首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat dorsal root ganglia and spinal cord were stained with 12 monoclonal antibodies reacting with phosphorylated epitopes of two neurofilament proteins (NF 150K and NF 200K). Three monoclonal antibodies were axon-specific in both locations; neuronal perikarya were not stained. Nine monoclonal antibodies stained a subpopulation of neurofilament-positive sensory neurons, as indicated by double labeling experiments with polyclonal antibodies reacting with phosphorylated and dephosphorylated forms of the neurofilament protein triplet. Of these nine antibodies, two stained motor neuron perikarya in the spinal cord, while the remaining seven antibodies were axon-specific in this location. Subpopulations of stained and unstained motor neurons were not observed. With all 12 antibodies, the staining pattern in the lumbar dorsal root ganglia and spinal cord remained unchanged following sciatic nerve crush and ligature. The findings suggest that, in the neurofilament, some phosphorylated epitopes are axon specific, while other phosphorylated epitopes are present in both axons and perikarya. Furthermore, they suggest that differences exist between neuronal populations as to the presence of phosphorylated epitopes in perikaryal neurofilaments. It remains to be seen whether phosphorylation events in perikarya and axons have similar or different effects on neurofilament structure and function.  相似文献   

2.
Neurofilament (NF) triplet proteins are normally poorly phosphorylated in neuronal perikarya, the two high molecular weight polypeptides becoming extensively phosphorylated once the NF enters the axon. Abnormal expression of phosphorylated NF (pNF) epitopes in neuronal perikarya has been revealed using monoclonal antibodies in a variety of human and experimental conditions. In the present study, we asked whether pNF epitopes are expressed in sensory neurons in the L4 and L5 dorsal root ganglia (DRG) following blockade of fast axonal transport in a model producing few (less than 1%) degenerating fibers. Colchicine (5 mM) was briefly (45 minutes) applied to the sciatic nerve at mid-thigh twice (once weekly) and the animals studied two weeks following the first colchicine application; contralateral nerves were either treated with saline or crushed. Modest to intense immunoreactivity was found with antibody 07-05 (directed against pNF epitopes on the two high molecular weight NF polypeptides) in 30.4% and 45.1% of DRG neurons from colchicine-treated and crushed nerves, respectively; only a rare cell body demonstrated immunostaining from the contralateral saline-treated nerves. Immunoreactivity was not observed with antibody 07-05 at two and five days following single colchicine application. In a separate study, colchicine or saline was applied (as above) 1-2 cm proximal to a nerve crush. Colchicine application did not influence the extent of DRG neurons expressing pNF epitopes; immunostaining with antibody 07-05 was present in 44.7% and 43.8% of DRG neurons from saline-treated and colchicine-treated crushed nerves, respectively. The results indicate that structural interruption of nerve-target contact is not necessary to induce aberrant NF phosphorylation in neuronal perikarya. It is suggested that loss of a retrogradely transported "trophic" signal(s) triggers this response.  相似文献   

3.
Neurofilaments (NF) are normally poorly phosphorylated in neuronal perikarya and highly phosphorylated in axons. Aberrant NF phosphorylation in the neuronal perikaryon has been demonstrated in a number of human and experimental disorders. In this study, we have asked whether expression of these phosphorylated NF (pNF) epitopes is dependent upon continued axonal regeneration following nerve transection (axotomy). This hypothesis was tested using the neurotoxic chemical acrylamide (AC) which is known to inhibit axonal regeneration following systemic administration. First, we examined whether AC acts at the level of the neuronal perikaryon to inhibit axonal elongation. Systemic, high dose intraperitoneal (IP) AC administration totalling 150 mg/kg (75 mg/kg x 2) did not impair the axotomy-induced reordering of slow axonal transport in the neuronal perikaryon. Next, we studied the ability of AC to directly prevent nerve outgrowth at the growing tips of axons. Subperineurial injection of AC (0.1 M), which in preliminary studies was found not to produce nerve fiber damage, markedly reduced the extent of nerve outgrowth when injected proximal to a nerve crush; this was shown by a reduction in the extent of radiolabeling and number of axonal sprouts in the distal stump seven days following nerve crush. Using this protocol, a 67% decrease in the number of neuronal perikarya in the L4 and L5 dorsal root ganglia demonstrating immunoreactivity to antibody 07-05 (directed against pNF epitopes) was observed in AC-injected compared to contralateral saline-injected crushed nerves. Taken together, the results indicate that inhibition of axonal regeneration in the distal stump by AC reduces aberrant NF phosphorylation in the neuronal perikaryon following axotomy.  相似文献   

4.
States of phosphorylation of neurofilament proteins were examined in the perikarya of rat sensory and motor neurons between 3 and 28 d following either a distal transection [6-7 cm from the L4-L5 dorsal root ganglia (DRG)] or a proximal transection (1-2 cm from the L4-L5 DRG) of the sciatic nerve. Paraffin sections of the right (experimental) and left (control) L4 and L5 DRG from animals with unilateral transection of the right distal sciatic nerve were stained immunocytochemically with monoclonal antibodies to phosphorylation-dependent (NF-P), dephosphorylation-dependent (NF-dP), or phosphorylation-independent (NF-ind) epitopes on the largest (NF200), mid-sized (NF150), or smallest (NF68) neurofilament protein subunits. Increased immunoreactivity to NF-P on NF200 and NF150 was detected in experimental DRC at 10 d, peaking by 20 d, and declining to near control levels by 28 d. Conversely, immunoreactivity to NF-dP declined in experimental DRG beginning at 6 d, reaching a maximum decline at 10-16 d, and returning to near control levels by 28 d. Immunocytochemical changes were confirmed with biochemical studies on tissue homogenates that demonstrated an increase of immunoreactivity to NF-P and a decrease of reactivity to NF-dP in the experimental DRG. Changes in immunoreactivities to NF-P and NF-dP were observed only in the perikarya of large neurons and were closely associated with chromatolytic changes in these neurons. Marked enhancement of chromatolysis, as well as the immunoreactivities to NF-P and NF-dP, occurred following a proximal (left side) versus distal (right side) transection in the same animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Neurofilament phosphorylation in peripheral nerve regeneration   总被引:4,自引:0,他引:4  
A. Bignami  N.H. Chi  D. Dahl   《Brain research》1986,375(1):73-82
A monoclonal antibody to the 200 kdalton neurofilament (NF) polypeptide selectively decorated axons in tissue sections. Neuronal perikarya and dendrites, including motor and sensory neurons reacting to axotomy, were not stained. Axonal staining was abolished by dilution of the monoclonal supernatants with phosphate buffer and by digestion of tissue sections with phosphatase, thus suggesting that the antibody reacted with a phosphorylated epitope. Conventional monoclonal and polyclonal antibodies, i.e. antibodies decorating NF regardless of their location (axons, perikarya and dendrites) were not affected by these procedures. Compared to conventional NF antibodies, staining with the axon-specific monoclonal antibody was a late event in peripheral nerve regeneration. One week after operation, the whole distal stump of crushed rat sciatic nerve was invaded by bundles of axons strongly reacting with conventional NF antibodies. Axon-specific NF immunoreactivity was confined to the proximal segment of the stump at this time and progressively extended distally in the following week. Furthermore, NF phosphorylation appeared to coincide with the return of a normal nerve structure as evidenced by the distribution of laminin immunoreactivity. Bundles of axons growing within columns of laminin-positive Schwann cells did not stain with the axon-specific NF antibody. Immunoreactivity with this antibody coincided with the return of a normal laminin pattern, i.e. selective decoration of the endoneurial basal membranes surrounding the axons.  相似文献   

6.
We have obtained five monoclonal antibodies to the Mr 200,000 neurofilament component (NF200) after immunization with polypeptides purified from enzymatically dephosphorylated bovine neurofilaments. In immunoblots of untreated neurofilament protein and protein from filaments exposed to phosphatase, these antibodies recognize nonphosphorylated or dephosphorylated, but not phosphorylated, forms of NF200. The epitopes recognized by these new monoclonal antibodies reside in the carboxyterminal domain of the NF200 polypeptide as defined by immunoreaction with limited chymotryptic fragments. Immunohistochemical studies of bovine cerebellum, spinal cord, trigeminal ganglion, and trigeminal nerve with these new monoclonal antibodies demonstrate immunoreactivity primarily in neuronal perikarya; axons and dendrites are weakly or infrequently immunostained. After enzymatic dephosphorylation of these tissues, a more extensive distribution of immunoreactivity is seen, especially in axons and dendrites. Immunostaining of cultured rat sympathetic neurons is restricted to cell bodies. These data provide evidence for the in situ existence of NF200 epitopes that are not phosphorylated in some classes of neurons or regions of a neuron, but are modified by phosphorylation in other neurons or neuronal domains. These new monoclonal antibodies are distinctly different from those in a large library (over 100) raised to, and specific for, phosphorylated neurofilament proteins. They are novel tools for probing neurofilament distribution, metabolism, structure, and possibly function.  相似文献   

7.
Summary A series of monoclonal antibodies that distinguish phosphorylated and nonphosphorylated neurofilament (NF) epitopes was used to immunostain brain stem neurons from control rabbits and from rabbits chronically intoxicated with Aluminium (Al). In controls, none of the monoclonal antibodies to phosphorylated NF stained the perikaryon of neurons. In contrast, in animals treated with Al, all neuronal perikarya containing Al-induced neurofilament bundles (NB) and some lacking well-formed NB immunoreacted with two of the five antibodies to phosphorylated NF. Axons were stained by all five antibodies to phosphorylated NF in both control and Al-treated animals. A broadly reacting monoclonal antibody to a nonphosphorylated NF epitopes immunoreacted with neuronal cell bodies, dendrites and axons in control and Al-intoxicated animals regardless of the presence of Al-induced NB. Staining of Al-induced NB with one of the antibodies to phosphorylated NF was greatly diminished after treatment of sections with trypsin and phosphatase. It is concluded that NF which compose the Al-induced NB have different immunocytochemical characteristics from those of the NF present in the perkaryon of normal neurons. It is likely that, contrary to normal perikaryal NF, NF of Al-induced NB are phosphorylated. Moreover, phosphorylation of NF of Al-induced NB is probably abnormal, since NF of Al-induced NB have immunostaining characteristics different from NF of normal axons. Al-induced NB may result from abnormal phosphorylation of NF in the perikaryon, preventing normal axonal transport of these structures.Supported by grants from the National Institutes of Health NS 14509 and AG 00795  相似文献   

8.
Intrathecal administration of aluminum salts induces accumulation of neurofilaments in axons and perikarya of motor neurons and is associated with impaired axonal transport of neurofilament proteins. Because phosphorylation of the 200-kilodalton (kd) neurofilament protein, thought to be a major component of the sidearms, seems to be important in interactions of neurofilaments with other cytoskeletal elements, we have postulated that aluminum may produce neurofibrillary pathology by altering patterns of neurofilament phosphorylation. To test this hypothesis, antibodies against phosphorylated and non-phosphorylated neurofilament epitopes were used for immunocytochemical analysis of spinal cord sections from aluminum-injected rabbits. In control animals, phosphorylated 200-kd neurofilament proteins were not demonstrable in perikarya of motor neurons. In experimental rabbits, perikarya and proximal axons of affected motor neurons showed striking accumulations of immunoreactivity of one phosphorylated epitope. The presence of phosphorylated 200-kd neurofilament proteins in these regions may have important consequences for the organization of the cytoskeleton and for the transport of neurofilaments. A similar, but not identical, pattern of accumulation of phosphorylated neurofilament immunoreactivity has recently been observed in neurofibrillary tangles in Alzheimer's disease.  相似文献   

9.
Clinical and experimental observations have demonstrated that peripheral nerve transection generally results in lasting disturbed sensory discrimination whereas nerve crush is followed by more or less complete functional restoration. This has been explained by an increased misdirection of regenerating fibers after transection as compared to crush injury. In the present study, sequential double-labeling was used to investigate the relative proportions of peripherally misdirected sensory fibers in the sural and tibial nerve branches after crush or transection of the parent sciatic nerve in the rat. Control experiments showed that 0.21% ± 0.12 (mean ± S.D.) of all labeled tibial and sural neurons normally send axons to both nerves. After sciatic nerve crush or transection, 1.31% ± 0.78 and 3.79% ± 3.01, respectively, of all labeled tibial and sural axons were double-labeled indicating previously sural axons now having an axon in the tibial. Statistically significant differences in the percentages of bidirectional sciatic sensory neurons were found between the normal controls and after crush injury (P < 0.01) or transection injury (P < 0.001), respectively, but not between transection and crush (P > 0.05). The results indicate that the number of sensory neurons having an axon in two peripheral nerves is normally very small, that a substantial number of sensory axons become misdirected after both crush and transection with resuture, and that the number of misdirected fibers in the major sciatic branches after these types of injury is similar.  相似文献   

10.
Rat spinal cord was stained by indirect immunofluorescence with 11 neurofilament monoclonal antibodies that recognize phosphorylated epitopes. All monoclonals were axon-specific in this location. The large motoneurons containing bundles of neurofilaments did not stain and the pattern remained unchanged after transection of the sciatic nerve in the thigh. With nine monoclonals, stained motoneurons were observed in the ventral horns 3 days, 5 days, 1 week, and 2 weeks after transection of the ventral roots close to the spinal cord. The abnormal motoneurons were typically scattered among normal (i.e., nonstained) cells. Even in animals showing the most severe reaction, the whole motoneuron population at the site of rhizotomy was not affected, stained and nonstained perikarya often coexisting side by side. Stained motoneurons were no longer observed 3 weeks after ventral root transection. Changes in neuronal immunoreactivity were also observed after dorsal root transection. However, a different population was affected, i.e., middle-sized neurons in dorsal horns and at the base of ventral horns. With two monoclonals (A9 and D21), cell bodies remained negative following all operations. It is concluded that axotomy in proximity of the cell body may induce certain neurofilament phosphorylation events in motor neuron perikarya, whereas other phosphorylation events remain confined to the axons under these experimental conditions. The absence of changes after transection of the sciatic nerve in the thigh suggests that neurofilament phosphorylation is a reaction to cell injury rather than a cellular event related to nerve regeneration.  相似文献   

11.
Reactivity to antibodies directed against phosphorylated neurofilament epitopes is normally present in axons. Phosphorylated neurofilament immunoreactivity is not generally found in neuronal perikarya, except in abnormal states such as Alzheimer's disease. We found that cytoplasm of neurons of the nucleus tractus mesencephalici nervi trigemini in normal mice and rats reacts with monoclonal antibodies against phosphorylated epitopes on neurofilaments. This suggests either that phosphorylated epitopes on neurofilaments are localized in the perikarya of some normal neurons or that the antibodies that were used (SMI 31 and SMI 34) recognize more than phosphorylated epitopes.  相似文献   

12.
Neurofibrillary tangles (NFT) are a hallmark of Alzheimer's disease (AD), and their presence correlates with the presence of dementia. A major constituent of NFT is the insoluble paired helical filament which shares some antigenic relationships with normal cytoskeletal elements, particularly neurofilaments. If neurofilament proteins (200, 145-160, and 68 kilodaltons [kd]) participate in the formation of NFT, the distribution of these constituents might be expected to be abnormal. To examine this issue, we used immunocytochemical methods to localize phosphorylated and nonphosphorylated epitopes of neurofilament proteins in hippocampal neurons of controls and patients with AD. Normally, the 200-kd neurofilament protein is not phosphorylated in the perikarya of neurons. However, in AD, many pyramidal neurons contained immunoreactive phosphorylated neurofilaments. Patterns of immunoreactivity (linear, flame-shaped, or skein-like within perikarya) greatly resembled the appearance of silver-stained NFT. This pattern of immunoreactivity was not present in hippocampal pyramidal neurons in controls, except in one aged patient in whom adjacent silver-stained sections revealed a few NFT. Patterns of immunoreactivity with antibodies for nonphosphorylated neurofilament proteins were similar in control and AD neurons. Our results indicate that some NFT are associated with abnormal distributions of high molecular weight phosphorylated neurofilament proteins. One domain of the 200-kd protein is believed to be a component of the side arms which link neurofilaments and interact with microtubules. Abnormal interactions of perikaryal neurofilaments could play a role in the genesis of NFT, and this abnormality of the cytoskeleton could contribute to the dysfunction of neurons at risk in AD.  相似文献   

13.
The paradigm of IDPN neuropathy was produced in rats in order to examine the neurofilaments (NFs) that accumulate in the proximal motor and sensory axons of intoxicated animals, and to compare the aggregated NFs with control NFs and with the depleted populations of NFs in the distal portions of the same experimental nerves. NFs were probed biochemically and histochemically, using a large and well-characterized library of monoclonal antibodies that included antibodies that are monospecific for each of the rat NF protein subunits (NF-H, NF-M, and NF-L) as well as antibodies that recognized differential phosphorylated states of rat NF-H and NF-M. All antibodies tested showed enhanced immunostaining of enlarged axons and of large spheroids in the spinal cord and dorsal root ganglia of experimental animals. Biochemical analyses of IDPN-treated animals revealed enrichment of NF-H, NF-M, and NF-L in homogenates of dorsal root ganglia and of proximal motor and sensory nerve roots as well as depletion of the three subunits in distal nerve roots and in sciatic nerves. Immunoblots revealed a uniform enrichment of NF-H, NF-M, and NF-L in NF aggregates as well as the same admixture of phosphorylated and dephosphorylated epitopes of NF-H and NF-M in experimental and in control tissues. The global increase of immunoreactivity in axonal swellings to antibodies that react with phosphorylated, nonphosphorylated,and phosphorylation-independent NF epitopes suggests that IDPN induces an accumulation of NFs in proximal axons without necessarily altering the state of NF phosphorylation.  相似文献   

14.
B G Gold  D R Austin 《Brain research》1991,563(1-2):151-162
beta,beta'-Iminodipropionitrile (IDPN) administration produces giant neurofilament-filled axonal swellings in the first proximal internodes of large myelinated sensory and motor fibers without any accompanying axonal degeneration. In the present study, we asked whether proximal giant axonal swellings are sufficient to elicit aberrant neurofilament (NF) phosphorylation in neuronal perikarya. Rats were given a single intraperitoneal (i.p.) injection of IDPN (2 g/kg) followed by IDPN (0.1%) in the drinking water (continuous IDPN exposure) or tap water (single IDPN exposure) for two days to 7 weeks. Immunoreactivity to phosphorylated NF (pNF) epitopes (using monoclonal antibodies 6-17 and 7-05) was observed in L4 and L5 dorsal root ganglia (DRG) neurons beginning between one and 5 days, corresponding to the development of proximal giant axonal swellings. Quantitation of DRG neurons demonstrated maximal numbers of immunoreactive cell bodies to pNF epitopes (46-51%) by one week. The number of immunostained DRG cells was maintained in animals given continuous IDPN exposure, but declined significantly (P less than 0.001) in rats given a single injection of IDPN to 26 +/- 0.80% and 6 +/- 0.04% at 3 and 5 weeks, respectively. Ventral and dorsal root fibers, which undergo axonal atrophy distal to axonal swellings, showed intense immunoreactivity to pNF epitopes and a marked reduction or a complete lack of immunostaining to antibody 2-135 (directed against non-phosphorylated NF epitopes); pretreatment with alkaline phosphatase reversed this staining pattern. In a separate study, a similar alkaline phosphatase-sensitive lack of staining to antibody 2-135 was also observed in atrophic motor fibers in the DRG 4 weeks following nerve crush. It is suggested that aberrant NF phosphorylation in DRG neuronal cell bodies from IDPN-treated rats arises secondarily to an alteration in a retrogradely transported 'trophic' signal(s) to the neuron due to the presence of giant axonal swellings. Furthermore, pNFs in atrophic axons may correspond to stationary or slowly moving NFs in the axoplasm.  相似文献   

15.
Lesions of the fimbria-fornix (FF) have been reported to cause retrograde changes in neurons of the medial septal nucleus (MSN). To analyze the nature and time course of these events, we investigated changes in cytoskeletal elements (phosphorylated and non-phosphorylated neurofilament (NF) proteins) and transmitter-related enzymes (choline acetyltransferase (ChAT) in MSN neurons following FF transection. During the first week postlesion, ChAT immunoreactivity and size of many perikarya were reduced. Irregular, swollen cholinergic fibers appeared first at postlesion day 2 in caudal septum and soon spread rostrally, reaching rostral septum by day 7. A few perikarya developed abnormal accumulations of phosphorylated NFs. At postlesion days 7-10, many neurons did not stain for ChAT. Phosphorylated NFs were present in many perikarya. At this time, cell loss was apparent in Nissl-stained material. Cholinergic cell loss continued through postlesion weeks 6-8 but at a much slower rate than during the first week. Phosphorylated NF accumulations in MSN perikarya persisted until postlesion week 6, disappearing thereafter. Double-immunostaining procedures showed that MSN neurons expressed both ChAT and phosphorylated NF immunoreactivity at postlesion day 3; however, at days 7 and 14, cells that accumulated phosphorylated NFs did not stain for ChAT. The results of this study indicate that FF transection leads to perikaryal shrinkage with loss of ChAT immunoreactivity, perikaryal phosphorylation of NFs, cholinergic fiber abnormalities, and cell loss. Recent evidence suggests that reduction of transmitter markers and aberrant phosphorylation of NFs may be involved in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. Therefore, FF transection provides a useful animal model for further investigations of complex disorders of the central nervous system that involve degeneration of transmitter-specific pathways.  相似文献   

16.
Nogo-A expression in the intact and injured nervous system   总被引:10,自引:0,他引:10  
The expression of Nogo-A mRNA and protein in the nervous system of adult rats and cultured neurons was studied by in situ hybridisation and immunohistochemistry. Nogo-A mRNA was expressed by many cells in unoperated animals, including spinal motor, DRG, and sympathetic neurons, retinal ganglion cells, and neocortical, hippocampal, and Purkinje neurons. Nogo-A protein was strongly expressed by presumptive oligodendrocytes, but not by NG2+glia and was abundant in motor, DRG, and sympathetic neurons, retinal ganglion cells, and many Purkinje cells, but was difficult to detect in dentate gyrus neurons and some neocortical neurons. Cultured fetal mouse neocortical neurons and adult rat DRG neurons strongly expressed Nogo-A in their perikarya, growth cones, and axonal varicosities. All axons in the intact sciatic nerve contained Nogo-A and many but not all regenerating axons were strongly Nogo-A immunopositive after sciatic nerve transection. Ectopic muscle fibres that developed among the regenerating axons were also Nogo-A immunopositive. Following injury to the spinal cord, Nogo-A mRNA was upregulated around the lesion and Nogo-A protein was strongly expressed in injured dorsal column fibres and their sprouts which entered the lesion site. Following optic nerve crush, Nogo-A accumulated in the proximal and distal stumps bordering the lesions.  相似文献   

17.
Monoclonal antibodies (mAbs) to rat neurofilament (NF) proteins NF-L, NF-M, and NF-H were used to examine the developmental programs of NF expression in rat embryos. The ability of these mAbs to recognize differentially phosphorylated states of NF-M and NF-H (Lee et al., 1987, the preceding paper) was exploited in order to examine the temporal and spatial patterns of NF phosphorylation during early neuronal development in vivo. NF proteins were first detected on the twelfth day postfertilization (E12) using NF-L- or NF-M-specific mAbs. By E13, the coexpression of NF-L and NF-M was widespread, reflecting dramatic increases of immunoreactivity to both subunits. Partial phosphorylation, denoted P[+], of NF-M was already present in perikarya and neurites of E12 neurons. Extensively phosphorylated, or P[+++], isoforms of NF-M appeared in E13 axons, thereby establishing a proximodistal gradient of NF phosphorylation during the earliest phase of NF expression. Immunoblots of tissue homogenates revealed that most NF-M of E13 embryos exists in a partially phosphorylated, or P[+], isoform. Unequivocal staining for NF-H first appeared at E15, a time at which NF-L and NF-M had already attained their adult patterns of immunocytochemical staining. Levels of NF-H were extremely low at E15 but could be detected in all of its differentially phosphorylated states, i.e., nonphosphorylated P[-], partly P[+], and highly P[+++] phosphorylated isoforms. P[+++] isoforms of NF-H were restricted to the distal portions of E15 axons, although staining of more proximal axons, like those in adult, was noted by E17. Immunoblots of E17 embryos revealed most NF-H as P[-] and P[+] isoforms. Quantities of immunoreactive NF-H increased very slowly and remained well below those of NF-M and NF-L for several weeks beyond birth. These results show that sequential forms of NFs are expressed by developing and maturing neurons throughout the nervous system. An "immature" form of NFs, composed of NF-M and NF-L, appears to function in establishing the neuronal phenotype and in initiating and maintaining neurite outgrowth. Addition of NF-H confers a "mature" state to the NF. This delayed expression of NF-H is a slow and graduated process that coincides in time with the stabilization of neuronal circuitries and may be important in modulating axonal events, such as the slowing of cytoskeletal transport and the growth of axonal caliber.  相似文献   

18.
To understand better the role of local factors in the response of peripheral nerve to crush injury, we studied the distribution of albumin-like immunoreactivity (A-LI) in the rat sciatic nerve from one day to eight weeks (wk) after a crushing injury; we used electron microscopic immunocytochemistry. In the nerve distal to the crush degenerating axons demonstrated intra-axonal A-LI, and by one wk most of the Schwann cells also showed A-LI. As regenerating sprouts entered the distal nerve, those Schwann cells in contact with sprouts lost their A-LI, while those cells not in contact with axons retained immunoreactivity up to eight wk after injury. Proximal to the nerve crush many axons showed intra-axonal A-LI from one to two wk after injury, despite appearing normal ultrastructurally. This immunoreactivity diminished as the distance from the crush site increased. Many Schwann cells proximal to the crush also showed A-LI from one to four wk after injury. These findings suggest that an albumin-like protein may play a role in the response of Schwann cells and axons to injury.  相似文献   

19.
Crush or transection of a peripheral nerve is known to induce transganglionic degenerative atrophy (TDA) in the segmentally related, ipsilateral Rolando substance of the spinal cord. When the lost peripheral connectivity is reestablished, the consecutive regenerative synaptoneogenesis results in restoration of the circuitry in the formerly deteriorated upper dorsal horn. Enhanced expression of the growth-associated protein (GAP43) B-50 occurs during neuronal differentiation, axon outgrowth, and peripheral nerve regeneration. This study documents changes in immunocytochemical distribution of B-50 in the regions of the lumbar spinal cord which are segmentally related to the axotomized sciatic nerve. At the light microscopic level, a weak B-50 immunoreactivity (BIR) is present in the neuropil of the upper dorsal horn of control animals. After unilateral transection and ligation of the sciatic nerve, BIR increased in the ipsilateral upper dorsal horn at 17 days postinjury, but decreased again after 24 days with respect to the contralateral side. Differences between effects of crush and transection were prominent in combined crush-cut experiments as well (i.e., after unilateral crush and contralateral transection and ligation of the sciatic nerve). Electron microscopic studies show that in the uninjured and injured spinal cord, BIR is detected in axons and axon terminals, but not all are stained. After transection of the sciatic nerve, BIR is found in afflicted primary sensory axon terminals, including those contacting substantia gelatinosa neurons and in axon terminals undergoing glial phagocytosis. The localization of BIR seen after crushing the sciatic nerve is similar. However, at 24 days after crush, BIR is detected also in axonal growth cones. In the ventral horn of control animals, synaptic boutons impinging upon motor neurons exhibited weak BIR. At 17 days after unilateral transection of the sciatic nerve, the pericellular BIR surrounding motor neurons is decreased at the ipsilateral with respect to the contralateral side, whereas 24 days after crush injury it increased considerably. Our results show that peripheral nerve injury inducing TDA also affects BIR distribution in the spinal gray matter. Successful regeneration of the peripheral nerve after crush lesion is associated with enhanced expression of B-50 in growth cones of sprouting central axons. The neuroplastic response of B-50 is in line with a function of B-50 in axonal sprouting and reactive synaptogenesis.  相似文献   

20.
The distribution of stimulus evoked Fos protein-like immunoreactivity in spinal cord neurons was studied in adult rats at different survival times after sciatic nerve crush or transection and epineural repair. Fos protein-like immunoreactivity was induced either by electrical stimulation of the sciatic nerve central to the injury, at C-fiber strength, at 21, 39, and 92 days post-lesion, or by noxious heat applied to the skin of the hind paw 92 days post-lesion. The contralateral uninjured side served as control. The results with electrical stimulation showed, with some exceptions, that the distribution of c-fos expressing cells in the spinal cord on the normal and on the previously injured side were similar after both crush and transection with repair. The main finding was an up-regulation of the number of Fos protein immunoreactive neurons in the inner portion of Rexed's lamina II. The results following heat stimulation 92 days post-lesion showed a decrease in the number of labeled neurons in most laminae after both types of injury. This was more pronounced in cases with sciatic nerve transection with repair compared to cases with crush. The results indicate time-dependent alterations in the distribution of stimulus evoked c-fos expression in spinal cord neurons during regeneration after nerve injury. Furthermore, the results from heat stimulation may indicate a slower and perhaps more incomplete restoration process after transection with repair than after crush.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号