首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A few cases of transmissible spongiform encephalopathies in sheep have been described in France in which the protease-resistant prion protein (PrP(res)) exhibited some features in Western blot of experimental bovine spongiform encephalopathy in sheep. Their molecular characteristics were indistinguishable from those produced in the CH1641 experimental scrapie isolate. Four of these CH1641-like isolates were inoculated intracerebrally into wild-type C57Bl/6 mice. In striking contrast to previous results in ovine transgenic mice, CH1641 transmission in wild-type mice was efficient. Several components of the strain signature, that is, PrP(res) profile, brain distribution, and morphology of the deposits of the disease-associated prion protein, had some similarities with "classical" scrapie and clearly differed from both bovine spongiform encephalopathy in sheep and CH1641 transmission in ovine transgenic mice. These results on CH1641-like isolates in wild-type mice may be consistent with the presence in these isolates of mixed conformers with different abilities to propagate and mediate specific disease phenotypes in different species.  相似文献   

2.
There is a growing interest in the potential roles of misfolded protein interactions in neurodegeneration. To investigate this issue, we inoculated 3 prion strains intracerebrally into transgenic (TgM83) mice that overexpress human A53T α-synuclein. In comparison to nontransgenic controls, there was a striking decrease in the incubation periods of scrapie, classic and H-type bovine spongiform encephalopathies(C-BSE and H-BSE), with conservation of the histopathologic and biochemical features characterizing these 3 prion strains. TgM83 mice died of scrapie or C-BSE prion diseases before accumulating the insoluble and phosphorylated forms of α-synuclein specific to late stages of synucleinopathy. In contrast, the median incubation time for TgM83 mice inoculated with H-BSE was comparable to that observed when these mice were uninfected, thereby allowing the development of molecular alterations of α-synuclein. The last 4 mice of this cohort exhibited early accumulations of H-BSE prion protein along with α-synuclein pathology. The results indicate that a prion disease was triggered concomitantly with an overt synucleinopathy in some transgenic mice overexpressing human A53T α-synuclein after intracerebral inoculation with an H-BSE prion strain.  相似文献   

3.
Summary We have consistently observed tubulovesicular structures in brain tissues during the terminal stages of naturally occurring and experimentally induced spongiform encephalopathies, irrespective of the host species and virus strain. In NIH Swiss mice inoculated intracerebrally or intraocularly with the Fujisaki strain of Creutzfeldt-Jakob disease (CJD) virus, tubulovesicular structures, measuring 20–50 nm in diameter, were particularly prominent in dilated, pre-and postsynaptic neuronal processes, occasionally being mixed with synaptic vesicles. These structures appeared 13 weeks following intracerebral inoculation, 5 weeks before the onset of clinical signs, when spongiform changes were also detected. The number and density of tubulovesicular structures increased steadily during the course of clinical disease, and were particularly abundant in mice 47 to 51 weeks after intraocular inoculation. In hamsters infected with the 263 K strain of scrapie virus, these structures were initially detected 3 weeks following intracerebral inoculation and increased dramatically at 10 weeks postinoculation. The appearance of tubulovesicular structures before the onset of overt disease in mice inoculated with CJD virus by either the intracerebral or intraocular route, and before the appearance of other neuropathological changes in hamsters infected with scrapie virus, indicate that they represent either a part or aggregate of the infectious virus or a pathological product of the infection.Presented in part at the 64th annual meeting of the American Association of Neuropathologists, held in Charleston, South Carolina, June 9–12, 1988 and at the 7th annual meeting of the American Society for Virology, Austin, Texas, June 12–16, 1988. Dr. Pawel P. Liberski is a recipient of a fellowship from the Fogarty International Center and a grant from the Ministry of Health and Social Welfare, Poland  相似文献   

4.
Simvastatin treatment prolongs the survival of scrapie-infected mice   总被引:1,自引:0,他引:1  
Kempster S  Bate C  Williams A 《Neuroreport》2007,18(5):479-482
Statins, drugs that decrease cholesterol biosynthesis, are known to reduce the formation of the disease-associated isoform of the prion protein (PrP) in neuroblastoma cells in vitro. In this study, we report the effects of simvastatin, a clinically approved statin that penetrates the brain, on mice infected with the ME7 strain of scrapie. The decline in motor functions associated with scrapie infection was delayed in mice receiving (1 mg/kg) simvastatin, a dosage used to treat hypercholesterolemia in humans. Simvastatin treatment also significantly prolonged the survival times of infected mice (193 vs. 183 days). These results indicate that low-dosage simvastatin treatment affects the progression of experimental scrapie, and supports the concept that statin treatment may influence the prion pathogenesis.  相似文献   

5.
Summary In mice experimentally infected with most strains of scrapie, vacuolar degeneration almost always shows a bilaterally symmetrical distribution in the brain. However, asymmetrical foci of vacuolation are frequently seen with a group of six mouse-passaged isolates from diverse natural sheep sources (designated 31A, 51C, 87A, 125A, 138A and 153A). As these isolates are similar in other respects they may be independent isolations of the same strain of scrapie. The distribution of focal vacuolar lesions in C57BL mice affected with 87A scrapie was found to depend on route of infection. In mice injected intracerebrally into the left or right hemisphere, all focal asymmetrical lesions occurred on the side of injection, in some cases intense vacuolation being associated with the needle scar. following midline intracerebral injection, focal lesions were evenly distributed between the two sides and were most frequent in the medial areas of the thalamus. In one mouse injected intraocularly, intense unilateral lesions were seen contralaterally in the major retinal projection regions. Asymmetrical lesions also occurred following infection by intraperitoneal, intravenous and subcutaneous routes, but were less frequent than after intracerebral infection. The most likely explanation is that focal asymmetrical lesions result from focal replication of scrapie infectivity in the brain. As all the scrapie strains which frequently produce asymmetrical vacuolation are also those that generate mutants, it is possible that focal lesions represent foci of the new mutant strain, replicating preferentially in areas with a low background level of the parent strain.  相似文献   

6.
Prion diseases are neurodegenerative diseases affecting humans and animals in which the infectious agent or prion is PrPres, a protease-resistant conformer of the cell protein PrP. The natural transmission route of prion diseases is peripheral infection, with the lymphoreticular system (LRS) and peripheral nerves being involved in animal models of scrapie neuroinvasion and human prion diseases. To study the effects of PrP neuroinvasion on sympathetic nerve function, we measured plasma catecholamine levels, blood pressure, heart rate, and PrP tissue levels in intraperitoneally or intracerebrally infected mice. The results indicate a specific alteration in sympathetic nerve function because the levels of noradrenaline (but not adrenaline) were increased in the animals infected peripherally (but not in those infected intracerebrally) and correlated with increased blood pressure.These findings confirm that prion neuroinvasion uses the sympathetic nervous system to spread from the periphery to the central nervous system after invading the LRS.  相似文献   

7.
The question of whether prion diseases can be transmitted by body fluids has important epidemiological, environmental and economical implications. In this work, we set to investigate whether urine collected from scrapie-infected hamsters can transmit fatal or subclinical infectivity to normal hamsters. After prolonged incubation times ranging from 300 to 700 days, a small number of animals inoculated with scrapie urine succumbed to scrapie disease, and several asymptomatic hamsters presented low levels of PrP(Sc) in their brains. In addition, most of the asymptomatic hamsters inoculated with scrapie urine, as opposed to those inoculated with normal urine, presented extensive gliosis as well as protease-resistant light chain IgG in their urine, a molecule shown by us and others to be a surrogate marker for prion infection. Our results suggest that urine from scrapie-infected hamsters can transmit a widespread subclinical disease that in some cases develops into fatal scrapie.  相似文献   

8.
In the transmissible spongiform encephalopathies (TSE), accumulation of the abnormal disease-specific prion protein is associated with neurodegeneration. Previous data suggested that abnormal prion protein (PrP) could induce neuronal pathology only when neurons expressed the normal form of PrP, but conflicting evidence also has been reported. Understanding whether neuronal PrP expression is required for TSE neuropathological damage in vivo is essential for determining the mechanism of TSE pathogenesis. Therefore, these experiments were designed to study scrapie pathogenesis in vivo in the absence of neuronal PrP expression. Hamster scrapie (strain 263K) was used to infect transgenic mice expressing hamster PrP in the brain only in astrocytes. These mice previously were shown to develop clinical scrapie, but it was unclear whether the brain pathology was caused by damage to astrocytes, neurons, or other cell types. In this electron microscopic study, neurons demonstrated TSE-specific pathology despite lacking PrP expression. Abnormal PrP was identified around astrocytes, primarily in the extracellular spaces of the neuropil, but astrocytes showed only reactive changes and no damage. Therefore, in this model the pathogenesis of the disease appeared to involve neuronal damage associated with extracellular astrocytic accumulation of abnormal PrP acting upon nearby PrP-negative neurons or triggering the release of non-PrP neurotoxic factors from astrocytes.  相似文献   

9.
Summary Experimental transmission of subacute spongiform encephalopathy from three human cases to small rodents is reported. The first case with atypical CJD with spongiform change, kuru plaques, and leukomalacia was transmitted directly to mice, rats, and guinea pigs and indirectly to hamsters and Mongolian gerbils through rats. From two other typical SSE cases the disease was also successfully transmitted; from the second case to mice and rats, and from the third case to guinea pigs. Brain showed the highest infectivity; the spleen, liver, blood, and cerebrospinal fluid of diseased animals were also infective. Intracerebral inoculation was the route for the fastest transmission, followed by intrathecal, intraperitoneal, submucosal, and subcutaneous routes. The incubation periods and clinical features were characteristic in each inoculated species and did not vary within several passages, except for the shortening of incubation period from the first to the second passage. Histologically, a marked spongy state and proliferation of astrocytes were observed in all diseased animals, though the distribution of the lesion was peculiar to each species. The severe lesion in the white matter in mice was similar to that seen in mice inoculated with scrapie and also to that seen in the first case.  相似文献   

10.
Transgenic mice expressing human prion protein in the absence of endogenous mouse prion protein faithfully replicate human prions. These models reproduce all of the key features of human disease, including long clinically silent incubation periods prior to fatal neurodegeneration with neuropathological phenotypes that mirror human prion strain diversity. Critical contributions to our understanding of human prion disease pathogenesis and aetiology have only been possible through the use of transgenic mice. These models have provided the basis for the conformational selection model of prion transmission barriers and have causally linked bovine spongiform encephalopathy with variant Creutzfeldt-Jakob disease. In the future these models will be essential for evaluating newly identified potentially zoonotic prion strains, for validating effective methods of prion decontamination and for developing effective therapeutic treatments for human prion disease.  相似文献   

11.
Prion diseases are fatal neurodegenerative disorders of humans and animals, which include bovine spongiform encephalopathy (BSE) and its human form, variant Creutzfeldt-Jakob disease (vCJD). They are characterized by a prolonged incubation period, which is known to be influenced by polymorphisms in the prion protein gene. Previous studies of inbred mice have demonstrated that additional genetic loci also contribute to the observed variation in incubation period. However, a substantial transmission barrier between cow and mouse complicates studies using BSE. As a result, primary transmissions display large variations in incubation period and not all animals develop clinical signs of disease. To identify quantitative trait loci for BSE without the presence of a transmission barrier, we analysed 124 animals from an F2 intercross between CAST/Ei and NZW/OlaHsd mice and challenged them intracerebrally with a strain of BSE that was passaged twice through C57BL/6OlaHsd mice. Interval mapping identified two highly significant linked regions on chromosomes 2 and 11 with peak lod scores of 6.34 and 4.77, respectively. Composite interval mapping suggests that chromosome 2 includes three linked quantitative trait loci. Loci in the same position on chromosomes 2 and 11 were also identified in a previous study using the same mouse cross but infected with Chandler/RML scrapie prions. If these are the same loci, it suggests that these loci may be influencing incubation time independently of prion strain. This provides hope that it may be possible to identify human quantitative trait loci for prion incubation time using mouse models that may allow identification of at-risk individuals and the discovery of novel therapeutic targets. Electronic Publication  相似文献   

12.
R. Bolea, P. Hortells, I. Martín‐Burriel, A. Vargas, B. Ryffel, M. Monzón and J. J. Badiola (2010) Neuropathology and Applied Neurobiology 36, 300–311
Consequences of dietary manganese and copper imbalance on neuronal apoptosis in a murine model of scrapie Aims: Copper and manganese levels are altered in mice both lacking PrPc and prion‐infected brains. The aim of this study was to analyse the effects of manganese and copper imbalance on neuronal apoptosis in a scrapie‐infected Tga20 mouse model. Methods: Immunoreactivities for the apoptotic proteins Bax and active caspase‐3 were evaluated in nine regions of the brain of scrapie‐infected and control Tga20 mice treated with one of several diets: depleted cooper (?Cu), loaded manganese (+Mn), depleted copper/loaded manganese (?Cu+Mn) and regular diet. Immunohistochemical determination of NeuN was used to detect possible neuronal loss. Results: Intracellular Bax detection was significantly decreased in animals fed with modified diets, particularly in those treated with copper‐depleted diets. A decrease in active caspase‐3 was primarily observed in animals fed with enhanced manganese diets. Our results show that the ?Cu, ?Cu+Mn and +Mn diets protected against apoptosis in scrapie‐infected mice. However, NeuN immunolabelling quantification revealed that no diet was sufficient to arrest neuronal death. Conclusions: With regard to apoptosis induction, the response of Tga20 mice to prion infection was similar to that reported for other mice models. Our results demonstrate the neuroprotective effects of –Cu, ?Cu+Mn and +Mn diets in a murine model of scrapie. However, neuronal death induced by infection with prions seems to be independent of apoptosis marker signalling. Moreover, copper‐modified diets were neuroprotective against the possible toxicity of the prion transgene in Tga20 control and infected mice even though manganese supplementation could not counteract this toxicity.  相似文献   

13.
Aims: Prion diseases are generally characterized by pronounced neuronal loss. In particular, a subpopulation of inhibitory neurones, characterized by the expression of the calcium-binding protein parvalbumin (PV), is selectively destroyed early in the course of human and experimental prion diseases. By contrast, nerve cells expressing calbindin D28k (CB), another calcium-binding protein, as well as PV/CB coexpressing Purkinje cells, are well preserved. Methods: To evaluate, if PV and CB may directly contribute to neuronal vulnerability or resistance against nerve cell death, respectively, we inoculated PV- and CB-deficient mice, and corresponding controls, with 139A scrapie and compared them with regard to incubation times and histological lesion profiles. Results: While survival times were slightly but significantly diminished in CB–/–, but not PV–/– mice, scrapie lesion profiles did not differ between knockout mice and controls. There was a highly significant and selective loss of isolectin B4-decorated perineuronal nets (which specifically demarcate the extracellular matrix surrounding the 'PV-expressing' subpopulation of cortical interneurones) in scrapie inoculated PV+/+, as well as PV–/– mice. Purkinje cell numbers were not different in CB+/+ and CB–/– mice. Conclusions: Our results suggest that PV expression is a surrogate marker for neurones highly vulnerable in prion diseases, but that the death of these neurones is unrelated to PV expression and thus based on a still unknown pathomechanism. Further studies including the inoculation of mice ectopically (over)expressing CB are necessary to determine whether the shortened survival of CB–/– mice is indeed due to a neuroprotective effect of this molecule.  相似文献   

14.
Prion diseases   总被引:5,自引:0,他引:5  
Prion diseases are degenerative disorders of the nervous system caused by transmissible particles that contain a pathogenic isoform of the prion protein, a normal constituent of cell membranes. The most common human prion disease is Creutzfeldt-Jakob disease (CJD). Most cases are sporadic with unknown mode of transmission, 10-15% of cases are inherited, and a small number have been transmitted by medical procedures. The spread of human prion diseases through consumption of infected material has been implicated historically in kuru and recently in variant CJD. Animal prion diseases (scrapie of sheep, transmissible mink encephalopathy, chronic wasting disease of cervids, and bovine spongiform encephalopathy) all seem to be laterally transmitted by contact with infected animals or by consumption of infected feed. The different modes of transmission of different prion diseases, the unpredictable species barriers, the variable distribution of infectivity in tissues, and strain variations found in some diseases all make risk assessment and predictions of future events difficult.  相似文献   

15.
Neurodegeneration is a common neuropathological feature of prion diseases. Although evidence of apoptosis was found in natural and experimental prion diseases, the precise mechanisms by which neurons die are poorly understood. The pro-apoptotic BAX protein, a key factor of the mitochondrial pathway, plays a central role in the regulation of neuronal apoptosis. Recently, BAX was implicated in neuronal death in a transgenic model of inherited prion disease. Nevertheless, whether neurodegeneration occurs by similar mechanisms in other prion diseases remains unknown. Here, using mice knocked out for the Bax gene, we investigated BAX implication in neuronal death induced by a prion disease of infectious origin. A mouse-adapted prion strain of bovine spongiform encephalopathy (BSE) was inoculated intracerebrally into Bax-/- mice and their wild-type littermates. We found that Bax inactivation did not alter the development of the disease. Clinical illness was not prevented. PrP(res) deposition and astrogliosis occurred to the usual extent. Neuronal integrity was not maintained, and neurons in hippocampus and thalamus were not protected. These results demonstrated that BAX is not necessary for neuron death induced by the BSE strain. They suggest the existence of multiple molecular death pathways in prion diseases.  相似文献   

16.
Magnetic resonance spectroscopy studies in animal models of prion disease are very few and concern terminal stages of infection. In order to study earlier stages of the disease, we used in-vivo magnetic resonance spectroscopy in a mouse model of scrapie and, for the first time, in mice infected with a bovine spongiform encephalopathy strain. In bovine spongiform encephalopathy-infected mice, we observed an increase in myo-inositol preceding clinical signs by 20 days, followed by a decrease in N-acetylaspartate at advanced stages. In scrapie-infected mice, changes in N-acetylaspartate and myo-inositol were detected at the beginning of the symptomatic phase. These results show that magnetic resonance spectroscopy is a valuable tool for detecting subtle metabolic changes associated to gliosis and neuronal dysfunction in prion diseases.  相似文献   

17.
BACKGROUND: Variant Creutzfeldt-Jakob disease (vCJD) is an acquired prion disease causally related to bovine spongiform encephalopathy that has occurred predominantly in young adults. All clinical cases studied have been methionine homozygotes at codon 129 of the prion protein gene (PRNP) with distinctive neuropathological findings and molecular strain type (PrP(Sc) type 4). Modeling studies in transgenic mice suggest that other PRNP genotypes will also be susceptible to infection with bovine spongiform encephalopathy prions but may develop distinctive phenotypes. OBJECTIVE: To describe the histopathologic and molecular investigation in a young British woman with atypical sporadic CJD and valine homozygosity at PRNP codon 129. DESIGN: Case report, autopsy, and molecular analysis. SETTING: Specialist neurology referral center, together with the laboratory services of the MRC [Medical Research Council] Prion Unit. Subject Single hospitalized patient. MAIN OUTCOME MEASURES: Autopsy findings and molecular investigation results. RESULTS: Autopsy findings were atypical of sporadic CJD, with marked gray and white matter degeneration and widespread prion protein (PrP) deposition. Lymphoreticular tissue was not available for analysis. Molecular analysis of PrP(Sc) (the scrapie isoform of PrP) from cerebellar tissue demonstrated a novel PrP(Sc) type similar to that seen in vCJD (PrP(Sc) type 4). However, this could be distinguished from the typical vCJD pattern by an altered protease cleavage site in the presence of the metal ion chelator EDTA. CONCLUSIONS: Further studies will be required to characterize the prion strain seen in this patient and to investigate its etiologic relationship with bovine spongiform encephalopathy. This case illustrates the importance of molecular analysis of prion disease, including the use of EDTA to investigate the metal dependence of protease cleavage patterns of PrP(Sc).  相似文献   

18.
Multiple lines of evidence indicate that PrPSc, found only in scrapie, is a necessary component of the infectious scrapie agent. Equally compelling is the evidence that its accumulation in the brain causes the neuropathology characteristic of scrapie. We measured the regional concentration of PrPSc in nine brain regions throughout the course of scrapie in the Syrian hamster following intrathalamic inoculation of prions. PrPSc was compared to the regional concentration of glial fibrillary acidic protein, a measure of reactive astrocytic gliosis. PrPSc was detected first in the thalamus 14 to 21 days postinoculation and next in the septum at 28 days. Initiation of PrPSc synthesis and accumulation in the thalamus was attributable to the inoculum and in the septum to ventricular spread of de novo synthesized PrPSc. The timing and pattern of PrPSc accumulation in all other brain regions suggested transmission along neuroanatomic pathways. Reactive astrocytic gliosis followed PrPSc accumulation in each region by 1 to 2 weeks. Brain PrPSc, determined by summing the concentrations in each brain region, correlated well with scrapie infectivity titers throughout the course of infection (correlation coefficient = 0.975; slope of linear regression line = 1.136). Our results support the hypothesis that PrPSc participates in both the etiology and pathogenesis of prion diseases.  相似文献   

19.
The prion protein (PrP) plays a pivotal role in transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. Previous experiments have suggested that the normal cellular prion protein (PrPC) is involved in synaptic function in the hippocampus. Here, we utilized the controlled recording conditions of the patch-clamp technique to investigate the synaptic function of prion protein in cerebellar Purkinje cells. By performing whole-cell and outside-out patch-clamp experiments in thin slices, we investigated synaptic transmission in prion protein knockout mice (PrP-null) and control animals. In PrP-null mice, the kinetics of GABA- and glutamate receptor-mediated currents showed no significant deviation from those in control animals. In contrast to previous results in hippocampal neurons, our findings support the view that synaptic transmission is unimpaired in prion protein-deficient mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号