首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Although vaccines are commercially available for the control of PRRSV infection, no vaccination regimen has been proved sustained success in terms of generating a protective immune response. Therefore, the development of novel antivirals is urgently needed. Antimicrobial peptides display broad-spectrum antimicrobial activities against bacteria, fungi, and viruses and play an important role in host innate immune response. Here, we tested whether Cecropin D (CD) could inhibit PRRSV infection and replication in vitro. The inhibitory effect of CD occurred during viral attachment and the early period of viral entry into Marc-145 cells. CD also attenuated virus-induced apoptosis during the late phase of PRRSV infection and suppressed virus release in Marc-145 cells, which might contribute to the inhibition of PRRSV infection. Similar inhibitory effects on PRRSV infection were also found with CD treatment in porcine alveolar macrophages, the major target cell type of PRRSV infection in pigs in vivo. These findings suggest that CD has the potential to develop a new therapeutic agent against PRRSV infection.  相似文献   

2.
The regulation of viral replication is under control of miRNAs and their target genes. Several articles report the cross-talk between host and virus. The drastic effects of Porcine reproductive and respiratory syndrome virus (PRRSV) pressed us to investigate the expression profiling of miRNAs and immunity related genes during PRRSV infection. This was performed by qPCR in MARC145 cells during PRRSV infection. It was observed that miRNAs and genes show different expression patterns at different time points during PRRSV infection. The early infected stage was accompanied with increased expression of some miRNAs including miR-204, miR-21, miR-181a, miR-29 while a decrease was observed for the same in late infection stage. The opposite condition also existed in parallel. An interesting observation was seen when miR-145 was strongly induced by PRRSV infection, whereas miR-127 expression was significantly reduced in all infection points. Taken together, our studies have revealed that the expressions of miRNAs and immune-related genes were regulated in PRRSV infected MARC-145 cells and had important roles in the immune response, providing a basis for further investigations.  相似文献   

3.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes a great economic loss to the swine industry globally. Current prevention and treatment measures are not effective to control the outbreak and spread of porcine reproductive and respiratory syndrome (PRRS). In other words, new antiviral strategies are urgently needed. Chlorine dioxide (ClO2) is regarded as a broad-spectrum disinfectant with strong inhibitory effects on microbes and parasites. The purpose of this study was to evaluate the inhibitory effects and underlying molecular mechanisms of ClO2 against PRRSV infection in vitro. Here, we identified ClO2 (the purity is 99%) could inhibit the infection and replication of PRRSV in both Marc-145 cells and porcine alveolar macrophages (PAMs). ClO2 could block PRRSV binding to cells rather than internalization and release, suggesting that ClO2 blocks the first stage of the virus life cycle. We also demonstrated that the inhibition exerted by ClO2 was attributed to the degradation of PRRSV genome and proteins. Moreover, we confirmed that ClO2 could decrease the expression of inflammatory cytokines induced by PRRSV. In summary, ClO2 is an efficient agent and potently suppressed PRRSV infection in vitro.  相似文献   

4.
Porcine circovirus associated disease (PCVAD) encompasses a group of syndromes linked to infection with porcine circovirus type 2 (PCV2). Based on the hypothesis that the immune responses to vaccination versus infection are quantitatively and qualitatively different, the objective of this study was to evaluate immunity, virus replication and disease protection in pigs vaccinated with PCV2 capsid protein (CP) and during infection. The disease model included dual infection with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV), a virus known to enhance disease progression and severity. The principal effect of PRRSV infection was to increase peak PCV2 viremia by almost 40-fold; however, PCV2 failed to show a reciprocal effect on PRRSV. In vaccinated pigs, there was no evidence of disease or PCV2 replication following dual virus challenge. Immunity following vaccination favored PCV2 neutralizing activity; whereas, PCV2 infection and disease produced high levels of non-neutralizing antibody, primarily directed against a polypeptide in the C-terminal region of CP. These results support the notion that the magnitude of the total antibody response cannot be used as a measure of protective immunity. Furthermore, protection versus disease lies in the immunodominance of specific epitopes. Epitope specificity should be taken into consideration when designing PCV2 vaccines.  相似文献   

5.
Thacker EL  Thacker BJ  Young TF  Halbur PG 《Vaccine》2000,18(13):1244-1252
Porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae are frequently isolated pathogens from pigs with respiratory disease. A previous study conducted in our laboratory found that infection with M. hyopneumoniae increased the duration and severity of respiratory disease induced by PRRSV. The purpose of this experiment was to determine whether vaccination against M. hyopneumoniae and/or PRRSV decreased the enhancement of PRRSV-induced pneumonia. Both M. hyopneumoniae bacterin and PRRSV vaccine decreased the severity of clinical respiratory disease. Infection or vaccination with PRRSV appeared to decrease the efficacy of the M. hyopneumoniae bacterin. Vaccination with M. hyopneumoniae bacterin decreased the potentiation of PRRSV-induced pneumonia observed in the dual infected pigs. However, PRRSV vaccination in combination with M. hyopneumoniae bacterin eliminated this benefit and the amount of pneumonia induced by PRRSV increased. PRRSV vaccine alone did not decrease the potentiation of PRRSV pneumonia by M. hyopneumoniae.  相似文献   

6.
目的研究microRNA x凋亡信号通路Y在人巨细胞病毒(HCMV)感染致神经细胞凋亡中的机制。方法选取2015年1月-2016年12月60例HCMC感染致神经细胞凋亡患者为观察组,选择正常凋亡60例为对照组,选择60例体检正常者为健康组,分析miRNAs在健康人、正常神经凋亡及HCMC感染致神经细胞凋亡患者中的表达。结果健康组、对照组miR-27a、miR-664b表达低于观察组,miR-30a表达高于观察组(P<0.05);TNM分级Ⅲ级~Ⅳ级、肿瘤数量>1个、肿瘤>5 cm及有血管侵犯HCMC感染致神经细胞凋亡血清miR-27a高表达率高于TNM分级为Ⅰ级~Ⅱ级、肿瘤数量1个、肿瘤≤5 cm及无血管侵犯HCMC感染致神经细胞凋亡患者(P<0.05);转染48 h、72 h后,HCMC感染致神经细胞凋亡细胞Caspase-3增殖计数高于未转染组(P<0.05)。结论microRNA x控制HCMV病毒复制,在HCMV感染致神经细胞凋亡中有抗病毒作用,可为HCMV感染治疗靶向点。  相似文献   

7.
Resveratrol (RSV) has been reported to induce autophagy and apoptosis in non-small-cell lung cancer A549 cells, and the nerve growth factor receptor (NGFR) regulates autophagy and apoptosis in many other cells. However, the effect of NGFR on autophagy and apoptosis induced by RSV in A549 cells remains unclear. Here, we found that RSV reduced the cell survival rate in time- and concentration-dependent manners, activating autophagy and apoptosis. Lethal autophagy was triggered by RSV higher than 55 μM. The relationship between autophagy and apoptosis depended on the type of autophagy. Specifically, mutual promotion was observed between apoptosis and lethal autophagy. Conversely, cytoprotective autophagy facilitated apoptosis but was unaffected by apoptosis. RSV enhanced NGFR by increasing mRNA expression and prolonging the lifespan of NGFR mRNA and proteins. RSV antagonized the enhanced autophagy and apoptosis caused by NGFR knockdown. As the downstream pathway of NGFR, AMPK-mTOR played a positive role in RSV-induced autophagy and apoptosis. Overall, RSV-induced autophagy and apoptosis in A549 cells are regulated by the NGFR-AMPK-mTOR signaling pathway.  相似文献   

8.
《Vaccine》2015,33(32):3881-3886
Cereal commodities are frequently contaminated with mycotoxins produced by the secondary metabolism of fungal infection. Among these contaminants, deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs are very sensitive to the toxic effects of DON and are frequently exposed to naturally contaminated feed. Recently, DON naturally contaminated feed has been shown to decrease porcine reproductive and respiratory syndrome virus (PRRSV) specific antibody responses following experimental infection. The objective of this study was to determine the impact of DON naturally contaminated feed on the immune response generated following vaccination with PRRSV live attenuated vaccine. Eighteen pigs were randomly divided into three experimental groups of 6 animals based on DON content of the diets (0, 2.5 and 3.5 mg DON/kg). They were fed these rations one week prior to the vaccination and for all the duration of the immune response evaluation. All pigs were vaccinated intra-muscularly with one dose of Ingelvac® PRRSV modified live vaccine (MLV). Blood samples were collected at day −1, 6, 13, 20, 27 and 35 post vaccination (pv) and tested for PRRSV RNA by RT-qPCR and for virus specific antibodies by ELISA. Results showed that ingestion of DON-contaminated diets significantly decreased PRRSV viremia. All pigs fed control diet were viremic while only 1 (17%) and 3 (50%) out of 6 pigs were viremic in the groups receiving 3.5 and 2.5 mg of DON/kg, respectively. Subsequently, all pigs fed control diet developed PRRSV specific antibodies while only viremic pigs that were fed contaminated diets have developed PRRSV specific antibodies. These results suggest that feeding pigs with DON-contaminated diet could inhibit vaccination efficiency of PRRSV MLV by severely impairing viral replication.  相似文献   

9.
《Vaccine》2015,33(32):3997-4003
BackgroundViral-induced interleukin (IL)-10 and regulatory T lymphocytes (Tregs) are believed to play a major role in shaping the immunological and clinical outcomes following Porcine Reproductive and Respiratory Syndrome virus (PRRSV) infection. Recently, it has been shown that PRRSV nucleocapsid (N) protein can induce IL-10 production which is essential for induction of PRRSV-specific Tregs. We hypothesized that immunity to N protein should reduce PRRSV-induced negative immunomodulatory effects which will be essential for establishing proper anti-PRRSV immunity in infected pigs.ObjectivesTo investigate the immunomodulatory effects of DNA vaccine encoding a linearized, truncated form of PRRSV-N protein (pORF7t) which was designed to preferentially induce cell-mediated immunity against PRRSV N protein.MethodImmunomodulatory effects of the novel DNA vaccine were investigated in an experimental vaccinated-challenged model. In addition, long-term immunomodulatory effects of the DNA vaccine were investigated in vaccinated pigs kept at the PRRSV-positive environment until the end of the fattening period. Pigs were vaccinated either prior to or following natural PRRSV infection.ResultThe results indicated that pORF7t could modulate the anti-PRRSV immune responses and promote the control of viral replication in the vaccinated-challenged pigs. Immunized pigs exhibited increased numbers of PRRSV-specific activated CD4+CD25+ lymphocytes, reduced numbers of PRRSV-specific Tregs, and rapid viral clearance following infection. In a long-term study, regardless of the time of vaccination, DNA vaccine could modulate the host immune responses, resulted in enhanced PRRSV-specific IFN-γ producing cells, and reduced numbers of PRRSV-specific Tregs, without evidence of enhanced antibody responses. No vaccine adverse reaction was observed throughout the study.ConclusionThis study revealed the novel concept that PRRSV-specific immunity can be modulated by induction of cell-mediated immunity against the nucleocapsid protein. This concept could potentially benefit the development of PRRSV management and control strategies.  相似文献   

10.
Autophagy is important in the regulation of survival and death signaling pathways in cancer. PKC? revealed high transforming potential and the ability to increase cell migration, invasion, and metastasis. Zapotin (5,6,2′,6′-tetramethoxyflavone), a natural flavonoid, showed chemopreventive and anticancer properties. Previously, we reported that downmodulation of induced PKC? level by zapotin was associated with decreased migration and increased apoptosis in HeLa cell line containing doxycycline-inducible constitutively active PKC? (PKC?A/E, Ala159 → Glu). Depending on the genetic and environmental content of cells, autophagy may either precede apoptosis or occur simultaneously. The purpose of this study was to assess the effect of zapotin on autophagy. Increasing concentration of zapotin (from 7.5 µM to 30 µM) caused an inhibition of the formation of autophagosomes and a decline in microtubule-associated protein 1 light chain 3 (LC3) protein levels. The gene expression level of major negative regulator of autophagy was noticeably increased. Moreover, the expression of the pivotal autophagy genes was decreased. These changes were accompanied by alternation in autophagy-related protein levels. In conclusion, our results implied that both the antiautophagic and the proapoptosis effect of zapotin in HeLaPKC?A/E cells are associated with the protein kinase C epsilon signaling pathway and lead to programmed cell death.  相似文献   

11.
Werling K 《Orvosi hetilap》2011,152(49):1955-1961
Autophagy is a self-digestion process that plays an important role in the development, differentiation and homeostasis of cells, helping their survival during starvation and hypoxia. Accumulated mutant proteins in the endoplasmic reticulum can be degraded by autophagy in alpha-1 antitrypsin deficiency. Hepatitis C and B virus may exploit the autophagy pathway to escape the innate immune response and to promote their own replication. Autophagy is decreased in response to chronic alcohol consumption, likely due to a decrease in 5'-adenosine monophosphate-activated protein kinase, increase in mTOR activity and due to an alteration in vesicle transport in hepatocytes. In obesity and alcoholic liver disease the decreased function of autophagy causes formation of Mallory-Denk bodies and cell death. The deficient autophagy can contribute to liver steatosis, to endoplasmic reticulum stress, and to progression of liver disease. Autophagy defect in hepatocellular carcinoma suggests that it can serve a tumor-suppressor function. The autophagy protein Beclin-1 levels have prognostic significance in liver tumors. Understanding of the molecular mechanism and the role of autophagy may lead to more effective therapeutic strategies in liver diseases in the future.  相似文献   

12.
Chronic respiratory infections reduce growth in pigs but protein accretion (PA) during an ongoing multifactorial respiratory infection has not been determined, and the mechanisms underlying growth inhibition are largely unknown. The objectives of this study were to determine whether viral and bacterial pneumonia in young pigs decrease PA, increase serum IL-1beta and IL-6, and increase myostatin (MSTN) mRNA in biceps femoris and triceps muscles. Mycoplasma hyopneumoniae (Mh) or medium was given intratracheally at 4 wk of age, Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) or medium was given intranasally at 6 wk of age, and pigs were killed 7 or 14 d after PRRSV inoculation for body composition analysis. PRRSV but not Mh induced a marked increase (P < 0.01) in IL-1beta, IL-6, and MSTN mRNA and a decrease (P < 0.01) in food intake, daily weight gain, PA, and lipid accretion. PRRSV also reduced (P < 0.01) myofiber area in the biceps femoris. Food intake, weight gain, PA, and weight of biceps femoris and triceps muscles were negatively correlated (r = -0.4 to -0.8, P < 0.05) with serum IL-1beta and IL-6 and with MSTN mRNA in muscle. These results suggest that the magnitude of increases in inflammatory cytokines during a respiratory infection may be predictive of decreases in PA and growth. They further suggest that during infection growth of skeletal muscle is limited in part by myostatin.  相似文献   

13.
《Vaccine》2016,34(46):5540-5545
NADC30-like PRRSV has been recently reported and became endemic in vaccinated pig herds in China. The outbreaks of disease in vaccinated pigs indicated the inefficacy of commercial PRRSV vaccines. In this study, five commercial PRRSV vaccines that have been widely used in China were used to evaluate the efficacy to a NADC30-like PRRSV infection. The vaccinated pigs were challenged with HNjz15, a NADC30-like PRRSV at 28 days post vaccination. Compared to unvaccinated pigs, the vaccinated pigs clinically shortened the period of fever with less pig numbers of clinical manifestations and had improved body weight gain at the end of the study. However, the vaccinated pigs developed viremia with similar kinetics and suffered pathological lesions in lung and lymphoid tissues as the unvaccinated pigs. The virus load in tonsil, lung and lymph nodes detected by immunohistochemistry staining in vaccinated pigs was also similar to that in unvaccinated pigs which indicated the inability of vaccination to eradicate the virus from tissues of vaccinated pigs. Therefore, the above results suggested current commercial PRRSV vaccines could not provide complete protection to the NADC30-like PRRSV infection.  相似文献   

14.
张洁  彭芝兰 《现代预防医学》2011,38(11):2128-2131,2134
[目的]观察抑制自噬基因Beclin1的表达对卵巢癌耐药细胞A2780/DDP顺铂敏感性的影响并探讨其中机制。[方法]利用脂质体将自噬基因Beclin1RNA干扰质粒pSUPER-Beclin1和对照质粒pSUPER-non分别转染耐药卵巢癌细胞A2780/DDP,筛选稳定表达株,检测顺铂作用下各组细胞(pSUPER-Beclin1组、pSUPER-non组和未转染组)生长抑制率、半数抑制浓度(IC50)、自噬和凋亡率的变化。[结果]A2780/DDP细胞转染干扰质粒pSUPER-Be-clin1后,细胞内Beclin1蛋白的表达明显下降;比较3组细胞顺铂48hIC50,pSUPER-Beclin1转染组最低(P﹤0.01);对3组细胞自噬与凋亡水平的检测显示,抑制Beclin1蛋白表达,在顺铂作用下,细胞自噬水平明显下降,而凋亡细胞比例明显升高,凋亡蛋白Caspase-3的表达亦明显上调,实验组与对照组相比差异有统计学意义(P﹤0.01)。[结论]抑制耐药细胞A2780/DDP自噬基因Beclin1的表达,可通过抑制自噬,增强凋亡提高耐药细胞对顺铂的敏感性。  相似文献   

15.
Recent findings suggest that porcine reproductive and respiratory syndrome virus (PRRSV) possesses immunomodulatory properties. To investigate the effect of PRRSV infection on classical swine fever (CSF) vaccine efficacy, 17-day-old pigs were divided into five groups. The experimental group was infected with a Thai PRRSV (US genotype) a week before CSF vaccination and challenged with a virulent CSF virus (CSFV) 3 weeks following vaccination. The control groups received no PRRSV infection, no CSF vaccination, no CSF challenge, or in combination were included. The results demonstrated that PRRSV infection significantly inhibited host immune response that resulted in vaccination failure in the subsequent CSFV exposure. Following CSF challenge, the PRRSV-infected, vaccinated pigs exhibited clinical, virological and pathological features resembled to those of the non-vaccinated groups. The findings indicated that CSF immunization during an acute phase of PRRSV infection could result in vaccination failure.  相似文献   

16.
Macranthoside B (MB), a saponin compound in Lonicera macranthoides, can block cell proliferation and induce cell death in several types of cancer cells; however, the precise mechanisms by which MB exerts its anticancer effects remain poorly understood. MB blocked A2780 human ovarian carcinoma cell proliferation both dose- and time-dependently. MB induced apoptosis, with increased poly (ADP-ribose) polymerase (PARP) and caspase-3/9 cleavage. MB also caused autophagy in A2780 cells, with light chain 3 (LC3)-II elevation. Inhibiting MB-induced autophagy with the autophagy inhibitor 3-methyladenine (3-MA) significantly decreased apoptosis, with a reduction of growth inhibition; inhibiting MB-induced apoptosis with the pan-caspase inhibitor Z-VAD-FMK did not decrease autophagy but elevated LC3-II levels, indicating that MB-induced autophagy is cytotoxic and may be upstream of apoptosis. Furthermore, MB increased intracellular reactive oxygen species (ROS) levels, with activated 5′ adenosine monophosphate-activated protein kinase (AMPK), decreased mammalian target of rapamycin (mTOR) and P70S6 kinase phosphorylation, and increased PARP and caspase-3/9 cleavage, and LC3-II elevation; treatment with the ROS scavenger N-acetyl cysteine and the AMPK inhibitor Compound C diminished this effect. Therefore, the ROS/AMPK/mTOR pathway mediates the effect of MB on induction of apoptosis via autophagy in human ovarian carcinoma cells.  相似文献   

17.
Riboflavin deficiency and severity of malaria   总被引:2,自引:0,他引:2  
The riboflavin status of 64 children suffering from malarial infection was assessed by measuring the activation coefficient of erythrocyte glutathione reductase. Thirty-five children were found to be deficient in riboflavin whereas in 29 children riboflavin status was within the normal range. The median parasite count and its range on admission in the deficient group (2.7 per cent, range 0.3-13.6) was lower than that in the non-deficient group (5.3 per cent, range 0.6-30.2). The correlation between activity coefficient and parasite count was significant (R = -0.49). The recovery process was slower in the deficient group even though they had a relatively lower parasite count. It is inferred that riboflavin deficiency leads to inhibition of growth and multiplication of plasmodia. Its beneficial effects in malaria infection needs further evaluation.  相似文献   

18.
Cano JP  Dee SA  Murtaugh MP  Pijoan C 《Vaccine》2007,25(22):4382-4391
The objectives of this study were to evaluate the effects of a therapeutic vaccine intervention with a modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on the dynamics of a heterologous viral infection in a population of pigs, and to determine the clinical and virological response of previously exposed and vaccinated pigs against a second virulent heterologous challenge. A population of 320 pigs were infected with a field isolate, PRRSV MN-30100, alone or followed by Ingelvac PRRS MLV vaccine administered one to three times at 30 days intervals beginning 1 week after infection. Vaccine intervention reduced the duration of viral shedding, but did not reduce the viral load in tissues or the proportion of persistently infected pigs. A different and highly virulent field isolate, MN-184, was then given as a heterologous viral challenge at 97 days after first exposure. Previously infected and vaccinated pigs showed a significant reduction in clinical signs and enhanced weight gain after the highly virulent challenge with PRRSV MN-184, but infection with and shedding of the challenge isolate were not prevented.  相似文献   

19.
Recent studies have indicated that autophagy may be one of the important pathways induced by ionizing radiation. Atorvastatin (statin), an inhibitor of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, may exhibit anticancer effects as an autophagy inducer. In our study, the cell killing and radiosensitizing effects of statin were analyzed in PC3 cell line. Activation of the autophagy pathway was analyzed using the GFP-LC3 assay and western blot to determine LC3-II expression. The radiosensitivity of PC3 cells was determined using the clonal survival assay, TUNEL assay, and the Annexin V apoptosis assay. The expression profiles of autophagy related genes were analyzed using a pathway specific real-time polymerase chain reaction (PCR) array. Autophagic response was induced in PC3 cells after exposure to statin and/or gamma rays. Inhibition of the autophagic process using small interfering RNAs (siRNA) targeting Atg7 and/or Atg12 significantly reduced radiosensitivity of PC3 cells. Statin also exhibited a significant apoptosis-inducing effect in PC3 cells, which can be partially suppressed by Atg7 siRNA. Cells treated with statin and gamma irradiation showed significantly reduced colony forming efficiency and increased number of Annexin V positive early apoptotic cells. Analysis of autophagy and its regulatory gene profile showed that the expressions of 22 genes out of 86 genes assessed were significantly altered in the cells exposed to combined treatment or statin alone. The data indicate that activation of the autophagy pathway may be responsible for apoptosis inducing effect of statin. Furthermore, combined treatment with radiation and autophagic inducer, such as statin, may be synergistic in inducing cell death of PC3 cells.  相似文献   

20.
The increasing emergence of Helicobacter pylori strains resistant to antibiotics may cause unsuccessful treatment. An alternative agent or mixture with anti-H. pylori effect is urgently required to reduce H. pylori infection. We explored the preventive and therapeutic potential of a combination of catechins and sialic acid on H. pylori-infected human gastric cells in vitro and in mice in vivo. We evaluated the anti-H. pylori activity of catechins and/or sialic acid using the agar dilution and checkerboard methods. The effect of catechins and/or sialic acid on H. pylori infection-induced oxidative stress and apoptosis/autophagy in cell culture was explored using an ultrasensitive chemiluminescence analyzer, immunocytochemistry, and Western blotting. Specific pathogen-free BALB/c mice were divided into uninfected control, infected control, pretreated, and post-treated groups. The effects of catechins/sialic acid were determined by histology and immunocytochemistry. The combination of catechins and sialic acid showed synergistic or additive anti-H. pylori activity and significantly reduced inducible nitric oxide synthase expression and Bax/Bcl-2-mediated apoptosis but enhanced Beclin-1-mediated autophagy. All mice infected with H. pylori displayed gastritis and accumulation of 3-nitrotyrosine and 4-hydroxynonenal. Pretreatment with catechins/sialic acid completely prevented H. pylori infection and resulted in normal histology. Post-treatment with catechins/sialic acid decreased the bacterial load and gastritis score and eradicated up to 60% of H. pylori infections in a dose-dependent manner. This is the first demonstration to our knowledge of a nonprobiotic, nonantibiotic treatment that is 100% effective in preventing and has promising possibilities for treating H. pylori infection. Further studies are needed to confirm this result in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号