首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Causal inference has been widely conducted in various fields and many methods have been proposed for different settings. However, for noisy data with both mismeasurements and missing observations, those methods often break down. In this paper, we consider a problem that binary outcomes are subject to both missingness and misclassification, when the interest is in estimation of the average treatment effects (ATE). We examine the asymptotic biases caused by ignoring missingness and/or misclassification and establish the intrinsic connections between missingness effects and misclassification effects on the estimation of ATE. We develop valid weighted estimation methods to simultaneously correct for missingness and misclassification effects. To provide protection against model misspecification, we further propose a doubly robust correction method which yields consistent estimators when either the treatment model or the outcome model is misspecified. Simulation studies are conducted to assess the performance of the proposed methods. An application to smoking cessation data is reported to illustrate the use of the proposed methods.  相似文献   

2.
We extend the pattern‐mixture approach to handle missing continuous outcome data in longitudinal cluster randomized trials, which randomize groups of individuals to treatment arms, rather than the individuals themselves. Individuals who drop out at the same time point are grouped into the same dropout pattern. We approach extrapolation of the pattern‐mixture model by applying multilevel multiple imputation, which imputes missing values while appropriately accounting for the hierarchical data structure found in cluster randomized trials. To assess parameters of interest under various missing data assumptions, imputed values are multiplied by a sensitivity parameter, k, which increases or decreases imputed values. Using simulated data, we show that estimates of parameters of interest can vary widely under differing missing data assumptions. We conduct a sensitivity analysis using real data from a cluster randomized trial by increasing k until the treatment effect inference changes. By performing a sensitivity analysis for missing data, researchers can assess whether certain missing data assumptions are reasonable for their cluster randomized trial.  相似文献   

3.
We develop and demonstrate methods to perform sensitivity analyses to assess sensitivity to plausible departures from missing at random in incomplete repeated binary outcome data. We use multiple imputation in the not at random fully conditional specification framework, which includes one or more sensitivity parameters (SPs) for each incomplete variable. The use of an online elicitation questionnaire is demonstrated to obtain expert opinion on the SPs, and highest prior density regions are used alongside opinion pooling methods to display credible regions for SPs. We demonstrate that substantive conclusions can be far more sensitive to departures from the missing at random assumption (MAR) when control and intervention nonresponders depart from MAR differently, and show that the correlation of arm specific SPs in expert opinion is particularly important. We illustrate these methods on the iQuit in Practice smoking cessation trial, which compared the impact of a tailored text messaging system versus standard care on smoking cessation. We show that conclusions about the effect of intervention on smoking cessation outcomes at 8 week and 6 months are broadly insensitive to departures from MAR, with conclusions significantly affected only when the differences in behavior between the nonresponders in the two trial arms is larger than expert opinion judges to be realistic.  相似文献   

4.
In studies of smoking behavior, some subjects report exact cigarette counts, whereas others report rounded-off counts, particularly multiples of 20, 10 or 5. This form of data reporting error, known as heaping, can bias the estimation of parameters of interest such as mean cigarette consumption. We present a model to describe heaped count data from a randomized trial of bupropion treatment for smoking cessation. The model posits that the reported cigarette count is a deterministic function of an underlying precise cigarette count variable and a heaping behavior variable, both of which are at best partially observed. To account for an excess of zeros, as would likely occur in a smoking cessation study where some subjects successfully quit, we model the underlying count variable with zero-inflated count distributions. We study the sensitivity of the inference on smoking cessation by fitting various models that either do or do not account for heaping and zero inflation, comparing the models by means of Bayes factors. Our results suggest that sufficiently rich models for both the underlying distribution and the heaping behavior are indispensable to obtaining a good fit with heaped smoking data. The analyses moreover reveal that bupropion has a significant effect on the fraction abstinent, but not on mean cigarette consumption among the non-abstinent.  相似文献   

5.
Missing data due to loss to follow-up or intercurrent events are unintended, but unfortunately inevitable in clinical trials. Since the true values of missing data are never known, it is necessary to assess the impact of untestable and unavoidable assumptions about any unobserved data in sensitivity analysis. This tutorial provides an overview of controlled multiple imputation (MI) techniques and a practical guide to their use for sensitivity analysis of trials with missing continuous outcome data. These include δ- and reference-based MI procedures. In δ-based imputation, an offset term, δ, is typically added to the expected value of the missing data to assess the impact of unobserved participants having a worse or better response than those observed. Reference-based imputation draws imputed values with some reference to observed data in other groups of the trial, typically in other treatment arms. We illustrate the accessibility of these methods using data from a pediatric eczema trial and a chronic headache trial and provide Stata code to facilitate adoption. We discuss issues surrounding the choice of δ in δ-based sensitivity analysis. We also review the debate on variance estimation within reference-based analysis and justify the use of Rubin's variance estimator in this setting, since as we further elaborate on within, it provides information anchored inference.  相似文献   

6.
The analysis of quality of life (QoL) data can be challenging due to the skewness of responses and the presence of missing data. In this paper, we propose a new weighted quantile regression method for estimating the conditional quantiles of QoL data with responses missing at random. The proposed method makes use of the correlation information within the same subject from an auxiliary mean regression model to enhance the estimation efficiency and takes into account of missing data mechanism. The asymptotic properties of the proposed estimator have been studied and simulations are also conducted to evaluate the performance of the proposed estimator. The proposed method has also been applied to the analysis of the QoL data from a clinical trial on early breast cancer, which motivated this study.  相似文献   

7.
Sato T 《Statistics in medicine》2001,20(17-18):2761-2774
When analysing repeated binary data from randomized trials, the model-based approaches, such as generalized estimating equations, are frequently used. Such methods ignore compliance information and give the model-based intention-to-treat estimate of treatment effect. In this paper, the design-based (randomization-based) semi-parametric estimation procedure is given in the estimation of causal risk difference. The resulting risk difference estimator is interpreted as an extension of the instrumental variables estimator for a binary outcome which has the causal interpretation. Extension of the proposed method to stratified analysis is given for data from stratified randomization or meta-analysis. It yields a Mantel-Haenszel type risk difference estimator. As a special case of stratified analysis, the pattern mixture model which stratifies the data by pattern of missing data is performed. Application of the proposed method to a trial in which endpoints were the occurrences of fever over three courses is provided. The same ideas are applied to the causal risk ratio estimation.  相似文献   

8.
In causal inference, often the interest lies in the estimation of the average causal effect. Other quantities such as the quantile treatment effect may be of interest as well. In this article, we propose a multiply robust method for estimating the marginal quantiles of potential outcomes by achieving mean balance in (a) the propensity score, and (b) the conditional distributions of potential outcomes. An empirical likelihood or entropy measure approach can be utilized for estimation instead of inverse probability weighting, which is known to be sensitive to the misspecification of the propensity score model. Simulation studies are conducted across different scenarios of correctness in both the propensity score models and the outcome models. Both simulation results and theoretical development indicate that our proposed estimator is consistent if any of the models are correctly specified. In the data analysis, we investigate the quantile treatment effect of mothers' smoking status on infants' birthweight.  相似文献   

9.
Causal inference with observational longitudinal data and time‐varying exposures is complicated due to the potential for time‐dependent confounding and unmeasured confounding. Most causal inference methods that handle time‐dependent confounding rely on either the assumption of no unmeasured confounders or the availability of an unconfounded variable that is associated with the exposure (eg, an instrumental variable). Furthermore, when data are incomplete, validity of many methods often depends on the assumption of missing at random. We propose an approach that combines a parametric joint mixed‐effects model for the study outcome and the exposure with g‐computation to identify and estimate causal effects in the presence of time‐dependent confounding and unmeasured confounding. G‐computation can estimate participant‐specific or population‐average causal effects using parameters of the joint model. The joint model is a type of shared parameter model where the outcome and exposure‐selection models share common random effect(s). We also extend the joint model to handle missing data and truncation by death when missingness is possibly not at random. We evaluate the performance of the proposed method using simulation studies and compare the method to both linear mixed‐ and fixed‐effects models combined with g‐computation as well as to targeted maximum likelihood estimation. We apply the method to an epidemiologic study of vitamin D and depressive symptoms in older adults and include code using SAS PROC NLMIXED software to enhance the accessibility of the method to applied researchers.  相似文献   

10.
Missing outcome data is a crucial threat to the validity of treatment effect estimates from randomized trials. The outcome distributions of participants with missing and observed data are often different, which increases bias. Causal inference methods may aid in reducing the bias and improving efficiency by incorporating baseline variables into the analysis. In particular, doubly robust estimators incorporate 2 nuisance parameters: the outcome regression and the missingness mechanism (ie, the probability of missingness conditional on treatment assignment and baseline variables), to adjust for differences in the observed and unobserved groups that can be explained by observed covariates. To consistently estimate the treatment effect, one of these nuisance parameters must be consistently estimated. Traditionally, nuisance parameters are estimated using parametric models, which often precludes consistency, particularly in moderate to high dimensions. Recent research on missing data has focused on data‐adaptive estimation to help achieve consistency, but the large sample properties of such methods are poorly understood. In this article, we discuss a doubly robust estimator that is consistent and asymptotically normal under data‐adaptive estimation of the nuisance parameters. We provide a formula for an asymptotically exact confidence interval under minimal assumptions. We show that our proposed estimator has smaller finite‐sample bias compared to standard doubly robust estimators. We present a simulation study demonstrating the enhanced performance of our estimators in terms of bias, efficiency, and coverage of the confidence intervals. We present the results of an illustrative example: a randomized, double‐blind phase 2/3 trial of antiretroviral therapy in HIV‐infected persons.  相似文献   

11.
Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non‐ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non‐identifiable under non‐ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow‐up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality‐of‐life. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Missing outcome data are a problem commonly observed in randomized control trials that occurs as a result of participants leaving the study before its end. Missing such important information can bias the study estimates of the relative treatment effect and consequently affect the meta‐analytic results. Therefore, methods on manipulating data sets with missing participants, with regard to incorporating the missing information in the analysis so as to avoid the loss of power and minimize the bias, are of interest. We propose a meta‐analytic model that accounts for possible error in the effect sizes estimated in studies with last observation carried forward (LOCF) imputed patients. Assuming a dichotomous outcome, we decompose the probability of a successful unobserved outcome taking into account the sensitivity and specificity of the LOCF imputation process for the missing participants. We fit the proposed model within a Bayesian framework, exploring different prior formulations for sensitivity and specificity. We illustrate our methods by performing a meta‐analysis of five studies comparing the efficacy of amisulpride versus conventional drugs (flupenthixol and haloperidol) on patients diagnosed with schizophrenia. Our meta‐analytic models yield estimates similar to meta‐analysis with LOCF‐imputed patients. Allowing for uncertainty in the imputation process, precision is decreased depending on the priors used for sensitivity and specificity. Results on the significance of amisulpride versus conventional drugs differ between the standard LOCF approach and our model depending on prior beliefs on the imputation process. Our method can be regarded as a useful sensitivity analysis that can be used in the presence of concerns about the LOCF process. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

13.
OBJECTIVE: To propose and test a method that produces an unbiased estimate of the average effect of smoking cessation on weight gain. Previous estimates may be biased due to unobservable differences in attributes of quitters and continuing smokers. An accurate estimate of weight gain due to cessation is important for policymakers, health managers, clinicians, consumers, and developers of smoking cessation aids. STUDY SETTING: Our analysis consisted of an instrumental variables (IVs) approach in which treatment assignment in randomized smoking cessation trials served as a random source of variation in probability of quitting. DATA COLLECTION: We searched the medical literature for previously conducted smoking cessation trials that contained data suitable for our reanalysis. PRINCIPAL FINDINGS: We identified one trial for our reanalysis, the Lung Health Study, a randomized smoking cessation trial with 5,887 smokers aged 35-60 from 1986 to 1994 in several sites across the United States. In our IV reanalysis, we estimated a 9.7 kg weight gain over 5 years due to cessation, as compared with the conventional estimate of 5.3 kg. CONCLUSIONS: The true effect of smoking cessation on weight gain may be larger than previously estimated. This result indicates the importance of fully understanding the possible weight effects of cessation and underscores the need to accompany cessation programs with weight management interventions. The result, however, does not overturn the conclusion that the net health benefits of quitting are positive and very large. The application of the IV technique we propose is likely to be useful in a variety of contexts in which one is interested in the effect of one health condition on another.  相似文献   

14.
The matched‐pairs design enables researchers to efficiently infer causal effects from randomized experiments. In this paper, we exploit the key feature of the matched‐pairs design and develop a sensitivity analysis for missing outcomes due to truncation by death, in which the outcomes of interest (e.g., quality of life measures) are not even well defined for some units (e.g., deceased patients). Our key idea is that if 2 nearly identical observations are paired prior to the randomization of the treatment, the missingness of one unit's outcome is informative about the potential missingness of the other unit's outcome under an alternative treatment condition. We consider the average treatment effect among always‐observed pairs (ATOP) whose units exhibit no missing outcome regardless of their treatment status. The naive estimator based on available pairs is unbiased for the ATOP if 2 units of the same pair are identical in terms of their missingness patterns. The proposed sensitivity analysis characterizes how the bounds of the ATOP widen as the degree of the within‐pair similarity decreases. We further extend the methodology to the matched‐pairs design in observational studies. Our simulation studies show that informative bounds can be obtained under some scenarios when the proportion of missing data is not too large. The proposed methodology is also applied to the randomized evaluation of the Mexican universal health insurance program. An open‐source software package is available for implementing the proposed research.  相似文献   

15.
Yang X  Li J  Shoptaw S 《Statistics in medicine》2008,27(15):2826-2849
Biomedical research is plagued with problems of missing data, especially in clinical trials of medical and behavioral therapies adopting longitudinal design. After a literature review on modeling incomplete longitudinal data based on full-likelihood functions, this paper proposes a set of imputation-based strategies for implementing selection, pattern-mixture, and shared-parameter models for handling intermittent missing values and dropouts that are potentially nonignorable according to various criteria. Within the framework of multiple partial imputation, intermittent missing values are first imputed several times; then, each partially imputed data set is analyzed to deal with dropouts with or without further imputation. Depending on the choice of imputation model or measurement model, there exist various strategies that can be jointly applied to the same set of data to study the effect of treatment or intervention from multi-faceted perspectives. For illustration, the strategies were applied to a data set with continuous repeated measures from a smoking cessation clinical trial.  相似文献   

16.
In this paper, we develop a Bayesian method for joint analysis of longitudinal measurements and competing risks failure time data. The model allows one to analyze the longitudinal outcome with nonignorable missing data induced by multiple types of events, to analyze survival data with dependent censoring for the key event, and to draw inferences on multiple endpoints simultaneously. Compared with the likelihood approach, the Bayesian method has several advantages. It is computationally more tractable for high‐dimensional random effects. It is also convenient to draw inference. Moreover, it provides a means to incorporate prior information that may help to improve estimation accuracy. An illustration is given using a clinical trial data of scleroderma lung disease. The performance of our method is evaluated by simulation studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Standard intent-to-treat analyses of randomized clinical trials can yield biased estimates of treatment efficacy and toxicity when not all patients comply with their assigned treatment. Flexible methods have been proposed which correct for this by modelling expected contrasts between an individual's observed outcome and his/her potential outcome in the absence of exposure. Because such comparisons often require untestable assumptions, a sensitivity analysis is warranted. We show how this can be performed in a meaningful and practically useful way. Following the approach of Molenberghs, Kenward and Goetghebeur in a missing data context, we evaluate the separate contributions of structural uninformativeness and sampling variation to uncertainty about the population parameters. This leads us to consider Honestly Estimated Ignorance Regions (HEIRs) and Estimated Uncertainty RegiOns (EUROs), respectively. We use the results to estimate the causal effect of observed exposure on successful blood pressure reduction in a randomized controlled clinical trial with partial non-compliance.  相似文献   

18.
Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double‐robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified. In this paper, we introduce an empirical likelihood‐based estimator as an alternative to Qin and Zhang (2007). Our proposed estimator is also doubly robust and locally efficient. Simulation results show that the proposed estimator has better performance when the propensity score is correctly modeled. Moreover, the proposed method can be applied in the estimation of average treatment effect in observational causal inferences. Finally, we apply our method to an observational study of smoking, using data from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions clinical trial. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Missing data are common in longitudinal studies due to drop‐out, loss to follow‐up, and death. Likelihood‐based mixed effects models for longitudinal data give valid estimates when the data are missing at random (MAR). These assumptions, however, are not testable without further information. In some studies, there is additional information available in the form of an auxiliary variable known to be correlated with the missing outcome of interest. Availability of such auxiliary information provides us with an opportunity to test the MAR assumption. If the MAR assumption is violated, such information can be utilized to reduce or eliminate bias when the missing data process depends on the unobserved outcome through the auxiliary information. We compare two methods of utilizing the auxiliary information: joint modeling of the outcome of interest and the auxiliary variable, and multiple imputation (MI). Simulation studies are performed to examine the two methods. The likelihood‐based joint modeling approach is consistent and most efficient when correctly specified. However, mis‐specification of the joint distribution can lead to biased results. MI is slightly less efficient than a correct joint modeling approach and can also be biased when the imputation model is mis‐specified, though it is more robust to mis‐specification of the imputation distribution when all the variables affecting the missing data mechanism and the missing outcome are included in the imputation model. An example is presented from a dementia screening study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Hollis S 《Statistics in medicine》2002,21(24):3823-3834
Many clinical trials are analysed using an intention-to-treat (ITT) approach. A full application of the ITT approach is only possible when complete outcome data are available for all randomized subjects. In a recent survey of clinical trial reports including an ITT analysis, complete case analysis (excluding all patients with a missing response) was common. This does not comply with the basic principles of ITT since not all randomized subjects are included in the analysis. Analyses of data with missing values are based on untestable assumptions, and so sensitivity analysis presenting a range of estimates under alternative assumptions about the missing-data mechanism is recommended. For binary outcome, extreme case analysis has been suggested as a simple form of sensitivity analysis, but this is rarely conclusive. A graphical sensitivity analysis is proposed which displays the results of all possible allocations of cases with missing binary outcome. Extension to allow binomial variation in outcome is also considered. The display is based on easily interpretable parameters and allows informal examination of the effects of varying prior beliefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号