首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The past decade has seen significant developments in the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess cortical network properties such as excitability and connectivity in humans. New hardware solutions, improved EEG amplifier technology, and advanced data processing techniques have allowed substantial reduction of the TMS‐induced artifact, which had previously rendered concurrent TMS–EEG impossible. Various physiological artifacts resulting from TMS have also been identified, and methods are being developed to either minimize or remove these sources of artifact. With these developments, TMS–EEG has unlocked regions of the cortex to researchers that were previously inaccessible to TMS. By recording the TMS‐evoked response directly from the cortex, TMS–EEG provides information on the excitability, effective connectivity, and oscillatory tuning of a given cortical area, removing the need to infer such measurements from indirect measures. In the following review, we investigate the different online and offline methods for reducing artifacts in TMS–EEG recordings and the physiological information contained within the TMS‐evoked cortical response. We then address the use of TMS–EEG to assess different cortical mechanisms such as cortical inhibition and neural plasticity, before briefly reviewing studies that have utilized TMS–EEG to explore cortical network properties at rest and during different functional brain states. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Motor functions improve during childhood and adolescence, but little is still known about the development of cortical motor circuits during early life. To elucidate the neurophysiological hallmarks of motor cortex development, we investigated the differences in motor cortical excitability and connectivity between healthy children, adolescents, and adults by means of navigated suprathreshold motor cortex transcranial magnetic stimulation (TMS) combined with high‐density electroencephalography (EEG). We demonstrated that with development, the excitability of the motor system increases, the TMS‐evoked EEG waveform increases in complexity, the magnitude of induced activation decreases, and signal spreading increases. Furthermore, the phase of the oscillatory response to TMS becomes less consistent with age. These changes parallel an improvement in manual dexterity and may reflect developmental changes in functional connectivity. Hum Brain Mapp 38:2599–2615, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
Objective: To review the use of noninvasive brain stimulation (NBS) as a therapeutic tool to enhance neuroplasticity following traumatic brain injury (TBI). Materials and Methods: Based on a literature search, we describe the pathophysiological events following TBI and the rationale for the use of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in this setting. Results: The pathophysiological mechanisms occurring after TBI vary across time and therefore require differential interventions. Theoretically, given the neurophysiological effects of both TMS and tDCS, these tools may: 1) decrease cortical hyperexcitability acutely after TBI; 2) modulate long‐term synaptic plasticity as to avoid maladaptive consequences; and 3) combined with physical and behavioral therapy, facilitate cortical reorganization and consolidation of learning in specific neural networks. All of these interventions may help decrease the burden of disabling sequelae after brain injury. Conclusions: Evidence from animal and human studies reveals the potential benefit of NBS in decreasing the extent of injury and enhancing plastic changes to facilitate learning and recovery of function in lesioned neural tissue. However, this evidence is mainly theoretical at this point. Given safety constraints, studies in TBI patients are necessary to address the role of NBS in this condition as well as to further elucidate its therapeutic effects and define optimal stimulation parameters.  相似文献   

4.
The combination of transcranial magnetic stimulation with simultaneous electroencephalography (TMS–EEG) offers direct neurophysiological insight into excitability and connectivity within neural circuits. However, there have been few developmental TMS–EEG studies to date, and they all have focused on primary motor cortex stimulation. In the present study, we used navigated high‐density TMS–EEG to investigate the maturation of the superior frontal cortex (dorsal premotor cortex [PMd]), which is involved in a broad range of motor and cognitive functions known to develop with age. We demonstrated that reactivity to frontal cortex TMS decreases with development. We also showed that although frontal cortex TMS elicits an equally complex TEP waveform in all age groups, the statistically significant between‐group differences in the topography of the TMS‐evoked peaks and differences in current density maps suggest changes in effective connectivity of the right PMd with maturation. More generally, our results indicate that direct study of the brain's excitability and effective connectivity via TMS–EEG co‐registration can also be applied to pediatric populations outside the primary motor cortex, and may provide useful information for developmental studies and studies on developmental neuropsychiatric disorders.  相似文献   

5.
Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high‐density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long‐lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well‐controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.  相似文献   

6.
In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during ‘linguistic’ tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated ‘linguistic’ task‐related cortical excitability modulation in patients with adductor‐type spasmodic dysphonia (ASD), a speech‐related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non‐dominant M1 excitability at baseline, during ‘linguistic’ (reading aloud/silent reading/producing simple phonation) and ‘non‐linguistic’ tasks (looking at non‐letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the ‘linguistic’ tasks with different voice intensities. We also examined MEPs in HS and ASD during hand‐related ‘action‐verb’ observation. Patients were studied under and not‐under botulinum neurotoxin‐type A (BoNT‐A). In HS, TMS over the dominant M1 elicited larger MEPs during ‘reading aloud’ than during the other ‘linguistic’/‘non‐linguistic’ tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased‐amplitude MEPs during ‘reading aloud’ and ‘syllabic phonation’ tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing ‘linguistic’/‘non‐linguistic’ tasks. In HS and ASD, ‘linguistic’ task‐related excitability changes were present regardless of the different voice intensities. During hand‐related ‘action‐verb’ observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT‐A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to ‘linguistic’ tasks; BoNT‐A returns these excitability changes to normal.  相似文献   

7.
The sensory and motor cortical representation corresponding to the affected limb is altered in patients with complex regional pain syndrome (CRPS). Transcranial magnetic stimulation (TMS) represents a useful non‐invasive approach for studying cortical physiology. If delivered repetitively, TMS can also modulate cortical excitability and induce long‐lasting neuroplastic changes. In this review, we performed a systematic search of all studies using TMS to explore cortical excitability/plasticity and repetitive TMS (rTMS) for the treatment of CRPS. Literature searches were conducted using PubMed and EMBASE. We identified 8 articles matching the inclusion criteria. One hundred fourteen patients (76 females and 38 males) were included in these studies. Most of them have applied TMS in order to physiologically characterize CRPS type I. Changes in motor cortex excitability and brain mapping have been reported in CRPS‐I patients. Sensory and motor hyperexcitability are in the most studies bilateral and likely involve corresponding regions within the central nervous system rather than the entire hemisphere. Conversely, sensorimotor integration and plasticity were found to be normal in CRPS‐I. TMS examinations also revealed that the nature of motor dysfunction in CRPS‐I patients differs from that observed in patients with functional movement disorders, limb immobilization, or idiopathic dystonia. TMS studies may thus lead to the implementation of correct rehabilitation strategies in CRPS‐I patients. Two studies have begun to therapeutically use rTMS. This non‐invasive brain stimulation technique could have therapeutic utility in CRPS, but further well‐designed studies are needed to corroborate initial findings.  相似文献   

8.
Objectives. Preclinical studies suggest that cortical alterations within the prefrontal cortex (PFC) are critical to the pathophysiology of alcohol dependence. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) allows direct assessment of cortical excitability and inhibition within the PFC of human subjects. We report the first application of TMS-EEG to measure these indices within the PFC of alcohol-dependent (ALD) patients post-detoxification. Methods. Cortical inhibition was assessed in 12 ALD patients and 14 healthy controls through single and paired-pulse TMS paradigms. Long-interval cortical inhibition indexed cortical inhibition in the PFC. In the motor cortex (MC), short- interval intracortical inhibition and cortical silent period determined inhibition, while intracortical facilitation measured facilitation, resting and active motor threshold indexed cortical excitability. Results. ALD patients demonstrated altered cortical inhibition across the bilateral frontal cortices relative to controls. There was evidence of altered cortical excitability in ALD patients; however, no significant differences in MC inhibition. Conclusions. Our study provides first direct evidence of reduced cortical inhibition in the PFC of ALD patients post-detoxification. Altered cortical excitability in the MC may reflect hyper-excitability within the cortex associated with chronic alcohol consumption. These findings provide initial neurophysiological evidence of disrupted cortical excitability within the PFC of ALD patients.  相似文献   

9.
Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex is a relatively non-invasive technique with putative therapeutic effects in major depression. However, the exact neurophysiological basis of these effects needs further clarification. Therefore, we studied the impact of ten daily sessions of left, dorsolateral prefrontal rTMS on motor cortical excitability, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials in 30 patients. As compared to the non-responders, responders (33%) showed changes in parameters pointing towards a reduced cortical excitability. These results suggest that repetitive transcranial magnetic stimulation of the dorsolateral, prefrontal cortex may have inhibitory effects on motor cortical neuronal excitability in patients with major depressive disorder. Furthermore, measurement of motor cortical excitability may be a useful tool for investigating and monitoring inhibitory brain effects of antidepressant stimulation techniques like rTMS.  相似文献   

10.
Navigated transcranial magnetic stimulation combined with electroencephalography (nTMS-EEG), allows noninvasive studies of cortical excitability and connectivity in humans. We investigated the reproducibility of nTMS-EEG in seven healthy subjects by repeating left motor and prefrontal cortical stimulation with a 1-week interval. TMS was applied at three intensities: 90, 100, and 110% of subjects' motor threshold (MT). The TMS-compatible neuronavigation system guaranteed precise repositioning of the stimulation coil. The responses were recorded by a 60-channel whole head TMS-compatible EEG amplifier. A high overall reproducibility (r > 0.80) was evident in nTMS-EEG responses over both hemispheres for both motor and prefrontal cortical stimulation. The results suggest that nTMS-EEG is a reliable tool for studies investigating cortical excitability changes in the test-retest designs.  相似文献   

11.
Concurrent transcranial magnetic stimulation and electroencephalography (TMS–EEG) has emerged as a powerful tool to non-invasively probe brain circuits in humans, allowing for the assessment of several cortical properties such as excitability and connectivity. Over the past decade, this technique has been applied to various clinical populations, enabling the characterization and development of potential TMS–EEG predictors and markers of treatments and of the pathophysiology of brain disorders. The objective of this article is to present a comprehensive review of studies that have used TMS–EEG in clinical populations and to discuss potential clinical applications. To provide a technical and theoretical framework, we first give an overview of TMS–EEG methodology and discuss the current state of knowledge regarding the use of TMS–EEG to assess excitability, inhibition, plasticity and connectivity following neuromodulatory techniques in the healthy brain. We then review the insights afforded by TMS–EEG into the pathophysiology and predictors of treatment response in psychiatric and neurological conditions, before presenting recommendations for how to address some of the salient challenges faced in clinical TMS–EEG research. Finally, we conclude by presenting future directions in line with the tremendous potential of TMS–EEG as a clinical tool.  相似文献   

12.
BACKGROUND AND PURPOSE: A review of the literature shows that the transcranial magnetic stimulation (TMS) is a useful neurophysiological tool to investigate the pathophysiology of the restless legs syndrome (RLS). In this study we used TMS to define motor cortical excitability in RLS subjects. PATIENTS AND METHODS: Six RLS patients and two healthy control subjects underwent TMS (single and paired) examination using two protocols: (1) the evaluation of motor cortical excitability changes occurring at various times after a repetitive finger movement task; (2) the evaluation of the time course of intracortical motor activity tested with pairs of magnetic stimuli applied at inter-stimulus intervals of 1-6 ms. RESULTS: Subjects affected by RLS do not show the normal fluctuations of motor cortical excitability usually found after a bimanual finger movement task. The intracortical inhibition was reduced in RLS subjects. CONCLUSIONS: These results compared with the other studies suggest a modification in the central circuits and suppose a reduction or alteration in the cortical plasticity.  相似文献   

13.
Tallus J, Lioumis P, Hämäläinen H, Kähkönen S, Tenovuo O. Long‐lasting TMS motor threshold elevation in mild traumatic brain injury.
Acta Neurol Scand: 2012: 126: 178–182.
© 2011 John Wiley & Sons A/S. Objectives – Mild traumatic brain injury (mTBI) is very common, and part of the patients experience persistent symptoms. These may be caused by diffuse neuronal damage and could therefore affect cortical excitability. The motor threshold (MT), measured by transcranial magnetic stimulation (TMS), is a measure of cortical excitability and cortico‐spinal tract integrity. Materials and methods – We used navigated TMS (nTMS) and electromyography to determine subjects’ left hemisphere MTs. Nineteen subjects with mTBI (11 with persistent symptoms and eight fully recovered) and nine healthy controls were tested. The injuries had occurred on average 5 years earlier. All participants had normal brain MRIs, that is, no signs of injury. None used centrally acting medication. Results – The mean MT in controls was 43.0% (SD 2.5) of maximum stimulator output. The mTBI subjects mean MT was 53.4% (SD 9.7), being higher than the controls’ threshold. Subjective recovery did not correlate with MT. Conclusions – The results show chronic MT elevation in a sample of subjects with symptomatic or recovered mTBI. This suggests that mTBI may be compensated, although not fully recovered, years after the injury. While the cause for MT elevation cannot be concluded from these preliminary observations, possible explanations include decreased cortical excitability and impaired subcortical conduction.  相似文献   

14.
The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto‐motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto‐motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto‐motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single‐pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short‐interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto‐motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity‐dependent M1 excitability alterations primarily after P3 tDCS. Single‐pulse TMS‐elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto‐motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse‐TMS‐elicited MEPs, and parieto‐motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex–motor cortex connections suggest a relevant connectivity‐driven effect.  相似文献   

15.
There is growing interest in the functional meaning of rhythmical brain activity. For oscillatory brain activity around 10 Hz in the human electroencephalogram (EEG) it is discussed whether it is associated with the level of cortical excitation. However, it is not clear whether the relation between 10 Hz EEG oscillatory activity and cortical excitability is a global, locally very unspecific phenomenon or whether focal 10 Hz oscillations in the human brain are a highly specific correlate of the cortical excitation level. To determine this open question, multichannel EEG was combined with transcranial magnetic stimulation (TMS) applied to the primary motor cortex in this study. The present data showed that a motor evoked potential was elicited more easily when alpha power immediately preceding the magnetic pulse was low, and vice versa. Interestingly, this effect was only found for very local EEG alpha activity at sites overlying the cortical motor areas to which the TMS pulses were applied. This was verified using source localization in 3D space. These data provide evidence that the magnitude of motor cortical excitability is determined by the amount of topographically specific alpha oscillations in the sensorimotor cortex.  相似文献   

16.
Background Animal and human brain imaging studies suggest that the cerebellum plays an important role in the control of swallowing. In this study, we probed the interaction between cerebellar and pharyngeal motor cortical activity with transcranial magnetic stimulation (TMS) to determine if the cerebellum can modulate cortical swallowing motor circuitry. Methods Healthy volunteers (n = 16, eight men, mean age = 32, range 19–57 years) underwent TMS measurements of pharyngeal electromyography (EMG) recorded from a swallowed intraluminal catheter to assess cortical and cerebellar excitability. Subjects then underwent a paired pulse paradigm, where active or sham TMS conditioning pulses over the cerebellum and control sites were followed by suprathreshold TMS over the cortical pharyngeal area. Paired pulses were delivered at varying inter‐stimulus intervals (ISIs) with the cortical response amplitudes being assessed. Key Results Stimulation of the cerebellum over its midline or hemispheres evoked distinct pharyngeal EMG responses. There was no difference in EMG amplitudes following cerebellar hemispheric or midline stimulation (mean 55.5 ± 6.9 vs 42.8 ± 5.9 μV, P = 0.08). In contrast, after cerebellar preconditioning, the cortically evoked responses underwent maximal facilitation at ISIs of 50–200 ms (P < 0.05), an effect not seen with sham or trigeminal nerve preconditioning. Conclusions & Inferences Posterior fossa stimulation excites the cerebellum and evokes direct motor responses within the pharynx. When conditioned with TMS, the cerebellum strongly facilitates the cortical swallowing motor pathways. This finding suggests that the cerebellum exerts a modulatory effect on human swallowing and raises the possibility that excitatory neurostimulation of the cerebellum may be therapeutically useful in promoting recovery of dysphagia after neural damage.  相似文献   

17.
Conventional paired-pulse transcranial magnetic stimulation (TMS) techniques of assessing cortical excitability are limited by fluctuations in the motor evoked potential (MEP) amplitude. The aim of the present study was to determine the feasibility of threshold tracking TMS for assessing cortical excitability in a clinical setting and to establish normative data. Studies were undertaken in 26 healthy controls, tracking the MEP response from abductor pollicis brevis. Short-interval intracortical inhibition (SICI) occurred up to an interstimulus interval (ISI) of 7-10 ms, with two distinct peaks evident, at ISIs of < or =1 and 3 ms, followed by intracortical facilitation to an ISI of 30 ms. Long-interval intracortical inhibition (LICI) occurred at ISIs of 50-300 ms, peaking at 150 ms. The present study has confirmed the effectiveness of the threshold tracking TMS technique in reliably and reproducibly measuring cortical excitability. Simultaneous assessment of upper and lower motor neuronal function with threshold tracking techniques may help to determine the site of disease onset and patterns of progression in neurodegenerative diseases.  相似文献   

18.
BACKGROUND: Rapid-rate repetitive transcranial magnetic stimulation (rTMS) can produce a lasting increase in cortical excitability in healthy subjects or induce beneficial effects in patients with neuropsychiatric disorders; however, the conditioning effects of rTMS are often subtle and variable, limiting therapeutic applications. Here we show that magnitude and direction of after-effects induced by rapid-rate rTMS depend on the state of cortical excitability before stimulation and can be tuned by preconditioning with transcranial direct current stimulation (tDCS). METHODS: Ten healthy volunteers received a 20-sec train of 5-Hz rTMS given at an intensity of individual active motor threshold to the left primary motor hand area. This interventional protocol was preconditioned by 10 min of anodal, cathodal, or sham tDCS. We used single-pulse TMS to assess corticospinal excitability at rest before, between, and after the two interventions. RESULTS: The 5-Hz rTMS given after sham tDCS failed to produce any after-effect, whereas 5-Hz rTMS led to a marked shift in corticospinal excitability when given after effective tDCS. The direction of rTMS-induced plasticity critically depended on the polarity of tDCS conditioning. CONCLUSIONS: Preconditioning with tDCS enhances cortical plasticity induced by rapid-rate rTMS and can shape the direction of rTMS-induced after-effects.  相似文献   

19.
OBJECTIVE: To investigate the effect of sleep deprivation on corticospinal excitability in patients affected by juvenile myoclonic epilepsy (JME) using different transcranial magnetic stimulation (TMS) parameters. METHODS: Ten patients with JME and 10 normal subjects underwent partial sleep deprivation. Motor threshold (MT), motor evoked potential amplitude (MEP), and silent period (SP) were recorded from the thenar eminence (TE) muscles. Short latency intracortical inhibition (SICI) and short latency intracortical facilitation (SICF) were studied using paired magnetic stimulation. TMS was performed before and after sleep deprivation; EEG and TMS were performed simultaneously. RESULTS: In patients with JME, sleep deprivation induced a significant decrease in SICI and an increase in SICF, which was associated with increased paroxysmal activity. A significant decrease in the MT was observed. No significant changes in any TMS parameters were noted in normal subjects after sleep deprivation. The F wave was unchanged by sleep deprivation in both control subjects and in patients with JME. CONCLUSIONS: In patients with JME, sleep deprivation produces increases in corticospinal excitability in motor areas as measured by different TMS parameters.  相似文献   

20.
A range of techniques are now available for modulating the activity of the brain in healthy people and people with neurological conditions. These techniques, including transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS, which includes direct and alternating current), create magnetic or electrical fields that cross the intact skull and affect neural processing in brain areas near to the scalp location where the stimulation is delivered. TMS and tCS have proved to be valuable tools in behavioural neuroscience laboratories, where causal involvement of specific brain areas in specific tasks can be shown. In clinical neuroscience, the techniques offer the promise of correcting abnormal activity, such as when a stroke leaves a brain area underactive. As the use of brain stimulation becomes more commonplace in laboratories and clinics, we discuss the safety and ethical issues inherent in using the techniques with human participants, and we suggest how to balance scientific integrity with the safety of the participant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号