首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Intervertebral discs (IVDs) are important biomechanical components of the spine. Once degenerated, mesenchymal stem cell (MSC)‐based therapies may aid in the repair of these discs. Although hypoxic preconditioning enhances the chondrogenic potential of MSCs, it is unknown whether bone marrow MSCs expanded under hypoxic conditions (1% O2, here referred to as hypoxic MSCs) are better than bone marrow MSCs expanded under normoxic conditions (air, here referred to as normoxic MSCs) with regards to disc regeneration capacity. The purpose of this study was to compare the therapeutic effects of hypoxic and normoxic MSCs in a rabbit needle puncture degenerated disc model after intra‐disc injection. Six weeks after needle puncture, MSCs were injected into the IVD. A vehicle‐treated group and an un‐punctured sham‐control group were included as controls. The tissues were analyzed by histological and immunohistochemical methods 6 and 12 weeks post‐injection. At 6 and 12 weeks, less disc space narrowing was evident in the hypoxic MSC‐treated group compared to the normoxic MSC‐treated group. Significantly better histological scores were observed in the hypoxic MSC group. Discs treated with hypoxic MSCs also demonstrated significantly better extracellular matrix deposition in type II and XI collagen. Increased CD105 and BMP‐7 expression were also observed upon injection of hypoxic MSCs. In conclusion, hypoxic MSC injection was more effective than normoxic MSC injection for reducing IVD degeneration progression in vivo. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1440–1450, 2019.  相似文献   

2.
Intervertebral disc degeneration (IVDD) is a progressive condition marked by tissue destruction and inflammation. The therapeutic effector functions of mesenchymal stem cells (MSCs) makes them an attractive therapy for patients with IVDD. While several sources of MSCs exist, the optimal choice for use in the inflamed IVD remains a significant question. Adipose (AD)‐ and amnion (AM)‐derived MSCs have several advantages compared with other sources, however, no study has directly compared the impact of IVDD inflammation on their effector functions. Human MSCs were cultured in media with or without supplementation of interleukin‐1β (IL‐1β) and tumor necrosis factor‐α at concentrations reportedly produced by IVDD cells. MSC proliferation and production of pro‐ and anti‐inflammatory cytokines were quantified following 24 and 48 h of culture. Additionally, the osteogenic and chondrogenic potential of AD‐ and AM‐MSCs was characterized via histology and biochemical analysis following 28 days of culture. In inflammatory culture, AM‐MSCs produced significantly more anti‐inflammatory IL‐10 (14.47 ± 2.39 pg/ml; p = 0.004) and larger chondrogenic pellets (5.67 ± 0.26 mm2; p = 0.04) with greater percent area staining positively for glycosaminoglycan (82.03 ± 3.26%; p < 0.001) compared with AD‐MSCs (0.00 ± 0.00 pg/ml; 2.76 ± 0.18 mm2; 34.75 ± 2.49%; respectively). Conversely, AD‐MSCs proliferated more resulting in higher cell numbers (221,000 ± 8,021 cells; p = 0.048) and produced higher concentrations of pro‐inflammatory cytokines prostaglandin E2 (1,118.30 ± 115.56 pg/ml; p = 0.030) and IL‐1β (185.40 ± 7.63 pg/ml; p = 0.010) compared with AM‐MSCs (109,667 ± 5,696 cells; 1,291.40 ± 78.47 pg/ml; 144.10 ± 4.57 pg/ml; respectively). AD‐MSCs produced more mineralized extracellular matrix (3.34 ± 0.05 relative absorbance units [RAU]; p < 0.001) compared with AM‐MSCs (1.08 ± 0.06 RAU). Under identical inflammatory conditions, a different effector response was observed with AM‐MSCs producing more anti‐inflammatories and demonstrating enhanced chondrogenesis compared with AD‐MSCs, which produced more pro‐inflammatory cytokines and demonstrated enhanced osteogenesis. These findings may begin to help inform researchers which MSC source may be optimal for IVD regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2445–2456, 2019  相似文献   

3.

Background

Porcine islet xenotransplantation is considered an attractive alternative treatment for type 1 diabetes mellitus. However, it is largely limited because of initial rejection due to Instant Blood‐Mediated Inflammatory Reaction (IBMIR), oxidative stress, and inflammatory responses. Recently, soluble tumor necrosis factor‐ɑ receptor type I (sTNF‐αR) and heme oxygenase (HO)‐1 genes (HO‐1/sTNF‐αR) have been shown to improve the viability and functionality of porcine islets after transplantation.

Methods

In this study, genetically modified mesenchymal stem cells (MSCs) expressing the HO‐1/sTNF‐αR genes (HO‐1/sTNF‐αR‐MSC) were developed using an adenoviral system, and porcine islet viability and function were confirmed by in vitro tests such as GSIS, AO/PI, and the ADP/ATP ratio after coculturing with HO‐1/sTNF‐αR‐MSCs. Subsequently, isolated porcine islets were transplanted underneath the kidney capsule of diabetic humanized mice without MSCs, with MSCs or with HO‐1/sTNF‐αR‐MSCs.

Results

According to the results, the HO‐1/sTNF‐αR‐MSC‐treated group exhibited improved survival of porcine islets and could reverse hyperglycemia more than porcine islets not treated with MSCs or islets cotransplanted with MSCs. Moreover, the HO‐1/sTNF‐αR‐MSC group maintained its morphological characteristics and the insulin secretion pattern of transplanted porcine islets similar to endogenous islets in immunocompetent humanized mice.

Conclusions

Our results suggest that HO‐1/sTNF‐αR‐MSCs are efficient tools for porcine islet xenotransplantation, and this study may provide basic information for pre‐clinical animal models and future clinical trials of porcine islet xenotransplantation.  相似文献   

4.
Due to recent advances in research on mesenchymal stem cells (MSCs), MSCs are expected to be used in various clinical applications. However, securing adequate cadaveric donors and safety of living donors are major issues. To solve such issues, we have examined to develop clinical grade neonatal porcine bone marrow‐derived MSCs (npBM‐MSCs). Clinical grade neonatal porcine bone marrow cells were collected, frozen, and sent to our laboratory by air. The npBM‐MSCs were isolated from thawed bone marrow cells, then frozen. The thawed npBM‐MSCs were examined for CD markers and differentiated into chondrocytes, osteocytes, and adipocytes. They were compared with human bone marrow‐derived MSCs (hBM‐MSCs) for growth rate and size. To assess the robustness of proliferation, we compared culture medium with or without gelatin. The npBM‐MSCs expressed positive MSC markers CD29, CD44, and CD90 and were differentiated into chondrocytes, osteocytes, and adipocytes. The doubling time of npBM‐MSCs was significantly shorter than that of hBM‐MSCs (17.3 ± 0.8 vs 62.0 ± 19.6 hours, P < 0.01). The size of npBM‐MSCs was also significantly smaller than that of hBM‐MSCs (13.1 ± 0.3 vs 17.5 ± 0.4 μm, P < 0.001). The npBM‐MSCs showed similar proliferation characters irrespective of with or without gelatin coating. The npBM‐MSCs secreted VEGF‐A, VEGF‐C, and TGF‐β1. We have established npBM‐MSCs which show super‐rapid growth, small size, and robust proliferation profile. The np‐MSCs might be able to solve the donor issues for MSC therapy.  相似文献   

5.
Various types of skin substitutes composed of fibroblasts and/or keratinocytes have been used for the treatment of diabetic ulcers. However, the effects have generally not been very dramatic. Recently, human umbilical cord blood‐derived mesenchymal stromal cells (hUCB‐MSCs) have been commercialised for cartilage repair as a first cell therapy product using allogeneic stem cells. In a previous pilot study, we reported that hUCB‐MSCs have a superior wound‐healing capability compared with fibroblasts. The present study was designed to compare the treatment effect of hUCB‐MSCs with that of fibroblasts on the diabetic wound healing in vitro. Diabetic fibroblasts were cocultured with healthy fibroblasts or hUCB‐MSCs. Five groups were evaluated: group I, diabetic fibroblasts without coculture; groups II and III, diabetic fibroblasts cocultured with healthy fibroblasts or hUCB‐MSCs; and groups IV and V, no cell cocultured with healthy fibroblasts or hUCB‐MSCs. After a 3‐day incubation, cell proliferation, collagen synthesis levels and glycosaminoglycan levels, which are the major contributing factors in wound healing, were measured. As a result, a hUCB‐MSC‐treated group showed higher cell proliferation, collagen synthesis and glycosaminoglycan level than a fibroblast‐treated group. In particular, there were significant statistical differences in collagen synthesis and glycosaminoglycan levels (P = 0·029 and P = 0·019, respectively). In conclusion, these results demonstrate that hUCB‐MSCs may have a superior effect to fibroblasts in stimulating diabetic wound healing.  相似文献   

6.
Diabetic skin has impaired wound healing properties following injury. We have further shown that diabetic skin has weakened biomechanical properties at baseline. We hypothesize that the biomechanical properties of diabetic skin decline during the progression of the diabetic phenotype, and that this decline is due to the dysregulation of miR‐29a, resulting in decreased collagen content. We further hypothesize that treatment with mesenchymal stem cells (MSCs) may improve diabetic wound healing by correction of the dysregulated miR‐29a expression. We analyzed the biomechanical properties, collagen gene expression, collagen protein production, and miR‐29a levels in skin harvested from 6 to 18 week old mice during the development of the diabetic phenotype. We also examined the correction of these impairments by both MSC treatment and the inhibition of miR‐29a. Diabetic skin demonstrated a progressive impairment of biomechanical properties, decreased collagen content, and increased miR‐29a levels during the development of the diabetic phenotype. MSC treatment decreased miR‐29a levels, increased collagen content, and corrected the impaired biomechanical properties of diabetic skin. Additionally, direct inhibition of miR‐29a also increased collagen content in diabetic skin. This decline in the biomechanical properties of diabetic skin during the progression of diabetes may increase the susceptibility of diabetic skin to injury and miR‐29a appears to play a key role in this process.  相似文献   

7.
Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three‐dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)‐supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%‐increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two‐fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and “stemness.” These features will be further tested within three‐dimensional scaffolds.  相似文献   

8.
Successful porcine hepatocyte isolation is crucial for the development of bioartificial liver devices and hepatocyte transplantation. Serva collagenase NB grades are formulated collagenases that are suitable for various tissue isolation applications. N‐acetylcysteine (NAC) can improve the viability of human hepatocytes. The aim of this study was to compare the effectiveness of two collagenases and effect of NAC on hepatocyte isolation from porcine liver tissue. Porcine hepatocytes were isolated using the perfusion method from Bama mini pigs assigned to the Serva NB 4 group (n=6), the Serva NB 8 group (n=6), or the NB 8+NAC group (n=6). Viability and yield were defined as fresh hepatocytes and their spheroids formation after 24‐hour rocker culture in serum‐free medium. Metabolic function was assessed by gene expression, albumin, and urea synthesis. All procedures resulted in successful hepatocyte isolation. Cells from the NB 8+NAC group had (97.8±1.9)% viability, which was higher than the NB 8 group with (94.4±2.4)% and the NB 4 group with (94.5±3.2)% (P<.001). The final cell yield reached (11.8±1.0)×109 cells in the NB 8+NAC group, compared to (9.5±2.1)×109 cells in the NB 8 group (P<.01) and (9.1±1.1) ×109 cells in the NB 4 group (P<.001). The secretion of albumin was superior in the NB 8+NAC group at a concentration of (425.8±35.3) ng/mL compared to the NB 8 group (339.1±32.6) ng/mL (P <.001) and NB 4 group (293.6±43.3) ng/mL (P <.01). The injury of hepatocytes also decreased in the NB 8+NAC group (P<.01). The data are presented as means ± SD. Formulated collagenase Serva NB 8 and NAC could improve the porcine hepatocyte isolation, resulting in higher yields of viable cells.  相似文献   

9.
Development of novel therapeutic approaches to repair fracture non‐unions remains a critical clinical necessity. We evaluated the capacity of human embryonic stem cell (hESC)‐derived mesenchymal stem/stromal cells (MSCs) to induce healing in a fracture non‐union model in rats. In addition, we placed these findings in the context of parallel studies using human bone marrow MSCs (hBM‐MSCs) or a no cell control group (n = 10–12 per group). Preliminary studies demonstrated that both for hESC‐derived MSCs and hBM‐MSCs, optimal induction of fracture healing required in vitro osteogenic differentiation of these cells. Based on biomechanical testing of fractured femurs, maximum torque, and stiffness were significantly greater in the hBM‐MSC as compared to the control group that received no cells; values for these parameters in the hESC‐derived MSC group were intermediate between the hBM‐MSC and control groups, and not significantly different from the control group. However, some evidence of fracture healing was evident by X‐ray in the hESC‐derived MSC group. Our results thus indicate that while hESC‐derived MSCs may have potential to induce fracture healing in non‐unions, hBM‐MSCs function more efficiently in this process. Additional studies are needed to further modify hESCs to achieve optimal fracture healing by these cells. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:1804–1811, 2011  相似文献   

10.
The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri‐lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s‐GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s‐GAG expressions to chondrocytes. © 2011 Orthopaedic Research Society. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:634–642, 2012  相似文献   

11.
This study investigates how mesenchymal stem cell's (MSCs) proliferation and migration abilities are influenced by various platelet products (PP). Donor‐matched, clinical‐, and control laboratory‐standard PPs were generated and assessed based on their platelet and leukocyte concentrations. Bone marrow derived MSCs were exposed to these PP to quantify their effect on in vitro MSC proliferation and migration. An adapted colony forming unit fibroblast (CFU‐F) assay was carried out on bone marrow aspirate using clinical‐standard PP‐loaded electrospun poly(?‐caprolactone) (PCL) membrane to mimic future clinical applications to contain bone defects. Clinical‐standard PP had lower platelet (2.5 fold, p < 0.0001) and higher leukocyte (14.1 fold, p < 0.0001) concentrations compared to laboratory‐standard PP. It induced suboptimal MSC proliferation compared to laboratory‐standard PP and fetal calf serum (FCS). All PP induced significantly more MSC migration than FCS up to 24 h. The removal of leukocytes from PP had no effect on MSC proliferation or migration. The PP‐loaded membranes successfully supported MSC colony formation. This study indicates that platelet concentrations in PP impact MSC proliferation more than the presence of leukocytes, whilst MSC migration in response to PP is not influenced by platelet or leukocyte numbers. Clinical‐standard PP could be applied alongside manufactured membranes in the future treatment of bone reconstruction. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:1329–1338, 2019.  相似文献   

12.
Minipigs are a recommended large animal model for preclinical testing of human orthopedic implants. Mesenchymal stem cells (MSCs) are the key repair cells in bone healing and implant osseointegration, but the osteogenic capacity of minipig MSCs is incompletely known. The aim of this study was to isolate and characterize minipig bone marrow (BM) and peripheral blood (PB) MSCs in comparison to human BM‐MSCs. BM sample was aspirated from posterior iliac crest of five male Göttingen minipigs (age 15 ± 1 months). PB sample was drawn for isolation of circulating MSCs. MSCs were selected by plastic‐adherence as originally described by Friedenstein. Cell morphology, colony formation, proliferation, surface marker expression, and differentiation were examined. Human BM‐MSCs were isolated and cultured from adult fracture patients (n = 13, age 19–60 years) using identical techniques. MSCs were found in all minipig BM samples, but no circulating MSCs could be detected. Minipig BM‐MSCs had similar morphology, proliferation, and colony formation capacities as human BM‐MSCs. Unexpectedly, minipig BM‐MSCs had a significantly lower ability than human BM‐MSCs to form differentiated and functional osteoblasts. This observation emphasizes the need for species‐specific optimization of MSC culture protocol before direct systematic comparison of MSCs between human and various preclinical large animal models can be made. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1019–1025, 2012  相似文献   

13.
Mesenchymal stem cells (MSCs) participate in regenerative osteogenesis by generating bone-forming cells. To examine the proliferative capacity of MSC populations from bone marrow and their relationship to trauma severity (multiple trauma, monofracture, atrophic nonunion), we quantified colony properties of human MSCs in vitro. Serum levels of mediators associated with bone formation were also assessed. Fifty-five individuals were enrolled in this study (13 multiple trauma patients, 15 patients with monofracture, 20 patients with atrophic nonunions, 7 healthy volunteers). The colony forming unit-fibroblast (CFU-F) assay was used to quantify total colony number, mean cell density per colony, and mean colony area. MSC phenotype was established using flow cytometry and osteogenic differentiation. MSCs obtained from multiple-trauma patients yielded the highest reservoir. Significant differences in colony numbers of MSCs in female subjects were found between multiple-trauma patients (mean ± SD 48 ± 21 CFU-F/culture) and healthy volunteers (18.7 ± 3.3 CFU-F/culture, P < 0.05), patients with monotrauma (15 ± 10 CFU-F/culture, P < 0.05), and patients with atrophic nonunions (6.3 ± 4.1 CFU-F/culture, P < 0.05). In male participants, significant differences were found between patients with nonunions (14 ± 14 CFU-F/culture) and healthy volunteers (54 ± 17 CFU-F/culture, P < 0.05) as well as multiple-trauma patients (59 ± 25 CFU-F/culture, P < 0.05). The highest proliferative capacity (cell density) was seen in multiple-trauma patients. These data suggest that trauma severity and gender affect the reservoir and proliferation capacity of bone marrow-derived MSCs.  相似文献   

14.
Mesenchymal stem cells (MSCs) possess immunomodulatory properties which are of key interest for their application in autoimmunity and transplantation. In transplantation, administration of MSCs has shown promising results in preclinical models and has recently moved to clinical trials. Therefore, it is important to study the interactions between MSCs and immunosuppressive drugs currently used in transplantation. We aimed to analyze the effect of rabbit antithymocyte globulin (rATG) MSCs. MSCs were obtained from perirenal fat of kidney donors and exposed to ranging doses of rATG (Thymoglobulin®, Genzyme; 0.5–100 μg/ml). Binding of rATG, effects on viability and susceptibility to be killed by cytotoxic lymphocytes as well as effects on their immunosuppressive potential of MSCs were tested. rATG binds dose‐dependently to MSCs. This binding was associated with slightly impaired viability after 48 and 72 h when compared with nonexposed MSCs. In contrast to nontreated MSCs, rATG preexposed MSCs were susceptible to be lysed by cytokine‐activated CD8+ cytotoxic cells and NKT cells. The capacity of MSCs to suppress the proliferation of anti‐CD3/CD28 activated CD4 and CD8 T cells were reduced by the presence of rATG in the culture. rATG reduces the viability and antiproliferative capacity of MSCs in a dose‐dependent manner and converts them into targets for CD8 T cells and NKT cell lysis.  相似文献   

15.
Tendon healing is a complex coordinated series of events resulting in protracted recovery, limited regeneration, and scar formation. Mesenchymal stem cell (MSC) therapy has shown promise as a new technology to enhance soft tissue and bone healing. A challenge with MSC therapy involves the ability to consistently control the inflammatory response and subsequent healing. Previous studies suggest that preconditioning MSCs with inflammatory cytokines, such as IFN‐γ, TNF‐α, and IL‐1β may accelerate cutaneous wound closure. The objective of this study was to therefore elucidate these effects in tendon. That is, the in vivo healing effects of TNF‐α primed MSCs were studied using a rat Achilles segmental defect model. Rat Achilles tendons were subjected to a unilateral 3 mm segmental defect and repaired with either a PLG scaffold alone, MSC‐seeded PLG scaffold, or TNF‐α‐primed MSC‐seeded PLG scaffold. Achilles tendons were analyzed at 2 and 4 weeks post‐injury. In vivo, MSCs, regardless of priming, increased IL‐10 production and reduced the inflammatory factor, IL‐1α. Primed MSCs reduced IL‐12 production and the number of M1 macrophages, as well as increased the percent of M2 macrophages, and synthesis of the anti‐inflammatory factor IL‐4. Primed MSC treatment also increased the concentration of type I procollagen in the healing tissue and increased failure stress of the tendon 4 weeks post‐injury. Taken together delivery of TNF‐α primed MSCs via 3D PLG scaffold modulated macrophage polarization and cytokine production to further accentuate the more regenerative MSC‐induced healing response. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:269–280, 2017.
  相似文献   

16.
Tissue‐engineered constructs (TECs) combining resorbable calcium‐based scaffolds and mesenchymal stem cells (MSCs) have the capability to regenerate large bone defects. Inconsistent results have, however, been observed, with a lack of osteoinductivity as a possible cause of failure. This study aimed to evaluate the impact of the addition of low‐dose bone morphogenetic protein‐2 (BMP‐2) to MSC‐coral‐TECs on the healing of clinically relevant segmental bone defects in sheep. Coral granules were either seeded with autologous MSCs (bone marrow‐derived) or loaded with BMP‐2. A 25‐mm‐long metatarsal bone defect was created and stabilized with a plate in 18 sheep. Defects were filled with one of the following TECs: (i) BMP (n = 5); (ii) MSC (n = 7); or (iii) MSC‐BMP (n = 6). Radiographic follow‐up was performed until animal sacrifice at 4 months. Bone formation and scaffold resorption were assessed by micro‐CT and histological analysis. Bone union with nearly complete scaffold resorption was observed in 1/5, 2/7, and 3/6 animals, when BMP‐, MSC‐, and MSC‐BMP‐TECs were implanted, respectively. The amount of newly formed bone was not statistically different between groups: 1074 mm3 [970–2478 mm3], 1155 mm3 [970–2595 mm3], and 2343 mm3 [931–3276 mm3] for BMP‐, MSC‐, and MSC‐BMP‐TECs, respectively. Increased scaffold resorption rate using BMP‐TECs was the only potential side effect observed. In conclusion, although the dual delivery of MSCs and BMP‐2 onto a coral scaffold further increased bone formation and bone union when compared to single treatment, results were non‐significant. Only 50% of the defects healed, demonstrating the need for further refinement of this strategy before clinical use. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2637–2645, 2017.
  相似文献   

17.
This study investigates molecular and cellular mechanisms involved in mesenchymal stem cell (MSC)‐mediated modulation of IL‐17 signaling during liver fibrosis. Mice received CCl4 (1 μl/g intraperitoneally) twice/week for 1 month. MSCs (1 × 106), or MSC‐conditioned medium (MSC‐CM), were intravenously injected 24 h after CCl4 and on every 7th day. Liver fibrosis was determined by macroscopic examination, histological analysis, Sirius red staining, and RT‐PCR. Serum levels of cytokines, indoleamine 2,3‐dioxygenase (IDO), and kynurenine were determined by ELISA. Flow cytometry was performed to identify liver‐infiltrated cells. In vitro, CD4+ T cells were stimulated and cultured with MSCs. 1‐methyltryptophan was used for inhibition of IDO. MSCs significantly attenuated CCl4‐induced liver fibrosis by decreasing serum levels of inflammatory IL‐17, increasing immunosuppressive IL‐10, IDO, and kynurenine, reducing number of IL‐17 producing Th17 cells, and increasing percentage of CD4+IL‐10+ T cells. Injection of MSC‐CM resulted with attenuated fibrosis accompanied with the reduced number of Th17 cells in the liver and decreased serum levels of IL‐17. MSC‐CM promoted expansion of CD4+FoxP3+IL‐10+ T regulatory cells and suppressed proliferation of Th17 cells. This phenomenon was completely abrogated in the presence of IDO inhibitor. MSCs, in IDO‐dependent manner, suppress liver Th17 cells which lead to the attenuation of liver fibrosis.  相似文献   

18.
A novel role for IGF-I in MSC chondrogenesis was determined. IGF-I effects were evaluated in the presence or absence of TGF-beta signaling by conditionally inactivating the TGF-beta type II receptor. We found that IGF-I had potent chondroinductive actions on MSCs. IGF-I effects were independent from and additive to TGF-beta. INTRODUCTION: Mesenchymal stem cells (MSCs) can be isolated from adult bone marrow (BM), expanded, and differentiated into several cell types, including chondrocytes. The role of IGF-I in the chondrogenic potential of MSCs is poorly understood. TGF-beta induces MSC chondrogenic differentiation, although its actions are not well defined. The aim of our study was to define the biological role of IGF-I on proliferation, chondrogenic condensation, apoptosis, and differentiation of MSCs into chondrocytes, alone or in combination with TGF-beta and in the presence or absence of TGF-beta signaling. MATERIALS AND METHODS: Mononuclear adherent stem cells were isolated from mouse BM. Chondrogenic differentiation was induced by culturing high-density MSC pellets in serum- and insulin-free defined medium up to 7 days, with or without IGF-I and/or TGF-beta. We measured thymidine incorporation and stained 2-day-old pellets with TUNEL, cleaved caspase-3, peanut-agglutinin, and N-cadherin. Seven-day-old pellets were measured in size, stained for proteoglycan synthesis, and analyzed for the expression of collagen II and Sox-9 by quantitative real time PCR. We obtained MSCs from mice in which green fluorescent protein (GFP) was under the Collagen2 promoter and determined GFP expression by confocal microscopy. We conditionally inactivated the TGF-beta type II receptor (TbetaRII) in MSCs using a cre-lox system, generating TbetaRII knockout MSCs (RIIKO-MSCs). RESULTS AND CONCLUSIONS: IGF-I modulated MSC chondrogenesis by stimulating proliferation, regulating cell apoptosis, and inducing expression of chondrocyte markers. IGF-I chondroinductive actions were equally potent to TGF-beta1, and the two growth factors had additive effects. Using RIIKO-MSCs, we showed that IGF-I chondrogenic actions are independent from the TGF-beta signaling. We found that the extracellular signal-related kinase 1/2 mitogen-activated protein kinase (Erk1/2 MAPK) pathway mediated the TGF-beta1 mitogenic response and in part the IGF-I proliferative action. Our data, by showing the role of IGF-I and TGF-beta1 in the critical steps of MSC chondrogenesis, provide critical information to optimize the therapeutic use of MSCs in cartilage disorders.  相似文献   

19.
Tendinitis remains a catastrophic injury among athletes. Mesenchymal stem cells (MSCs) have recently been investigated for use in the treatment of tendinitis. Previous work has demonstrated the value of insulin‐like growth factor‐I (IGF‐I) to stimulate cellular proliferation and tendon fiber deposition in the core lesion of tendinitis. This study examined the effects of MSCs, as well as IGF‐I gene‐enhanced MSCs (AdIGF‐MSCs) on tendon healing in vivo. Collagenase‐induced bilateral tendinitis lesions were created in equine flexor digitorum superficialis tendons (SDFT). Tendons were treated with 10 × 106 MSCs or 10 × 106 AdIGF‐MSCs. Control limbs were injected with 1 mL of phosphate‐buffered saline (PBS). Ultrasound examinations were performed at t = 0, 2, 4, 6, and 8 weeks. Horses were euthanized at 8 weeks and SDFTs were mechanically tested to failure and evaluated for biochemical composition and histologic characteristics. Expression of collagen types I and III, IGF‐I, cartilage oligomeric matrix protein (COMP), matrix metalloproteinase‐3 (MMP‐3), matrix metalloproteinase‐13 (MMP‐13), and aggrecanase‐1 (ADAMTS‐4) were similar in MSC and control tendons. Both MSC and AdIGF‐MSC injection resulted in significantly improved tendon histological scores. These findings indicate a benefit to the use of MSCs and AdIGF‐MSCs for the treatment of tendinitis. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1392–1398, 2009  相似文献   

20.
He J  Wang Y  Sun S  Yu M  Wang C  Pei X  Zhu B  Wu J  Zhao W 《Nephrology (Carlton, Vic.)》2012,17(5):493-500
Aims: Several studies have demonstrated administration of mesenchymal stem cells (MSC) could reverse kidney injury by paracrine mechanisms rather than by MSC transdifferentiation. Recently, a few researchers found microvesicles (MV) derived from MSC might be a paracrine mechanism for cell‐to‐cell communication. The aim of this study was to investigate the repair effects of MV in a 5/6 subtotal nephrectomy (Nx) mice model. Methods: The animals were randomly divided into four groups: Control, Nx, Nx + MSC and Nx + MV group. MSC were injected (1 × 106/mouse) through caudal vein in Nx + MSC group at the second day after the surgery and MV were injected (30 µg/mouse) through caudal vein in Nx + MV group on alternate days. Mice were killed on day 7 after the first time of administration. Blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA) and proteinuria were evaluated. Histopathology of kidney was analysed. Results: In Nx mice, the levels of Scr, UA and proteinuria were significantly decreased with administration of MV and MSC (P < 0.05). The remnant kidneys of MV and MSC‐treated Nx mice showed less fibrosis, interstitial lymphocyte infiltrates and less or absent tubular atrophy compared with the untreated Nx group. The Histological Score of Kidney in untreated mice was 3.13 ± 0.74, while in the MSC‐treated group it was 1.67 ± 0.47 and in the MV‐treated group it was 1.80 ± 0.44, nearly preserving normal morphology of the kidney (P < 0.01). Conclusion: This study showed MV protects against renal injury induced by 5/6 Nx, which could mimic the role of MSC in kidney repair. The research showed a newly potential therapeutic approach to kidney diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号