simultaneous delivery of current to adjacent electrodes, where stimulation can be steered to sites between the contacts by varying the proportion of current delivered to each electrode in an electrode pair. Current steering may increase the number of spectral channels beyond the number of fixed electrode contacts. STUDY DESIGN: Prospective clinical study. SETTING: Twelve tertiary care centers in North America. PATIENTS: The subjects were 106 adults with postlingual onset of severe-to-profound hearing loss. INTERVENTIONS: Subjects received the Advanced Bionics CII or HiResolution 90K device (Advanced Bionics Corporation, Valencia, CA, USA). MAIN OUTCOME MEASURES: After loudness balancing and pitch ranking the 3 electrode pairs (2 and 3, 8 and 9, and 13 and 14), the subjects identified the electrode with the higher pitch while current was varied proportionally between the electrodes in each pair. The smallest change in proportion yielding a discriminable change in pitch was defined as the spectral resolution. RESULTS: The data from 115 ears indicate that the number of spectral channels averaged 3.8 for the basal pair, 6.0 for the midarray pair, and 5.3 for the apical pair. Assuming that the number of channels on these 3 electrode pairs represents the entire array, the total potential number of spectral channels was calculated and ranged from 8 to 451, with an average of 63. CONCLUSION: These results indicate that additional pitch percepts can be created using current steering.  相似文献   

8.
Abstract

Objectives

Determine ipsilateral acoustic electric pitch place match in a patient with preserved residual hearing across a broad frequency range.

Methods

Case report. Patient with up-sloping sensorineural hearing loss underwent implantation with a 680° insertion angle with preserved residual hearing. Pitch matching with variance of pulse rate was carried out.

Results

Electrical pitch percepts closely approximated the Greenwood map when compared to the acoustical pitch percepts and electrode position as determined by post-operative computed tomographic scan. The pitch matching results achieved from the deeply inserted electrodes, in the apical portion of the cochlea, suggest that the electrical stimulation may activate the dendritic extensions from the ganglion cell bodies that radiate from the terminal bulb. Stimulation rate influenced pitch perception in the apical turn but not in the mid- and basilar regions.

Discussion

Frequency to pitch allocation can potentially be improved by cochlear implants that access the apical third of the spiral ganglion. The ultimate goal of stimulating the apical third of the cochlea is to provide the maximum amount of spectral information to the user. We had the unique opportunity to work with a patient who presented with a severe sensorineural hearing loss rising to within normal limits and poor speech discrimination scores. Data from this study may aid our ability to give patients a broader spectrum of sound perception.  相似文献   

9.
Although neurophysiological and psychophysical proof of osseoperception is accumulating, histomorphometric evidence for the neural mechanisms of functional compensation following immediate and delayed ...  相似文献   

10.
Meniere’s disease is characterized by sporadic episodes of vertigo, nystagmus, fluctuating sensorineural hearing loss, tinnitus and aural pressure. Since Meniere’s disease can affect different regions of the vestibular labyrinth, we investigated if electrical vestibular stimulation (EVS) which excites the entire vestibular labyrinth may be useful to reveal patchy endorgan pathology. We recorded three-dimensional electrically evoked vestibulo-ocular reflex (eVOR) to transient EVS using bilateral, bipolar 100-ms current steps at intensities of 0.9, 2.5, 5.0, 7.5 and 10.0 mA with dual-search coils in 12 unilateral Meniere’s patients. Their results were compared to 17 normal subjects. Normal eVOR had tonic and phasic spatiotemporal properties best described by the torsional component, which was four times larger than horizontal and vertical components. At EVS onset and offset of 8.9 ms latency, there were phasic eVOR initiation (M = 1,267 °/s2) and cessation (M = −1,675 °/s2) acceleration pulses, whereas during the constant portion of the EVS, there was a maintained tonic eVOR (M = 9.1 °/s) at 10 mA. However in Meniere’s disease, whilst latency of EVS onset and offset was normal at 9.0 ms, phasic eVOR initiation (M = 1,720 °/s2) and cessation (M = −2,523 °/s2) were enlarged at 10 mA. The initiation profile was a bimodal response, whilst the cessation profile frequently did not return to baseline. The tonic eVOR (M = 20.5 °/s) exhibited a ramped enhancement of about twice normal at 10 mA. Tonic eVOR enhancement was present for EVS >0.9 mA and disproportionately enhanced the torsional, vertical and horizontal components. These eVOR abnormalities may be a diagnostic indicator of Meniere’s disease and may explain the vertigo attacks in the presence of declining mechanically evoked vestibular responses.  相似文献   

11.
A large number of perivascular cells expressing both macrophage and melanocyte characteristics (named perivascular-resident macrophage-like melanocytes, PVM/Ms), previously found in the intra-strial fluid–blood barrier, are also found in the blood–labyrinth barrier area of the vestibular system in normal adult cochlea, including in the three ampullae of the semicircular canals (posterior, superior, and horizontal), utricle, and saccule. The cells were identified as PVM/Ms, positive for the macrophage and melanocyte marker proteins F4/80 and GSTα4. Similar to PVM/Ms present in the stria vascularis, the PVM/Ms in the vestibular system are closely associated with microvessels and structurally intertwined with endothelial cells and pericytes, with a density in normal (unstimulated) utricle of 225 ± 43/mm2; saccule 191 ± 25/mm2; horizontal ampullae 212 ± 36/mm2; anterior ampullae 238 ± 36/mm2; and posterior ampullae 223 ± 64/mm2. Injection of bacterial lipopolysaccharide into the middle ear through the tympanic membrane causes the PVM/Ms to activate and arrange in an irregular pattern along capillary walls in all regions within a 48-h period. The inflammatory response significantly increases vascular permeability and leakage. The results underscore the morphological complexity of the blood barrier in the vestibular system, with its surrounding basal lamina, pericytes, as well as second line of defense in PVM/Ms. PVM/Ms may be important to maintain blood barrier integrity and initiating local inflammatory response in the vestibular system.  相似文献   

12.
Cochlear implant recipients perceive a rise in pitch when the site of stimulation is moved from the apex toward the base. The place pitch sensitivity is typically measured using the stimulation of single channels. However, all current cochlear implant devices stimulate multiple channels simultaneously or with pulses temporally interleaved. The primary goal of the present study is to test whether the sensitivity of a cochlear implant recipient to changes in perceived pitch associated with changes of place of excitation improves or deteriorates when the number of active channels is increased, compared with stimulation with only one active channel. Place pitch sensitivity was recorded in four Nucleus CI24 subjects as a function of number of active channels (from 1 to 8). Just noticeable differences were estimated from a constant stimuli 2AFC pitch-ranking experiment with roving loudness. Reference and comparison stimuli contained the same number of active channels but were shifted one or two electrodes toward the base or toward the apex. The place pitch sensitivity was measured using monopolar stimulation at two locations along the electrode array. To minimize cues related to loudness, the multichannel stimuli were loudness balanced relative to the single-channel stimuli presented at C-level. The number of active channels did not affect place pitch sensitivity. This is consistent with a model that compares the edges of the excitation pattern irrespective of the overlap between excitation patterns. There was a significant difference in sensitivity to place pitch among subjects. The average just noticeable differences of place pitch, extrapolated from a fitting procedure, for the subjects ranged from 0.25 mm to 0.46 mm.  相似文献   

13.
14.
Objective: An experiment was conducted to investigate the possibility that speech perception could be improved for some cochlear implant (CI) users by adjustment of the frequency allocation to the electrodes, following assessment of pitch perception along the electrode array.

Study sample: Thirteen adult CI users with MED-EL devices participated in the study.

Design: Pitch perception was assessed for individual CI electrode pairs using the Pitch Contour Test (PCT), giving information on pitch discrimination and pitch ranking for adjacent electrodes. Sentence perception in noise was also assessed with ten different frequency allocations, including the default.

Results: Pitch perception was found to be poorer for both discrimination and ranking scores at either end of the electrode array. A significant effect of frequency allocation was found for sentence scores [F(4.24,38.2)?=?7.14, p?F(4.24,38.2)?=?2.95, p?=?0.03]. Participants with poorer pitch perception at the basal end had poorer scores for some allocations with greater basal shift.

Conclusions: The results suggest that speech perception could be improved for CI users by assessment of pitch perception using the PCT and subsequent adjustment of pitch-related stimulation parameters.  相似文献   

15.
A recent study showed that the angular vestibulo-ocular reflex (VOR) can be better adaptively increased using an incremental retinal image velocity error signal compared with a conventional constant large velocity-gain demand (×2). This finding has important implications for vestibular rehabilitation that seeks to improve the VOR response after injury. However, a large portion of vestibular patients have unilateral vestibular hypofunction, and training that raises their VOR response during rotations to both the ipsilesional and contralesional side is not usually ideal. We sought to determine if the vestibular response to one side could selectively be increased without affecting the contralateral response. We tested nine subjects with normal vestibular function. Using the scleral search coil and head impulse techniques, we measured the active and passive VOR gain (eye velocity / head velocity) before and after unilateral incremental VOR adaptation training, consisting of self-generated (active) head impulses, which lasted ∼15 min. The head impulses consisted of rapid, horizontal head rotations with peak-amplitude 15 o, peak-velocity 150 o/s and peak-acceleration 3,000 o/s2. The VOR gain towards the adapting side increased after training from 0.92 ± 0.18 to 1.11 ± 0.22 (+22.7 ± 20.2 %) during active head impulses and from 0.91 ± 0.15 to 1.01 ± 0.17 (+11.3 ± 7.5 %) during passive head impulses. During active impulses, the VOR gain towards the non-adapting side also increased by ∼8 %, though this increase was ∼70 % less than to the adapting side. A similar increase did not occur during passive impulses. This study shows that unilateral vestibular adaptation is possible in humans with a normal VOR; unilateral incremental VOR adaptation may have a role in vestibular rehabilitation. The increase in passive VOR gain after active head impulse adaptation suggests that the training effect is robust.  相似文献   

16.
This study examines the relationship between focused-stimulation thresholds, electrode positions, and speech understanding in deaf subjects treated with a cochlear implant (CI). Focused stimulation is more selective than monopolar stimulation, which excites broad regions of the cochlea, so may be more sensitive as a probe of neural survival patterns. Focused thresholds are on average higher and more variable across electrodes than monopolar thresholds. We presume that relatively high focused thresholds are the result of larger distances between the electrodes and the neurons. Two factors are likely to contribute to this distance: (1) the physical position of electrodes relative to the modiolus, where the excitable auditory neurons are normally located, and (2) the pattern of neural survival along the length of the cochlea, since local holes in the neural population will increase the distance between an electrode and the nearest neurons. Electrode-to-modiolus distance was measured from high-resolution CT scans of the cochleae of CI users whose focused-stimulation thresholds were also measured. A hierarchical set of linear models of electrode-to-modiolus distance versus threshold showed a significant increase in threshold with electrode-to-modiolus distance (average slope = 11 dB/mm). The residual of these models was hypothesized to reflect neural survival in each subject. Consonant–Nucleus–Consonant (CNC) word scores were significantly correlated with the within-subject variance of threshold (r2 = 0.82), but not with within-subject variance of electrode distance (r2 = 0.03). Speech understanding also significantly correlated with how well distance explained each subject’s threshold data (r2 = 0.63). That is, subjects with focused thresholds that were well described by electrode position had better speech scores. Our results suggest that speech understanding is highly impacted by individual patterns of neural survival and that these patterns manifest themselves in how well (or poorly) electrode position predicts focused thresholds.  相似文献   

17.
Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na+ currents, voltage-dependent outward K+ currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3–45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (Ih) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs+ (1–5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that Ih was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of Ih was −123 mV, which shifted to −114 mV in the presence of cAMP. Activation of Ih was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at −139 mV). Activation speeded up significantly (τ = 136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo Ih could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when Ih was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin–Huxley type ionic conductances, removal of Ih similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size and width.  相似文献   

18.
The mouse has become an important animal model in understanding cochlear function. Structures, such as the tectorial membrane or hair cells, have been changed by gene manipulation, and the resulting effect on cochlear function has been studied. To contrast those findings, physical properties of the basilar membrane (BM) and tectorial membrane (TM) in mice without gene mutation are of great importance. Using the hemicochlea of CBA/CaJ mice, we have demonstrated that tectorial membrane (TM) and basilar membrane (BM) revealed a stiffness gradient along the cochlea. While a simple spring mass resonator predicts the change in the characteristic frequency of the BM, the spring mass model does not predict the frequency change along the TM. Plateau stiffness values of the TM were 0.6 ± 0.5, 0.2 ± 0.1, and 0.09 ± 0.09 N/m for the basal, middle, and upper turns, respectively. The BM plateau stiffness values were 3.7 ± 2.2, 1.2 ± 1.2, and 0.5 ± 0.5 N/m for the basal, middle, and upper turns, respectively. Estimations of the TM Young’s modulus (in kPa) revealed 24.3 ± 25.2 for the basal turns, 5.1 ± 4.5 for the middle turns, and 1.9 ± 1.6 for the apical turns. Young’s modulus determined at the BM pectinate zone was 76.8 ± 72, 23.9 ± 30.6, and 9.4 ± 6.2 kPa for the basal, middle, and apical turns, respectively. The reported stiffness values of the CBA/CaJ mouse TM and BM provide basic data for the physical properties of its organ of Corti.  相似文献   

19.
A series of experiments investigated the effects of asymmetric current waveforms on the perception of place and temporal pitch cues. The asymmetric waveforms were trains of pseudomonophasic (PS) pulses consisting of a short, high-amplitude phase followed by a longer (and lower amplitude) opposite-polarity phase. When such pulses were presented in a narrow bipolar (“BP+1”) mode and with the first phase anodic relative to the most apical electrode (so-called PSA pulses), pitch was lower than when the first phase was anodic re the more basal electrode. For a pulse rate of 12 pulses per second (pps), pitch was also lower than with standard symmetric biphasic pulses in either monopolar or bipolar mode. This suggests that PSA pulses can extend the range of place-pitch percepts available to cochlear implant listeners by focusing the spread of excitation in a more apical region than common stimulation techniques. Temporal pitch was studied by requiring subjects to pitch-rank single-channel pulse trains with rates ranging from 105 to 1,156 pps; this task was repeated at several intra-cochlear stimulation sites and using both symmetric and pseudomonophasic pulses. For PSA pulses presented to apical electrodes, the upper limit of temporal pitch was significantly higher than that for all the other conditions, averaging 713 pps. Measures of discriminability obtained using the method of constant stimuli indicated that this pitch percept was probably weak. However, a multidimensional scaling study showed that the percept associated with a rate change, even at high rates, was orthogonal to that of a place change and therefore reflected a genuine change in the temporal pattern of neural activity.  相似文献   

20.
IntroductionTinnitus is a subjective auditory symptom usually associated with a sound, even in the absence of external sound sources. Its diagnosis is complex, and some of the forms of measurement alone or in combination, include self-assessment questionnaires, such as the tinnitus handicap inventory, the visual analog scale and/or pitch and loudness matching.ObjectiveTo analyze the correlation among three tinnitus measurement methods: tinnitus handicap inventory, visual analog scale and pitch and loudness matching.MethodsThe study consisted of 148 patients complaining of chronic tinnitus. An otorhinolaryngological evaluation, anamnesis directed to tinnitus, audiometry (pure tone and speech), imitanciometry, tinnitus handicap inventory, visual analog scale, and pitch and loudness matching were performed. The study was registered in the Ethics Committee of the Institution with no. 0129/12.ResultsRegarding the frequency of tinnitus handicap inventory responses, a higher occurrence of the mild degree was observed. An average of 6 points was observed on the visual analog scale. The mean loudness matching in the right ear was 20 dBNS, and in the left ear was 17 dBNS. As for the type of stimulus, the most found was continuous pure tone. The frequency of the pitch sensation was 6000 Hz in the largest number of cases. Regarding the measures of tinnitus handicap inventory and the visual analogical scale, a significant correlation was observed, and as one value increases the other also increases. Pitch and loudness matching and the visual analogical scale results are also significant.ConclusionThere was a significant correlation between the values measured by the tinnitus handicap inventory, visual analogical scale (annoyance) and loudness matching in the evaluation of tinnitus. The selection of any one of the three evaluative methods for tinnitus investigation provides different dimensions of the tinnitus and complements the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号