首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
F‐actin‐binding protein drebrin has two major isoforms: drebrin A and drebrin E. Drebrin A is the major isoform in the adult brain and is highly concentrated in dendritic spines, regulating spine morphology and synaptic plasticity. Conversely, drebrin E is the major isoform in the embryonic brain and regulates neuronal morphological differentiation, but it is also expressed in neurogenic regions of the adult brain. The subventricular zone (SVZ) is one of the brain regions where adult neurogenesis occurs. Neuroblasts migrate to the olfactory bulb (OB) and integrate into existing neuronal networks, after which drebrin expression changes from E to A, suggesting that drebrin E plays a specific role in neuroblasts in the adult brain. Therefore, to understand the role of drebrin E in the adult brain, we immunohistochemically analyzed adult neurogenesis using drebrin‐null‐mutant (DXKO) mice. In DXKO mice, the number of neuroblasts and cell proliferation decreased, although cell death remained unchanged. These results suggest that drebrin E regulates cell proliferation in the adult SVZ. Surprisingly, the decreased number of neuroblasts in the SVZ did not result in less neurons in the OB. This was because the survival rate of newly generated neurons in the OB increased in DXKO mice. Additionally, when neuroblasts reached the OB, the change in the migratory pathway from tangential to radial was partly disturbed in DXKO mice. These results suggest that drebrin E is involved in a chain migration of neuroblasts.  相似文献   

2.
Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice   总被引:1,自引:0,他引:1  
The generation and maturation of adult neural stem/progenitor cells are impaired in many neurodegenerative diseases, among them is Parkinson's disease (PD). In mammals, including humans, adult neurogenesis is a lifelong feature of cellular brain plasticity in the hippocampal dentate gyrus (DG) and in the subventricular zone (SVZ)/olfactory bulb system. Hyposmia, depression, and anxiety are early non-motor symptoms in PD. There are parallels between brain regions associated with non-motor symptoms in PD and neurogenic regions. In autosomal dominant PD, mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are frequent. LRRK2 homologs in non-vertebrate systems play an important role in chemotaxis, cell polarity, and neurite arborization. We investigated adult neurogenesis and the neurite development of new neurons in the DG and SVZ/olfactory bulb system in bacterial artificial chromosome (BAC) human Lrrk2 G2019S transgenic mice. We report that mutant human Lrrk2 is highly expressed in the hippocampus in the DG and the SVZ of adult Lrrk2 G2019S mice. Proliferation of newly generated cells is significantly decreased and survival of newly generated neurons in the DG and olfactory bulb is also severely impaired. In addition, after stereotactic injection of a GFP retrovirus, newly generated neurons in the DG of Lrrk2 G2019S mice exhibited reduced dendritic arborization and fewer spines. This loss in mature, developed spines might point towards a decrease in synaptic connectivity. Interestingly, physical activity partially reverses the decrease in neuroblasts observed in Lrrk2 G2010S mice. These data further support a role for Lrrk2 in neuronal morphogenesis and provide new insights into the role of Lrrk2 in adult neurogenesis.  相似文献   

3.
The generation of new neurons in the adult brain is modulated by complex stimuli and a broad range of extrinsic signals. It remains a mystery how stem cells and their progeny integrate this wealth of regulatory input to generate a precise number of neurons that matches the physiological needs of the olfactory and hippocampal network. cAMP response element binding protein (CREB)-dependent signalling is controlling essential developmental steps in adult neurogenesis, i.e. survival, maturation and integration of new neurons. Here, we summarize the current knowledge on the function of CREB in adult neurogenesis and discuss the potential of CREB to integrate complex stimuli and to translate these into precise developmental processes in adult neurogenesis. The complex modulation of CREB-signalling may allow the adult neurogenic system to respond to stimuli in a fine-tuned rather than in an on-off fashion.  相似文献   

4.
Cadmium (Cd) is a heavy metal that is one of the most toxic environmental pollutants throughout the world. We previously reported that Cd exposure impairs olfactory memory in mice. However, the underlying mechanisms for its neurotoxicity for olfactory function are not well understood. Since adult Subventricular zone (SVZ) and Olfactory Bulb (OB) neurogenesis contributes to olfaction, olfactory memory defects caused by Cd may be due to inhibition of neurogenesis. In this study, using bromodeoxyuridine (BrdU) labeling and immunohistochemistry, we found that 0.6 mg/L Cd exposure through drinking water impaired adult SVZ/OB neurogenesis in C57BL/6 mice. To determine if the inhibition of olfactory memory by Cd can be reversed by stimulating adult neurogenesis, we utilized the transgenic caMEK5 mouse strain to conditional stimulate of adult neurogenesis by activating the endogenous ERK5 MAP kinase signaling pathway. This was accomplished by conditionally induced expression of active MEK5 (caMEK5) in adult neural stem/progenitor cells. The caMEK5 mice were exposed to 0.6 mg/L Cd for 38 weeks, and tamoxifen was administered to induce caMEK5 expression and stimulate adult SVZ/OB neurogenesis during Cd exposure. Short-term olfactory memory test and sand-digging based, odor-cued olfactory learning and memory test were conducted after Cd and tamoxifen treatments to examine their effects on olfaction. Here we report that Cd exposure impaired short-term olfactory memory and odor-cued associative learning and memory in mice. Furthermore, the Cd-impaired olfactory memory deficits were rescued by the tamoxifen-induction of caMEK5 expression. This suggests that Cd exposure impairs olfactory function by affecting adult SVZ/OB neurogenesis in mice.  相似文献   

5.
Neuronal activity has been identified as a key regulator of neuronal network development, but the impact of activity on migration and terminal positioning of interneuron subtypes is poorly understood. The absence of early subpopulation markers and the presence of intermingled migratory and postmigratory neurons make the developing cerebral cortex a difficult model to answer these questions. Postnatal neurogenesis in the subventricular zone (SVZ) offers a more accessible and compartmentalized model. Neural stem cells regionalized along the border of the lateral ventricle produce two main subtypes of neural progenitors, granule cells and periglomerular neurons that migrate tangentially in the rostral migratory stream (RMS) before migrating radially in the olfactory bulb (OB) layers. Here, we used targeted postnatal electroporation to compare the migration of these two populations in male and female mice. We do not observe any obvious differences regarding the mode of tangential or radial migration between these two subtypes. However, we find a striking increase of intrinsic calcium activity in granule cell precursors (GC-Ps) when they switch from tangential to radial migration. By decreasing neuronal excitability in GC-Ps, we find that neuronal activity has little effect on migration but is required for normal positioning and survival of GC-Ps in the OB layers. Strikingly, decreasing activity of periglomerular neuron precursors (PGN-Ps) did not impact their positioning or survival. Altogether these findings suggest that neuronal excitability plays a subtype specific role during the late stage of migration of postnatally born OB interneurons.SIGNIFICANCE STATEMENT While neuronal activity is a critical factor regulating different aspects of neurogenesis, it has been challenging to study its role during the migration of different neuronal subpopulations. Here, we use postnatal targeted electroporation to label and manipulate the two main olfactory bulb (OB) interneuron subpopulations during their migration: granule cell and periglomerular neuron precursors (PGN-Ps). We find a very striking increase of calcium activity only in granule cell precursors (GC-Ps) when they switch from tangential to radial migration. Interestingly, blocking activity in GC-Ps affected mainly their positioning and survival while PGN-Ps were not affected. These results suggest that neuronal activity is required specifically for the recruitment of GC-Ps in the OB layers.  相似文献   

6.
The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR‐eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl‐ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl‐ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse‐chase approach, we show that peripheral treatment of adult rats with acyl‐ghrelin did not increase the number of new adult‐born neurones in the granule cell layer of the OB. These data demonstrate that acyl‐ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult‐born cells in the OB. Overnight CR induced c‐Fos expression in new adult‐born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re‐feeding. These effects were not present in ghrelin?/? mice, suggesting that adult‐born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re‐feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult‐born OB cells are activated by CR in a ghrelin‐dependent manner.  相似文献   

7.
Adult neurogenesis is modulated by growth factors, physical conditions, and other alterations in the physical microenvironment. We studied the effects of focal ischemia on neurogenesis in the subventricular zone (SVZ), olfactory bulb (OB), and hippocampal dentate gyrus (DG) (known to be persistent neurogenic regions) in the adult non-human primate, the cynomolgus monkey. Three monkeys underwent middle cerebral artery occlusion-induced focal ischemia and were given multiple BrdU injections during the first 2 weeks after ischemia. Twenty-eight days later, the animals were perfused. The number of new neurons (3182 +/- 408/mm3) in the ipsilateral DG of ischemic monkeys was 4.7-fold that in the DG of non-operated monkeys. The number of new neurons (9176 +/- 2295/mm3) in the ipsilateral olfactory bulb of ischemic monkeys was 18.0-fold that in normal olfactory bulb. These observations suggest an increase in the number of new OB neurons, as well as new DG neurons, after focal ischemia in a primate. This substantial increase in new neurons after focal ischemia could result from the enhancement of cell proliferation rather than a change in the rate of cell commitment. Of the three monkeys subjected to ischemia, only one animal possessed a unique progenitor cell type at the most anterior aspect of the ipsilateral SVZ. Within this region, a short migration (approximately 500 microm) of doublecortin-expressing immature neuronal progenitor cells was observed.  相似文献   

8.
The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo . Taking advantage of the recombination characteristics of a nestin::CreER T2 allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER T2 -expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER T2 -expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER T2 -targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.  相似文献   

9.
In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies.  相似文献   

10.
Dopaminergic loss is known to be one of the major hallmarks of Parkinson disease (PD). In addition to its function as a neurotransmitter, dopamine plays significant roles in developmental and adult neurogenesis. Both dopaminergic deafferentation and stimulation modulate proliferation in the subventricular zone (SVZ)/olfactory bulb system as well as in the hippocampus. Here, we study the impact of 6-hydroxydopamine (6-OHDA) lesions to the medial forebrain bundle on proliferation and neuronal differentiation of newly generated cells in the SVZ/olfactory bulb axis in adult rats. Proliferation in the SVZ decreased significantly after dopaminergic deafferentation. However, the number of neural progenitor cells expressing the proneuronal cell fate determinant Pax-6 increased in the SVZ. Survival and quantitative cell fate analysis of newly generated cells revealed that 6-OHDA lesions induced opposite effects in the two different regions of neurogenesis in the olfactory bulb: a transient decrease in the granule cell layer contrasts to a sustained increase of newly generated neurons in the glomerular layer. These data point towards a shift in the ratio of newly generated interneurons in the olfactory bulb layers. Dopaminergic neurogenesis in the glomerular layer tripled after lesioning and consistent with this finding, the total number of tyrosine hydroxylase (TH)-positive cells increased. Thus, loss of dopaminergic input to the SVZ led to a distinct cell fate decision towards stimulation of dopaminergic neurogenesis in the olfactory bulb glomerular layer. This study supports the accumulating evidence that neurotransmitters play a crucial role in determining survival and differentiation of newly generated neurons.  相似文献   

11.
Nitric oxide (NO) synthase (NOS) is developmentally regulated in the embryonic brain, where NO participates in cell proliferation, survival, and differentiation. In adults, NO inhibits neurogenesis under physiological conditions. This work investigates whether the NO action is preserved all along development up to adulthood or whether its effects in adults are a new feature acquired during brain maturation. The relationship between nitrergic neurons and precursors, as well as the functional consequences of pharmacological NOS inhibition, were comparatively analyzed in the subventricular zone (SVZ) and olfactory bulb (OB) of postnatal (P7) and adult (>P60) mouse brains. The SVZ was markedly reduced between P7 and adults, and, at both ages, neurons expressing neuronal NOS (nNOS) were found in its striatal limits. In postnatal mice, these nitrergic neurons contained PSA-NCAM, and their projections were scarce, whereas, in adults, mature nitrergic neurons, devoid of PSA-NCAM, presented abundant neuropil. In the OB, local proliferation almost disappeared in the transition to adulthood, and periglomerular nitrergic neurons, some of which were PSA-NCAM positive, were found in postnatal and adult mice. Administration of the NOS inhibitor L-NAME did not affect cell proliferation in the SVZ or in the OB of postnatal mice, whereas it significantly enhanced the number of mitotic cells in both regions in adults. Thus, the NO action on SVZ neurogenesis is a phenomenon that appears after the postnatal age, which is probably due to the germinal layer size reduction, allowing exposure of the NO-sensitive neural precursors to the NO produced in the SVZ-striatum limits.  相似文献   

12.
We have characterized the expression of doublecortin-like (DCL), a microtubule-associated protein involved in embryonic neurogenesis that is highly homologous to doublecortin (DCX), in the adult mouse brain. To this end, we developed a DCL-specific antibody and used this to compare DCL expression with DCX. In the neurogenic regions of the adult brain like the subventricular zone (SVZ), the rostral migratory stream (RMS), the olfactory bulb (OB), and the hippocampus, DCL colocalizes with DCX in immature neuronal cell populations. In contrast to DCX, we also found high DCL expression in three other brain regions with suspected neurogenesis or neuronal plasticity. First, the radial glia-like, hypothalamic tanycytes show high DCL expression that partly colocalizes with the neural stem cell marker vimentin. Second, DCL expression is found in cells of the suprachiasmatic nucleus (SCN), which lacks expression of the adult neuron marker NeuN. Third, a novel region exhibiting DCL expression is part of the olfactory tubercle where DCL is found in the neuropil of the islands of Calleja (ICj). Our findings define DCL as a novel marker for specific aspects of adult neurogenesis, which partly overlap with DCX. In addition, we propose unique roles for DCL in adult neurogenesis and we suggest high levels of neuronal plasticity in tanycytes, SCN, and ICj.  相似文献   

13.
Cell proliferation of neural progenitors in the subventricular zone (SVZ) of Parkinson disease (PD) patients and animal models is decreased. It was previously demonstrated that the neurotransmitter dopamine modulates cell proliferation in the embryonic brain. The aim of the present study was to analyze whether oral treatment with the dopamine receptor agonist pramipexole (PPX) modulates adult neurogenesis in the SVZ/olfactory bulb system in a dopaminergic lesion model. 6-Hydroxydopamine (6-OHDA) lesioned adult rats received either PPX (1.0 mg/kg) or PBS orally twice daily and bromodeoxyuridine (BrdU, a cell proliferation marker) for 10 days and were perfused immediately after treatment or 4 weeks after PPX withdrawal. Stereological analysis revealed a significant augmentation in SVZ proliferation by PPX. Consecutively, enhanced neuronal differentiation and more new neurons were present in the olfactory bulb 4 weeks after PPX withdrawal. In addition, dopaminergic neurogenesis was increased in the olfactory bulb after PPX treatment. Motor activity as assessed by using an open field paradigm was permanently increased even after long term PPX withdrawal. In addition, we demonstrate that D2 and D3 receptors are present on adult rat SVZ-derived neural progenitors in vitro, and PPX specifically increased mRNA levels of epidermal growth factor receptor (EGF-R) and paired box gene 6 (Pax6).Oral PPX treatment selectively increases adult neurogenesis in the SVZ–olfactory bulb system by increasing proliferation and cell survival of newly generated neurons. Analyzing the neurogenic fate decisions mediated by D2/D3 signaling pathways may lead to new avenues to induce neural repair in the adult brain.  相似文献   

14.
15.
Using microarray analysis, we detected microRNA-124 (miR-124) to be abundantly expressed in the olfactory bulb (OB). miR-124 regulates adult neurogenesis in the subventricular zone (SVZ). However, much less is known about its role in newborn OB neurons. Here, using both gain-of-function and loss-of-function approaches, we demonstrate that brain-specific miR-124 affects dendritic morphogenesis and spine density in newborn OB neurons. Functional Annotation Clustering of miR-124 targets was enriched in “cell morphogenesis involved in neuron differentiation.”  相似文献   

16.
It is still being debated whether neurogenesis in the subventricular zone (SVZ) is enhanced in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injury in the adult mouse brain. Our previous studies provided evidence that MPTP induces apoptosis of migrating neuroblasts (neural progenitor cells, A cells) in the SVZ and rostral migratory stream (RMS). We investigated cellular kinetics in the adult SVZ and olfactory bulb (OB) after MPTP damage. Cells were labeled with bromodeoxyuridine (BrdU), and the effects of MPTP on the survival and fate of migrating and residing neuroblasts were evaluated. Two days after BrdU labeling and MPTP treatment, the number of BrdU-positive cells in the SVZ and OB of MPTP-treated mice was significantly lower than in the SVZ and OB of saline controls. Additionally, fewer BrdU-positive cells migrated to the OB of treated mice than to that of saline controls, and the cells that did migrate diffused radially into the granule cell layer (GCL) when observed at 7, 14, and 28 days. In the OB GCL, the differentiation of BrdU-positive cells into mature neurons significantly attenuated 14 and 28 days after MPTP injury. Moreover, the impaired neurogenesis was followed by a recovery of A cells in the SVZ and OB, suggesting activation of the self-repair process as a result of MPTP-induced depletion of BrdU-positive cells. Our findings clarify the kinetics underlying neurogenesis in MPTP-treated mice and may contribute to the development of an animal model of Parkinson's disease, and the demonstration of cellular kinetics in SVZ may also provide a new insight into assessing neurogenesis in MPTP-treated mouse.  相似文献   

17.
In adult mammals, thousands of new neurons integrate in the olfactory bulb (OB) each day. This process of adult neurogenesis has received a great deal of scientific attention aimed at understanding how mature neural networks withstand neuronal replacement, and medical interest to explore the promise that these cells may be manipulated for brain repair therapies. In the present review, we focus on the mechanisms and consequences of the functional integration of newborn interneurons in the OB network. We first describe the steps of synaptic integration and functional maturation of adult-born interneurons in the OB. We then examine the physiological control of cell maturation and survival. Finally, we explore the potential impact of adult neurogenesis on the function of the OB.  相似文献   

18.
Neuroblasts born in the subventricular zone (SVZ) migrate along the rostral migratory stream, reaching the olfactory bulb (OB) where they differentiate into local interneurons. Several extracellular factors have been suggested to control specific steps of this process. The brain-derived neurotrophic factor (BDNF) has been demonstrated to promote morphological differentiation and survival of OB interneurons. Here we show that BDNF and its receptor TrkB are expressed in vivo throughout the migratory pathway, implying that BDNF might also mediate migratory signals. By using in vitro models we demonstrate that BDNF promotes migration of SVZ neuroblasts, acting both as inducer and attractant through TrkB activation. We show that BDNF induces cAMP response element-binding protein (CREB) activation in migrating neuroblasts via phosphatidylinositol 3-kinase (PI3-K) and mitogen-activated protein kinase (MAP-K) signalling. Pharmacological blockade of these pathways on SVZ explants significantly reduces CREB activation and impairs neuronal migration. This study identifies a function of BDNF in the SVZ system, which involves multiple protein kinase pathways leading to neuroblast migration.  相似文献   

19.
In the adult rodent subventricular zone (SVZ), there are neural stem cells (NSCs) and the specialized neurogenic niche is critical to maintain their stemness. To date, many cellular and noncellular factors that compose the neurogenic niche and markers to identify subpopulations of Type A cells have been confirmed. In particular, neurotransmitters regulate adult neurogenesis and mature neurons in the SVZ have been only partially analyzed. Moreover, Type A cells, descendants of NSCs, are highly heterogeneous and more molecular markers are still needed to identify them. In the present study, we systematically classified NeuN, commonly used as a marker of mature and immature post‐mitotic neurons, immunopositive (+) cells within the adult mouse SVZ. These SVZ‐NeuN+ cells (SVZ‐Ns) were mainly classified into two types. One was mature SVZ‐Ns (M‐SVZ‐Ns). Neurochemical properties of M‐SVZ‐Ns were similar to those of striatal neurons, but their birth date and morphology were different. M‐SVZ‐Ns were generated during embryonic and early postnatal stages with bipolar peaks and extended their processes along the wall of the lateral ventricle. The second type was small SVZ‐Ns (S‐SVZ‐Ns) with features of Type A cells. They expressed not only markers of Type A cells, but also proliferated and migrated from the SVZ to the olfactory bulb. Furthermore, S‐SVZ‐Ns could be classified into two types by their spatial locations and glutamic acid decarboxylase 67 expression. Our data indicate that M‐SVZ‐Ns are a new component of the neurogenic niche and S‐SVZ‐Ns are newly identified subpopulations of Type A cells.  相似文献   

20.
Evidence of newly generated neurons in the human olfactory bulb   总被引:15,自引:0,他引:15  
The subventricular zone (SVZ) is known to be the major source of neural stem cells in the adult brain. In rodents and nonhuman primates, many neuroblasts generated in the SVZ migrate in chains along the rostral migratory stream (RMS) to populate the olfactory bulb (OB) with new granular and periglomerular interneurons. In order to know if such a phenomenon exists in the adult human brain, we applied single and double immunostaining procedures to olfactory bulbs obtained following brain necropsy in normal adult human subjects. Double immunofluorescence labelling with a confocal microscope served to visualize cells that express markers of proliferation and immature neuronal state as well as markers that are specific to olfactory interneurons. Newborn cells that express cell cycle proteins [Ki-67, proliferating cell nuclear antigen (PCNA)] were detected in the granular and glomerular layers (GLs) of the human olfactory bulb; these cells coexpressed markers of immature neuronal state, such as Doublecortin (DCX), NeuroD and Nestin. Numerous differentiating cells expressed molecular markers of early committed neurons [beta-tubulin class III (TuJ1)] and were also immunoreactive for glutamic acid decarboxylase (GAD), a marker of GABAergic neurons, or tyrosine hydroxylase (TH), a marker of dopaminergic neurons. Other early committed neurons expressed the calcium-binding proteins calretinin (CR) or parvalbumin (PV). These results provide strong evidence for the existence of adult neurogenesis in the human olfactory system. Despite its relatively small size compared to that in rodents and nonhuman primates, the olfactory bulb in humans appears to be populated, throughout life, by new granular and periglomerular neurons that express a wide variety of chemical phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号