首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high‐resolution spectra of non‐liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non‐localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.  相似文献   

2.
High‐resolution magic angle spinning (HRMAS) MRS allows for direct measurements of non‐liquid tissue and cell specimens to present valuable insights into the cellular metabolisms of physiological and pathological processes. HRMAS produces high‐resolution spectra comparable to those obtained from solutions of specimen extracts but without complex metabolite extraction processes, and preserves the tissue cellular structure in a form suitable for pathological examinations following spectroscopic analysis. The technique has been applied in a wide variety of biomedical and biochemical studies and become one of the major platforms of metabolomic studies. By quantifying single metabolites, metabolite ratios, or metabolic profiles in their entirety, HRMAS presents promising possibilities for diagnosis and prediction of clinical outcomes for various diseases, as well as deciphering of metabolic changes resulting from drug therapies or xenobiotic interactions. In this review, we evaluate HRMAS MRS results on animal models and cell lines reported in the literature, and present the diverse applications of the method for the understanding of pathological processes and the effectiveness of therapies, development of disease animal models, and new progress in HRMAS methodology.  相似文献   

3.
Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image‐guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II–IV using ex vivo proton high‐resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter‐grade conversions. Importantly, the myo‐inositol to total choline index allowed for a separation of recurrent low‐grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco‐metabolite D‐2‐hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra‐grade and intra‐lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.  相似文献   

4.
High‐resolution magic angle spinning (HR MAS) nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to study metabolite levels in human breast cancer tissue, assessing, for instance, correlations with prognostic factors, survival outcome or therapeutic response. However, the impact of intratumoral heterogeneity on metabolite levels in breast tumor tissue has not been studied comprehensively. More specifically, when biopsy material is analyzed, it remains questionable whether one biopsy is representative of the entire tumor. Therefore, multi‐core sampling (n = 6) of tumor tissue from three patients with breast cancer, followed by lipid (0.9‐ and 1.3‐ppm signals) and metabolite quantification using HR MAS 1H NMR, was performed, resulting in the quantification of 32 metabolites. The mean relative standard deviation across all metabolites for the six tumor cores sampled from each of the three tumors ranged from 0.48 to 0.74. This was considerably higher when compared with a morphologically more homogeneous tissue type, here represented by murine liver (0.16–0.20). Despite the seemingly high variability observed within the tumor tissue, a random forest classifier trained on the original sample set (training set) was, with one exception, able to correctly predict the tumor identity of an independent series of cores (test set) that were additionally sampled from the same three tumors and analyzed blindly. Moreover, significant differences between the tumors were identified using one‐way analysis of variance (ANOVA), indicating that the intertumoral differences for many metabolites were larger than the intratumoral differences for these three tumors. That intertumoral differences, on average, were larger than intratumoral differences was further supported by the analysis of duplicate tissue cores from 15 additional breast tumors. In summary, despite the observed intratumoral variability, the results of the present study suggest that the analysis of one, or a few, replicates per tumor may be acceptable, and supports the feasibility of performing reliable analyses of patient tissue.  相似文献   

5.
NMR-visible lipid signals detected in vivo by 1H MRS are associated with tumour aggression and believed to arise from cytoplasmic lipid droplets. High-resolution magic angle spinning (HRMAS) 1H MRS and Nile Red staining were performed on human brain tumour biopsy specimens to investigate how NMR-visible lipid signals relate to viable cells and levels of necrosis across different grades of glioma. Presaturation spectra were acquired from 24 adult human astrocytoma biopsy samples of grades II (8), III (2) and IV (14) using HRMAS 1H MRS and quantified using LCModel to determine lipid concentrations. Each biopsy sample was then refrozen, cryostat sectioned, and stained with Nile Red, to determine the number of lipid droplets and droplet size distribution, and with Haematoxylin and Eosin, to determine cell density and percentage necrosis. A strong correlation (R=0.92, P<0.0001) was found between the number of Nile Red-stained droplets and the approximately 1.3 ppm lipid proton concentration by 1H MRS. Droplet sizes ranged from 1 to 10 microm in diameter, and the size distribution was constant independent of tumour grade. In the non-necrotic biopsy samples, the number of lipid droplets correlated with cell density, whereas in the necrotic samples, there were greater numbers of droplets that showed a positive correlation with percentage necrosis. The correlation between 1H MRS lipid signals and number of Nile Red-stained droplets, and the presence of lipid droplets in the non-necrotic biopsy specimens provide good evidence that the in vivo NMR-visible lipid signals are cytoplasmic in origin and that formation of lipid droplets precedes necrosis.  相似文献   

6.
Tumor cells have increased glycolytic activity, and glucose is mainly used to form lactate and alanine, even when high concentrations of oxygen are present (Warburg effect). The purpose of the present study was to investigate glucose metabolism in two xenograft models representing basal-like and luminal-like breast cancer using (13) C high-resolution-magic angle spinning (HR-MAS) MRS and gene expression analysis. Tumor tissue was collected from two groups for each model: untreated mice (n=19) and a group of mice (n=16) that received an injection of [1-(13) C]-glucose 10 or 15 min before harvesting the tissue. (13) C HR-MAS MRS was performed on the tumor samples and differences in the glucose/alanine (Glc/Ala), glucose/lactate (Glc/Lac) and alanine/lactate (Ala/Lac) ratios between the models were studied. The expression of glycolytic genes was studied using tumor tissue from the same models. In the natural abundance MR spectra, a significantly lower Glc/Ala and Glc/Lac ratio (p<0.001) was observed in the luminal-like model compared with the basal-like model. In the labeled samples, the predominant glucose metabolites were lactate and alanine. Significantly lower Glc/Ala and Glc/Lac ratios were observed in the luminal-like model (p<0.05). Most genes contributing to glycolysis were expressed at higher levels in the luminal-like model (fdr<0.001). The lower Glc/Ala and Glc/Lac ratios and higher glycolytic gene expression observed in the luminal-like model indicates that the transformation of glucose to lactate and alanine occurred faster in this model than in the basal-like model, which has a growth rate several times faster than that of the luminal-like model. The results from the present study suggest that the tumor growth rate is not necessarily a determinant of glycolytic activity.  相似文献   

7.
High-resolution magic angle spinning (HR-MAS) 1H NMR spectroscopy of intact human liver needle biopsies has not been previously reported. HR-MAS NMR spectra collected on 17 specimens with tissue amounts between approximately 0.5 and 12 mg showed very good spectral resolution and signal-to-noise ratios. One-dimensional 1H spectra revealed many intense signals corresponding to cellular metabolites. In addition, some high molecular weight metabolites, such as glycogen and mobile fatty acids, could be observed in some spectra. Resonance assignments for 22 metabolites were obtained by combining the analysis of three different types of 1D 1H spectral editing, such as T2 filtering or the nuclear Overhauser effect and 2D TOCSY and 13C-HSQC spectra. Biochemical stability of the liver tissue during up to 16 h of magic angle spinning at 277 K was studied. Biochemical trends corresponding to the different pathologies were observed, involving free fragments of lipids among other metabolites. NMR signal intensity ratios can be useful for discrimination among non-pathological, hepatitis C affected and cirrhotic liver tissues. Overall, this work demonstrates the applicability of HR-MAS NMR spectroscopy to the biochemical characterization of needle biopsies of the human liver.  相似文献   

8.
Management of brain tumours in children would benefit from improved non‐invasive diagnosis, characterisation and prognostic biomarkers. Metabolite profiles derived from in‐vivo MRS have been shown to provide such information. Studies indicate that using optimum a priori information on metabolite contents in the construction of linear combination (LC) models of MR spectra leads to improved metabolite profile estimation. Glycine (Gly) is usually neglected in such models due to strong overlap with myo‐inositol (mI) and a low concentration in normal brain. However, biological studies indicate that Gly is abundant in high‐grade brain tumours. This study aimed to investigate the quantitation of Gly in paediatric brain tumours using MRS analysed by LCModel?, and its potential as a non‐invasive biomarker of malignancy. Single‐voxel MRS was performed using PRESS (TR 1500 ms, TE 30 ms/135 ms) on a 1.5 T scanner. Forty‐seven cases (18 high grade (HG), 17 low grade (LG), 12 ungraded) were retrospectively selected if both short‐TE and long‐TE MRS (n = 33) or short‐TE MRS and high‐resolution magic‐angle spinning (HRMAS) of matched surgical samples (n = 15) were available. The inclusion of Gly in LCModel? analyses led to significantly reduced fit residues for both short‐TE and long‐TE MRS (p < 0.05). The Gly concentrations estimated from short‐TE MRS were significantly correlated with the long‐TE values (R = 0.91, p < 0.001). The Gly concentration estimated by LCModel? was significantly higher in HG versus LG tumours for both short‐TE (p < 1e‐6) and long‐TE (p = 0.003) MRS. This was consistent with the HRMAS results, which showed a significantly higher normalised Gly concentration in HG tumours (p < 0.05) and a significant correlation with the normalised Gly concentration measured from short‐TE in‐vivo MRS (p < 0.05). This study suggests that glycine can be reliably detected in paediatric brain tumours using in‐vivo MRS on standard clinical scanners and that it is a promising biomarker of tumour aggressiveness. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
High-resolution magic angle spinning (HRMAS) (1)H NMR of biopsy tissue provides a biochemical profile that has potential diagnostic and prognostic value, and can aid interpretation of the lower-resolution (1)H-NMR spectra obtained in vivo. However, the biochemical profile obtained may be affected by experimental factors such as a period of ischaemia before snap-freezing of the biopsy tissue for subsequent analysis and the mechanical stress of the spinning procedure of HRMAS itself. We have used normal rat brain cortex as a 'gold standard', either funnel-frozen or deliberately allowed to become ischaemic for set periods of time before snap-freezing, to quantitatively investigate these two effects. In addition, we have compared biochemical changes that occur in normal rat brain during HRMAS (spun continuously at 5 kHz for 4 h at 4 degrees C as could be required for a two-dimensional acquisition) with those that occur in biopsy samples from low-grade and high-grade adult human astrocytomas, during the same HRMAS procedure. Significant changes due to delayed initial sample freezing were noted in metabolites associated with glycolysis (alanine, glucose and lactate), as expected. However, for the funnel-frozen rat tissue at 4 degrees C, there were even more significant changes, which appear to be the result of extended spinning at 5 kHz. In particular, the 18% total creatine increase observed is unlikely to be de novo synthesis of creatine. More likely, the asymptotic exponential increase in creatine suggests an exponential release of an NMR-invisible bound creatine store as a result of tissue damage from mechanical stress of sample spinning. Overall, it appears that tissue ischaemia during biopsy excision and delays in snap-freezing may have less significant effects on metabolite profile than the prolonged spinning times required for two-dimensional HRMAS, and this must be accounted for when results are being interpreted.  相似文献   

10.
1H MRS provides a powerful method for investigating tumour metabolism by allowing the measurement of metabolites in vivo. Recently, the technique of 1H high‐resolution magic angle spinning (HR‐MAS) has been shown to produce high‐quality data, allowing the accurate measurement of many metabolites present in unprocessed biopsy tissue. The purpose of this study was to evaluate the agreement between the techniques of in vivo MRS and ex vivo HR‐MAS for investigating childhood brain tumours. Short‐TE (30 ms), single‐voxel, in vivo MRS was performed on 16 paediatric patients with brain tumours at 1.5 T. A frozen biopsy sample was available for each patient. HR‐MAS was performed on the biopsy samples, and metabolite quantities were determined from the MRS and HR‐MAS data using the LCModel? and TARQUIN algorithms, respectively. Linear regression was performed on the metabolite quantities to asses the agreement between MRS and HR‐MAS. Eight of the 12 metabolite quantities were found to correlate significantly (P < 0.05). The four worst correlating metabolites were aspartate, scyllo‐inositol, glycerophosphocholine and N‐acetylaspartate, and, except for glycerophosphocholine, this error was reflected in their higher Cramer–Rao lower bounds (CRLBs), suggesting that low signal‐to‐noise was the greatest source of error for these metabolites. Glycerophosphocholine had a lower CRLB implying that interference with phosphocholine and choline was the most significant source of error. The generally good agreement observed between the two techniques suggests that both MRS and HR‐MAS can be used to reliably estimate metabolite quantities in brain tumour tissue and that tumour heterogeneity and metabolite degradation do not have an important effect on the HR‐MAS metabolite profile for the tumours investigated. HR‐MAS can be used to improve the analysis and understanding of MRS data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Accurate determination of the concentration of the metabolites contained in intact human biopsies of 10 glioblastoma multiforme samples was achieved using one-dimensional (1)H high-resolution magic angle spinning (HR-MAS) NMR combined with ERETIC (electronic reference to in vivo concentrations) measurements. The amount of sample used ranged from 6.8 to 12.9 mg. Metabolite concentrations were measured in each sample using two methods: with DSS (2,2-dimethyl-2-silapentane-5-sulfonate sodium salt) as an internal reference and with ERETIC as an external electronically generated reference. The ERETIC signal was shown to be highly reproducible and did not affect the spectral quality. The concentrations calculated by the ERETIC method in model solutions were shown to be independent of the salt concentration in the range typically found in biological samples (0-250 mM). The ERETIC method proved to be straightforward to use in tissues and much more robust than the internal standard method. The concentrations calculated using the internal DSS concentration were systematically found to be higher than those determined using the ERETIC technique. These results indicate a possible interaction of the DSS molecules with the biopsy sample. Moreover, variations in the sample preparation process, with possible loss of DSS solution, may hamper the quantification process, as happens in one of the ten samples analysed. In this study, the ERETIC method was validated on model solutions and used in brain tumour tissues. Calculated metabolite concentrations obtained with the ERETIC procedure matched the values determined in the same type of tumours by in vivo, ex vivo and in vitro methodologies.  相似文献   

12.
Localized two-dimensional constant-time correlation spectroscopy (CT-COSY) was used to resolve glutamate (Glu), gamma-aminobutyric acid (GABA), and glutamine (Gln) in the human brain at 4.7 T. In this method, three-dimensional localization was achieved using three radio frequency pulses of the CT-COSY module for slice selection. As this sequence could decouple JHH along the F1 direction, peak resolution of metabolites was improved even on a magnitude-mode display. In experiments on a phantom containing N-acetylaspartate, creatine, Glu, Gln, and GABA with a constant time delay (Tct) of 110 ms, cross peaks of Glu, Gln, and GABA were obtained on a spectrum processed with standard sine-bell windows, which emphasize sine-dependent signals along the t2 direction. In contrast, diagonal peaks of Glu C4H at 2.35 ppm, GABA C2H at 2.28 ppm, and Gln C4H at 2.44 ppm were resolved on a spectrum processed with Gaussian windows, which emphasize cosine-dependent signals along t2. Human brain spectra were obtained from a 27 mL voxel within the parieto-occipital region using a volume transverse electromagnetic (TEM) coil for both transmission and reception. Tct was 110 ms; the total scan time was 30 min. Diagonal peaks of Glu C4H, GABA C2H, and Gln C4H were also resolved on the spectrum processed with Gaussian windows. These results show that the localized two-dimensional CT-COSY method featuring 1H decoupling along the F1 direction could resolve Glu, GABA, and Gln signals in the human brain.  相似文献   

13.
MRS provides a valuable tool for the non‐invasive detection of brain γ‐aminobutyric acid (GABA) in vivo. GABAergic dysfunction has been observed in the aging cerebellum. The study of cerebellar GABA changes is of considerable interest in understanding certain age‐related motor disorders. However, little is known about the reproducibility of GABA MRS in an aged population. Therefore, this study aimed to explore the feasibility and reproducibility of GABA MRS in the aged cerebellum at 3.0 T and to examine the effect of differing tissue composition on GABA measurements. MRI and 1H MRS examinations were performed on 10 healthy elderly volunteers (mean age, 75.2 ± 6.5 years) using a 3.0‐T Siemens Tim Trio scanner. Among them, five subjects were scanned twice to assess the short‐term reproducibility. The MEGA‐PRESS (Mescher–Garwood point‐resolved spectroscopy) J‐editing sequence was used for GABA detection in two volumes of interest (VOIs) in the left and right cerebellar dentate. MRS data processing and quantification were performed with LCModel 6.3‐0L using two separate basis sets, generated from density matrix simulations using published values for chemical shifts and J couplings. Raw metabolite levels from LCModel outputs were corrected for cerebrospinal fluid contamination and relaxation. GABA‐edited spectra yielded robust and stable GABA measurements with averaged intra‐individual coefficients of variation for corrected GABA+ between 4.0 ± 2.8% and 13.4 ± 6.3%, and inter‐individual coefficients of variation between 12.6% and 24.2%. In addition, there was a significant correlation between GABA+ obtained with the two LCModel basis sets. Overall, our results demonstrated the feasibility and reproducibility of cerebellar GABA‐edited MRS at 3.0 T in an elderly population. This information might be helpful for studies using this technique to study GABA changes in normal or diseased aging brain, e.g. for power calculations and the interpretation of longitudinal observations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
MR metabolic profiling of the prostate is promising as an additional diagnostic approach to separate indolent from aggressive prostate cancer. The objective of this study was to assess the relationship between the Gleason score and the metabolic biomarker (choline + creatine + spermine)/citrate (CCS/C) measured by ex vivo high‐resolution magic angle spinning MRS (HR‐MAS MRS) and in vivo MRSI, and to evaluate the correlation between in vivo‐ and ex vivo‐measured metabolite ratios from spatially matched prostate regions. Patients (n = 13) underwent in vivo MRSI prior to radical prostatectomy. A prostate tissue slice was snap‐frozen shortly after surgery and the locations of tissue samples (n = 40) collected for ex vivo HR‐MAS were matched to in vivo MRSI voxels (n = 40). In vivo MRSI was performed on a 3T clinical MR system and ex vivo HR‐MAS on a 14.1T magnet. Relative metabolite concentrations were calculated by LCModel fitting of in vivo spectra and by peak integration of ex vivo spectra. Spearman's rank correlations (ρ) between CCS/C from in vivo and ex vivo MR spectra, and with their corresponding Gleason score, were calculated. There was a strong positive correlation between the Gleason score and CCS/C measured both in vivo and ex vivo (ρ = 0.77 and ρ = 0.69, respectively; p < 0.001), and between in vivo and ex vivo metabolite ratios from spatially matched regions (ρ = 0.67, p < 0.001). Our data indicate that MR metabolic profiling is a potentially useful tool for the assessment of cancer aggressiveness. Moreover, the good correlation between in vivo‐ and ex vivo‐measured CCS/C demonstrates that our method is able to bridge MRSI and HR‐MAS molecular analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Osteoarthritis (OA) is a common multifactorial and heterogeneous degenerative joint disease, and biochemical changes in cartilage matrix occur during the early stages of OA before morphological changes occur. Thus, it is desired to measure regional biochemical changes in the joint. High‐resolution magic angle spinning (HRMAS) NMR spectroscopy is a powerful method of observing cartilaginous biochemical changes ex vivo, including the concentrations of alanine and N‐acetyl, which are markers of collagen and total proteoglycan content, respectively. Previous studies have observed significant changes in chondrocyte metabolism of OA cartilage via the altered gene expression profiles of ACAN, COL2A1 and MMP13, which encode aggrecan, type II collagen and matrix metalloproteinase 13 (a protein crucial in the degradation of type II collagen), respectively. Employing HRMAS, this study aimed to elucidate potential relationships between N‐acetyl and/or alanine and ACAN, COL2A1 and/or MMP13 expression profiles in OA cartilage. Thirty samples from the condyles of five subjects undergoing total knee arthroplasty to treat OA were collected. HRMAS spectra were obtained at 11.7 T for each sample. RNA was subsequently extracted to determine gene expression profiles. A significant negative correlation between N‐acetyl metabolite and ACAN gene expression levels was observed; this provides further evidence of N‐acetyl as a biomarker of cartilage degeneration. The alanine doublet was distinguished in the spectra of 15 of the 30 specimens of this study. Alanine can only be detected with HRMAS NMR spectroscopy when the collagen framework has been degraded such that alanine is sufficiently mobile to form a distinguished peak in the spectrum. Thus, HRMAS NMR spectroscopy may provide unique localized measurements of collagenous degeneration in OA cartilage. The identification of imaging markers that could provide a link between OA pathology and chondrocyte metabolism will facilitate the development of more sensitive diagnostic techniques and will improve methods of monitoring treatment for patients suffering from OA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Short‐TE MRS has been proposed recently as a method for the in vivo detection and quantification of γ‐aminobutyric acid (GABA) in the human brain at 3 T. In this study, we investigated the accuracy and reproducibility of short‐TE MRS measurements of GABA at 3 T using both simulations and experiments. LCModel analysis was performed on a large number of simulated spectra with known metabolite input concentrations. Simulated spectra were generated using a range of spectral linewidths and signal‐to‐noise ratios to investigate the effect of varying experimental conditions, and analyses were performed using two different baseline models to investigate the effect of an inaccurate baseline model on GABA quantification. The results of these analyses indicated that, under experimental conditions corresponding to those typically observed in the occipital cortex, GABA concentration estimates are reproducible (mean reproducibility error, <20%), even when an incorrect baseline model is used. However, simulations indicate that the accuracy of GABA concentration estimates depends strongly on the experimental conditions (linewidth and signal‐to‐noise ratio). In addition to simulations, in vivo GABA measurements were performed using both spectral editing and short‐TE MRS in the occipital cortex of 14 healthy volunteers. Short‐TE MRS measurements of GABA exhibited a significant positive correlation with edited GABA measurements (R = 0.58, p < 0.05), suggesting that short‐TE measurements of GABA correspond well with measurements made using spectral editing techniques. Finally, within‐session reproducibility was assessed in the same 14 subjects using four consecutive short‐TE GABA measurements in the occipital cortex. Across all subjects, the average coefficient of variation of these four GABA measurements was 8.7 ± 4.9%. This study demonstrates that, under some experimental conditions, short‐TE MRS can be employed for the reproducible detection of GABA at 3 T, but that the technique should be used with caution, as the results are dependent on the experimental conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Separate quantification of glutamate (Glu) and glutamine (Gln) using conventional MRS on clinical scanners is challenging. In previous work, constant‐time point‐resolved spectroscopy (CT‐PRESS) was optimized at 3 T to detect Glu, but did not resolve Gln. To quantify Glu and Gln, a time‐domain basis set was constructed taking into account metabolite T2 relaxation times and dephasing from B0 inhomogeneity. Metabolite concentrations were estimated by fitting the basis one‐dimensional CT‐PRESS diagonal magnitude spectra to the measured spectrum. This method was first validated using seven custom‐built phantoms containing variable metabolite concentrations, and then applied to in vivo data acquired in rats exposed to vaporized ethanol and controls. Separate metabolite quantification revealed increased Gln after 16 weeks and increased Glu after 24 weeks of vaporized ethanol exposure in ethanol‐treated compared with control rats. Without separate quantification, the signal from the combined resonances of Glu and Gln (Glx) showed an increase at both 16 and 24 weeks in ethanol‐exposed rats, precluding the determination of the independent and differential contribution of each metabolite at each time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study was to determine the metabolic changes in the transition from pre-invasive to invasive cervical cancer using high-resolution magic angle spinning (HR-MAS) MRS. Biopsy specimens were obtained from women with histologically normal cervix (n = 5), cervical intraepithelial neoplasia (CIN; mild, n = 5; moderate/severe, n = 40), and invasive cancer (n = 23). (1)H HR-MAS MRS data were acquired using a Bruker Avance 11.74 T spectrometer (Carr-Purcell-Meiboom-Gill sequence; TR = 4.8 s; TE = 135 ms; 512 scans; 41 min acquisition). (31)P HR-MAS spectra were obtained from the normal subjects and cancer patients only (as acetic acid applied before tissue sampling in patients with CIN impaired spectral quality) using a (1)H-decoupled pulse-acquire sequence (TR = 2.82 s; 2048 scans; 96 min acquisition). Peak assignments were based on values reported in the literature. Peak areas were measured using the AMARES algorithm. Estimated metabolite concentrations were compared between patient diagnostic categories and tissue histology using independent samples t tests. Comparisons based on patient category at diagnosis showed significantly higher estimated concentrations of choline (P = 0.0001) and phosphocholine (P = 0.002) in tissue from patients with cancer than from patients with high-grade dyskaryosis, but no differences between non-cancer groups. Division by histology of the sample also showed increases in choline (P = 0.002) and phosphocholine (P = 0.002) in cancer compared with high-grade CIN tissue. Phosphoethanolamine was increased in cancer compared with normal tissue (P = 0.0001). Estimated concentrations of alanine (P = 0.01) and creatine (P = 0.008) were significantly reduced in normal tissue from cancer patients compared with normal tissue from non-cancer patients. The estimated concentration of choline was significantly increased in CIN tissue from cancer patients compared with CIN tissue from non-cancer patients (P = 0.0001). Estimated concentrations of choline-containing metabolites increased from pre-invasive to invasive cervical cancer. Concurrent metabolite depletion occurs in normal tissue adjacent to cancer tissue.  相似文献   

19.
The objective of this study was to compare ex vivo proton high-resolution magic angle spinning magnetic resonance spectra of intact tissue with those spectra obtained by solution (1)H NMR of brain extracts of the same sample. Sixteen brain tissue samples from simian immunodeficiency virus-infected rhesus macaques from both frontal cortex and putamen were evaluated by comparing brain metabolite quantities of N-acetylaspartate (NAA), choline-containing compounds (Cho), myo-inositol (MI), creatine (Cr), lactate (Lac), glutamate (Glu) and acetate (Ace). The ratios of the individual NMR peak areas of all metabolites relative to the creatine peak area were calculated. Linear regression analysis revealed significant correlations between measurements using the two methods. The strength of the correlations varied depending on the metabolite studied. We found highly significant correlations for NAA/Cr (r2 = 0.77; p < 0.0001), NAA + Ace/Cr (r2 = 0.73; p < 0.0001) and MI/Cr (r2 = 0.75; p < 0.0001). We observed somewhat less strong correlations for Glu/Cr (r2 = 0.54; p < 0.002) and Lac/Cr (r2 = 0.54; p < 0.002). There was a substantially weaker correlation for Cho/Cr (r2 = 0.32; p = 0.02). When plotting the metabolite ratios obtained by 1H HRMAS NMR of the intact tissue sample on the ordinate vs 1H NMR of the tissue extract on the abscissa, most metabolites exhibited a slope close to unity, and a positive intercept probably due to macromolecular contributions to the MAS spectra. The slope for Cho/Cr was substantially less than unity. Generally, samples from the frontal cortex showed a better correlation between intact and extracted tissue samples than putamen. This is most prominent in the cases of NAA/Cr and Cho/Cr. We conclude that both methods provide substantially the same information for most major brain metabolites, with the exception of the Cho resonance.  相似文献   

20.
The mechanisms underlying volatile anesthesia agents are not well elucidated. Emerging researches have focused on the participation of γ‐aminobutyric acid (GABA) neurons but there still lacks morphological evidence. To elucidate the possible activation of GABAergic neurons by sevoflurane inhalation in morphology, Fos (as neuronal activity marker) and GABA neurons double labeling were observed on the brain of glutamic acid decarboxylase (GAD) 67‐GFP knock‐in mice after sevoflurane inhalation. Twenty GAD67‐GFP knock‐in mice were divided into three groups: S1 group: incomplete anesthesia state induced by sevoflurane; S2 group: complete anesthesia state induced by sevoflurane; control(C) group. Sevoflurane induced a significant increase of Fos expression in the dorsomedial hypothalamic nucleus (DM), periaqueductal grey (PAG), hippocampus (CA1, DG), paraventricular thalamic nucleus (PV), lateral septal nucleus (LS), and cingulate cortex (Cg1 and Cg2) in S1 group compared to C group, and increase of Fos expression in S2 group compared to S1 group. In S2 group, Fos was only expressed in the medial amygdaloid nucleus (MeA), Edinger–Westphal (E–W) nucleus, arcuate hypothalamic nucleus (Arc) and the ventral part of paraventricular hypothalamic nucleus (PaV). Double immunofluroscent staining indicated that in LS, almost all Fos werepresent in GABAergic neurons. In CA1, DG, DM, cg1, cg2, and PAG, Fos was expressed as well, but only few were present in GABAergic neurons. Fos expression was very high in thalamus, but no coexistence were found as noGABAergic neuron was detected in this area. Our results provided morphological evidence that GABAergic transmission in specific brain areas may participate in the sevoflurane‐induced anesthesia. Anat Rec, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号