首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BACKGROUND. The reduction in or the loss of the cell-cell adhesion often characterizes epithelial tumor initiation and progression. In the present study, we investigated the effects of the LH-RH analogue Leuprorelin acetate (LA), alone or associated with Dihydrotestosterone (DHT), on the expression of the adhesion proteins E-cadherin, α-, β- and γ-catenin in androgen-sensitive (LNCaP) and -insensitive (PC-3 and DU-145) prostate cancer cells. MATERIALS AND METHODS. Protein expression was evaluated by Western blotting on cells treated for 48 h with LA (10-11 or 10-6 M) and 10-9 M DHT, alone or combined. RESULTS. In LNCaP cells, all the above mentioned molecules are expressed. PC-3 cells lack α-catenin, while DU-145 cells only express β- and γ-catenin. In both LNCaP and PC-3 cells two truncated forms (97 and 35 kDa) of E-cadherin are present other than the functional protein (120 kDa). In LNCaP cells, no significant changes in E-cadherin (120 and 97 kDa) level were produced by DHT, while the 35 kDa fragment was reduced by 34%. LA increased the full length E-cadherin (26-30%) as well as the two fragments (30-49%). The addition of DHT to LA significantly reduced the analogue-induced E-cadherin raising. In LNCaP cells β- and γ-catenin were up-regulated either by DHT (24% and 20%, respectively) or LA (up to 18% and up to 40%, respectively), while the expression of α-catenin was not modified. The combined DHT/LA treatment results in a less marked increase in β- and γ-catenin levels. In PC-3 cells no changes in adhesion molecule expression were produced by LA treatment, while in DU-145 cells the analogue determined an appreciable reduction in β- (20%) and γ-catenin (up to 35%) levels. CONCLUSIONS: The up-regulation of E-cadherin, β- and γ-catenin in LNCaP cells by LA may be considered as another feature of the direct antitumor LH-RH analogue activity, as it may contribute to the maintenance/restoration of the normal architecture of prostate epithelium. The LA-induced modifications of catenins in DU-145 cells are worth some further investigations.  相似文献   

3.
4.
In a previous report, we showed that increased activation of Akt, a downstream effector of phosphoinositide 3-kinase (PI3K) together with decreased activation of extracellular-signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase (MAPK) family, predicted poor clinical outcome in prostate cancer (Kreisberg et al. 2004 Cancer Research 64 5232-5236). We now show that Akt activation, but not ERK activation, is correlated with proliferation in human prostate tumors as estimated by the expression of the cell proliferation antigen Ki67. We verified these results in vitro, using the androgen-dependent prostate cancer cell line LNCaP and its androgen-independent clone C4-2 as models of prostate cancer of good and poor clinical outcome, respectively. C4-2 cells expressed higher Akt activation, lower ERK activation and increased proliferation compared with LNCaP cells, similar to cases of poor clinical outcome. The PI3K inhibitor LY294002, but not the MAPK/ERK kinase inhibitor PD98059, induced growth arrest in both cell lines. Transient transfection with constitutively active Akt increased proliferation while dominant negative Akt decreased it, thus showing that Akt plays an important role in prostate cancer proliferation. Akt regulates the expression and activation of the androgen receptor. Androgen receptor inhibition with Casodex induced growth arrest in LNCaP cells, but not in C4-2 cells. Another PI3K downstream effector, p70 S6 kinase, requires prior phosphorylation by mammalian target of rapamycin (mTOR) for complete activation. Activation of p70 S6 kinase was higher in C4-2 compared with LNCaP cells. Rapamycin, an mTOR inhibitor, had a growth-inhibitory effect in C4-2 cells, but not in LNCaP cells. Our data suggest a shift from a Casodex-sensitive proliferation pathway in LNCaP cells to a rapamycin-sensitive pathway in C4-2 cells.  相似文献   

5.
BACKGROUND: Ghrelin, a natural growth hormone secretagogue (GHS), has been identified in prostate carcinoma cell lines. OBJECTIVES: To investigate the presence of ghrelin and its receptors in human prostate tumours and in DU-145, PC-3 and LNCaP prostate carcinoma cell lines, and to assess the effects of ghrelin and its more abundant circulating form, des-octanoyl ghrelin, on cell proliferation. METHODS: Ghrelin and types 1a and 1b GHS receptor (GHS-R) were determined at the mRNA and protein levels by RT-PCR, in situ hybridization, immunohistochemistry and enzyme immunoassay in tissues, cell lines and culture medium. Ghrelin binding was determined by radioreceptor assay. The effects on cell proliferation were evaluated by growth curves. RESULTS: Ghrelin mRNA was found in prostatic carcinomas and benign hyperplasias, but immunohistochemistry was negative. GHS-R1a and 1b mRNAs were absent from carcinomas, but GHS-R1b mRNA was present in 50% of hyperplasias. Ghrelin peptide and mRNA were present in PC-3 cells exclusively, whereas GHS-R1a and 1b mRNAs were expressed in DU-145 cells only. Specific [125I]Tyr4-ghrelin binding was detected in prostate tumour, DU-145 and PC-3 cell membranes and the binding was displaced by ghrelin, synthetic GHS and des-octanoyl ghrelin, which is devoid of GHS-R1a binding affinity and GH-releasing activity. Ghrelin and des-acyl ghrelin inhibited DU-145 cell proliferation, displayed a biphasic effect in PC-3 cells and were ineffective in LNCaP cells. CONCLUSIONS: Specific GHS binding sites, other than GHS-R1a and 1b, are present in human prostatic neoplasms. Ghrelin, in addition to des-acyl ghrelin, exerts different effects on cell proliferation in prostate carcinoma cell lines.  相似文献   

6.
Members of the bcl-2 gene family and endogenous inhibitors of cyclin-dependent kinases participate in the regulation of apoptosis and cell cycle in a diverse range of cell types and are implicated in the development of hormone refractory prostate cancer and resistance to anti-cancer therapy. The expression of several of these genes can be regulated by steroid hormones and related agents via their nuclear receptors. However, insufficient information considering the protein expression after the treatment by hormone antagonists is available. The aim of this study was to evaluate the expression of anti- and pro-apoptotic proteins, (Bcl-2, Bax), and to correlate this with the appearance of some nuclear receptors and cell cycle related proteins in androgen sensitive and androgen insensitive prostate cancer cell lines, LNCaP and DU-145, after the treatment by androgen antagonist bicalutamide. Our results revealed that androgen receptor (AR) expression in LNCaP cells decreased, however in DU-145 cells AR slightly increased following anti-androgen treatment. The same agent stimulated expression of p21Waf1/Cip5 and p27Kip1 in LNCaP, as well as in DU-145 cell lines. Bcl-2 level increased slightly in LNCaP cells and, in DU-145 cells was almost undetectable. Bax expression was not changed in LNCaP but significantly decreased in DU-145 cells. Similarly, retinoid X receptor beta (RXRbeta) level was significantly down regulated after 24 hours in DU-145 and also in LNCaP cells after 72 hours. These results confirm that androgen withdrawal therapy employing anti-androgens may elicit different signalling pathways in various types of prostate cancer that may be dependent on AR status and AR sensitivity.  相似文献   

7.
Estradiol (E2) level in stroma of benign prostatic hyperplasia (BPH) increases with age, and this increase was associated with an elevated expression of aromatase in prostatic stromal cells (PrSCs). Here, we showed that conditioned medium (CM) of BPH-1 (a benign hyperplastic prostatic epithelial cell line), but not of prostate cancer cell lines (LNCaP, DU-145, and PC-3), stimulates aromatase expression in PrSCs. Cyclooxygenase-2 (COX-2) mRNA level in BPH-1, as well as prostaglandin E2 (PGE2) concentration in BPH-1 CM, was significantly higher than that of prostate cancer cell lines. CM of BPH-1 treated with NS-398 (a specific inhibitor of COX-2) failed to stimulate aromatase expression in PrSCs. And PGE2 can stimulate aromatase expression in PrSCs. Our data suggested that BPH-1 induced aromatase expression in PrSCs through the production of PGE2 in a paracrine mechanism.  相似文献   

8.
Tam CW  Cheng AS  Ma RY  Yao KM  Shiu SY 《Endocrinology》2006,147(11):5023-5033
A possible role of the PDZ domain-containing protein 2 (PDZD2) in prostate tumorigenesis has been suggested. Besides, PDZD2 is posttranslationally cleaved by a caspase-dependent mechanism to form a secreted PDZ domain-containing protein 2 (sPDZD2) with unknown functions in humans. In this study, we demonstrate the endogenous expression of PDZD2 and secretion of sPDZD2 in cancerous DU145, PC-3, 22Rv1, LNCaP, and immortalized RWPE-1 prostate epithelial cells. Inhibition of endogenous sPDZD2 production and secretion by DU145, PC-3, 22Rv1, and RWPE-1 cells via the caspase-3 inhibitor Z-DEVD-FMK resulted in increased cell proliferation, which was abrogated by treatment with exogenous recombinant sPDZD2. Whereas sPDZD2-induced antiproliferation in DU145, PC-3, and 22Rv1 cells, it induced apoptosis in LNCaP cells. The data suggest that endogenous sPDZD2, produced by caspase-3-mediated cleavage from PDZD2, may function as a novel autocrine growth suppressor for human prostate cancer cells. The antiproliferative effect of sPDZD2 was apparently mediated through slowing the entry of DU145, PC-3, and 22Rv1 cells into the S phase of the cell cycle. In DU145 cells, this can be attributed to stimulated p53 and p21(CIP1/WAF1) expression by sPDZD2. On the other hand, the apoptotic effect of sPDZD2 on LNCaP cells was apparently mediated via p53-independent Bad stimulation. Together our results indicate the presence of p53-dependent and p53-independent PDZD2/sPDZD2 autocrine growth suppressive signaling pathways in human prostate cancer cells and suggest a novel therapeutic approach of harnessing the latent tumor-suppressive potential of an endogenous autocrine signaling protein like sPDZD2 to inhibit prostate cancer growth.  相似文献   

9.
Somatostatin (SST) and SST receptors (SS1R, SS2R, SS3R, SS4R and SS5R) appear to play a significant role in the progression of human prostate cancer (PCa), which is associated with heterogeneity of SSRs expression and specific cell localization as we already demonstrated in the LNCaP cell line, an in vitro model of human androgen-dependent PCa. In this study, PC-3 and DU-145 human castration-resistant PCa cells were found to express all SSRs, while LNCaP expressed all but SS4R. A 48-h treatment with BIM-23244 (SS2R/SS5R) or BIM-23926 (SS1R) SST analogs was more effective in inhibiting cell proliferation, compared to BIM-23120 (SS2R), BIM-23206 (SS5R) and BIM-23704 (SS1R/SS2R). BIM-23926 (SS1R) treatment increased the amount of p21 and decreased phosphorylated (p) ERK1/2. BIM-23244 (SS2R/SS5R) led to p21 increment only in PC-3 cells, and to pERK1/2 reduction in both cell lines. SS1R/SS2R and SS2R/SS5R receptor dimers were natively present on cell membrane and their amount was increased by BIM-23704 (SS1R/SS2R) or BIM-23244 (SS2R/SS5R) treatment, respectively. SS1R, SS2R and SS5R were differently distributed among nuclear, lysosomal and microsomal compartment, according to their different recycling dynamics. These results show that, in PC-3, DU-145 and LNCaP cells, activation of SS1R and SS2R/SS5R leads to relevant antiproliferative effects.  相似文献   

10.
11.
Miyake H  Nelson C  Rennie PS  Gleave ME 《Endocrinology》2000,141(6):2257-2265
Although insulin-like growth factor (IGF) binding protein-5 (IGFBP-5) is highly up-regulated in normal and malignant prostate tissues after androgen withdrawal, its functional role in castration-induced apoptosis and androgen-independent progression remains undefined. To analyze the functional significance of IGFBP-5 overexpression in IGF-I-mediated mitogenesis and progression to androgen-independence, IGFBP-5-overexpressing human androgen-dependent LNCaP prostate cancer cells were generated by stable transfection. The growth rates of IGFBP-5-transfected LNCaP cells were significantly faster, compared with either the parental or vector-only transfected LNCaP cells in both the presence and absence ofdihydrotestosterone. IGFBP-5-induced increases in LNCaP cell proliferation occurs through both IGF-I-dependent and -independent pathways, with corresponding increases in the cyclin D1 messenger RNA expression and the fraction of cells in S + G2/M phases of the cell cycle. Changes in Akt/protein kinase B, a downstream component of phosphatidylinositol 3'-kinase (PI3K) pathway, in the LNCaP sublines also paralleled changes in their growth rates. Although treatment with a PI3K inhibitor induced apoptosis in both control and IGFBP-5-overexpressing LNCaP cells, this PI3K inhibitor-induced apoptosis was prevented by exogenous IGF-I treatment only in IGFBP-5 transfectants, suggesting that IGFBP-5 overexpression can potentiate the antiapoptotic effects of IGF-I. Furthermore, tumor growth and serum prostate-specific antigen levels increased several fold faster in mice bearing IGFBP-5-transfected LNCaP tumors after castration, despite having similar tumor incidence and tumor growth rates with controls when grown in intact mice before castration. Collectively, these data suggest that IGFBP-5 overexpression in prostate cancer cells after castration is an adaptive cell survival mechanism that helps potentiate the antiapoptotic and mitogenic effects of IGF-I, thereby accelerating progression to androgen independence through activation of the PI3K-Akt/ protein kinase B signaling pathway.  相似文献   

12.
Purpose  Inhibition of phosphoinositide 3 (PI3)-kinase pathway is attractive for cancer treatment. To examine the role of the phosphatase and tensin homolog (PTEN) in the development of resistance to the treatment. Methods  We cultured human prostate cancer cells (DU145 and PC-3 cells) and bladder cancer cells (EJ-1 and UM-UC-3 cells) with a PI3-kinase inhibitor, LY294002 for more than 6 weeks and cell proliferation was studied. Activation of Akt1 and ERK was examined by immunoblotting. We introduced the wild type PTEN in UM-UC-3 cells and their proliferation along with the signaling pathways was also examined. Results  After 6 weeks, proliferation pathway sensitivity to LY294002 was reduced in cells expressing PTEN, but not in PTEN-null cells. PD98059, a MAPK/ERK kinase inhibitor, significantly inhibited proliferation of PTEN-expressing cells, but not PTEN-null cells. Stable PTEN expression in PTEN-null UM-UC-3 cells increased serum-induced ERK activation and sensitivity to PD98059-treatment, and reduced sensitivity to LY294002 after 6 weeks of exposure. Conclusions  Loss of PTEN function may protect against resistance to PI3-kinase inhibitors through an addiction to the PI3-kinase/Akt pathway.  相似文献   

13.
The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.  相似文献   

14.
Prostate cancer remains a leading cause of cancer-related death in men, largely attributable to distant metastases, most frequently to bones. Despite intensive investigations, molecular mechanisms underlying metastasis are not completely understood. Among prostate cancer-derived factors, parathyroid hormone-related peptide (PTHrP), first discovered as an etiologic factor for malignancy-induced hypercalcemia, regulates many cellular functions critical to tumor growth, angiogenesis, and metastasis. In this study, the role of PTHrP in tumor cell survival from detachment-induced apoptosis (i.e. anoikis) was investigated. Reduction of PTHLH (encoding PTHrP) gene expression in human prostate cancer cells (PC-3) increased the percentage of apoptotic cells when cultured in suspension. Conversely, overexpression of PTHrP protected prostate cancer cells (Ace-1 and LNCaP, both typically expressing low or undetectable basal PTHrP) from anoikis. Overexpression of nuclear localization signal (NLS)-defective PTHrP failed to protect cells from anoikis, suggesting that PTHrP-dependent protection from anoikis is an intracrine event. A PCR-based apoptosis-related gene array showed that detachment increased expression of the TNF gene (encoding the proapoptotic protein tumor necrosis factor-α) fourfold greater in PTHrP-knockdown PC-3 cells than in control PC-3 cells. In parallel, TNF gene expression was significantly reduced in PTHrP-overexpressing LNCaP cells, but not in NLS-defective PTHrP overexpressing LNCaP cells, when compared with control LNCaP cells. Subsequently, in a prostate cancer skeletal metastasis mouse model, PTHrP-knockdown PC-3 cells resulted in significantly fewer metastatic lesions compared to control PC-3 cells, suggesting that PTHrP mediated antianoikis events in the bloodstream. In conclusion, nuclear localization of PTHrP confers prostate cancer cell resistance to anoikis, potentially contributing to prostate cancer metastasis.  相似文献   

15.
Various hormones and growth factors have been implicated in progression of prostate cancer, but their role and the underlying molecular mechanism(s) involved remain poorly understood. In this study, we investigated the role of human growth hormone (GH) and its receptor (GHR) in human prostate cancer. We first demonstrated mRNA expression of GHR and of its exon 9-truncated isoform (GHRtr) in benign prostate hyperplasia (BPH) and prostate adenocarcinoma patient tissues, as well as in LNCaP, PC3 and DU145 human prostate cancer cell lines. GHR mRNA levels were 80% higher and GHRtr only 25% higher, in the carcinoma tissues than in BPH. Both isoforms were also expressed in LNCaP and PC3 cell lines and somewhat less so in DU145 cells. The LNCaP cell GHR protein was further characterized, on the basis of its Mr of 120 kDa, its binding to two different GHR monoclonal antibodies, its high affinity and purely somatogenic binding to 125I-hGH and its ability to secrete GH binding protein, all characteristic of a functional GHR. Furthermore, GH induced rapid, time- and dose-dependent signaling events in LNCaP cells, including phosphorylation of JAK2 tyrosine kinase, of GHR itself and of STAT5A (JAK2-STAT5A pathway), of p42/p44 MAPK and of Akt/PKB. No effect of GH (72 h) could be shown on basal or androgen-induced LNCaP cell proliferation nor on PSA secretion. Interestingly, however, GH caused a rapid (2–12 h) though transient striking increase in immunoreactive androgen receptor (AR) levels (≤5-fold), followed by a slower (24–48 h) reduction (≤80%), with only modest parallel changes in serine-phosphorylated AR. In conclusion, the GH-induced activation of signaling pathways, its effects on AR protein in LNCaP cells and the isoform-specific regulation of GHR in prostate cancer patient tissues, suggest that GH, most likely in concert with other hormones and growth factors, may play an important role in progression of human prostate cancer.  相似文献   

16.
Growth differentiation factor-15 (GDF15), a member of the transforming growth factor-β superfamily, is associated with human cancer progress. We evaluated the role GDF15 plays in tumorigenesis of prostate carcinoma PC-3 cells. Results from real-time RT-PCR and ELISA revealed that expression of GDF15 was approximately threefold higher in LNCaP cells than in PC-3 cells. Other prostate cell lines (PZ-HPV-7, CA-HPV-10, and DU145 cells) expressed extremely low levels of GDF15. Stable overexpression of GDF15 in PC-3 cells enhanced the degree of cell proliferation and invasion as shown in the (3)H-thymidine incorporation assay and in the Matrigel invasion assay respectively. Soft agar assays and xenograft animal studies indicated that overexpression of GDF15 in PC-3 cells increased tumorigenesis in vitro and in vivo. Results from RT-PCR, immunoblot, and reporter assays revealed that overexpression of GDF15 resulted in decreased expression of maspin and upregulation of interleukin-6 (IL6), matriptase, and N-myc downstream-regulated gene 1 (NDRG1) expression. Further studies revealed that overexpression of IL6 enhanced GDF15 expression in LNCaP cells while knockdown of IL6 blocked the expression of GDF15 in PC-3 cells, suggesting that expression of GDF15 is upregulated by IL6. This study demonstrated that expression of GDF15 induces cell proliferation, invasion, and tumorigenesis of prostate carcinoma PC-3 cells. The enhancement of tumorigenesis and invasiveness of prostate carcinoma cells that stably overexpress GDF15 may be caused by the dysregulation of maspin, matriptase, and IL6 gene expression. The expression of GDF15 and IL6 is controlled via a positive feedback loop in PC-3 cells.  相似文献   

17.
1,25-Dihydroxyvitamin-D3 [1,25(OH)2D3], the active hormonal metabolite of vitamin D, acts through a specific nuclear receptor to inhibit proliferation and promote differentiation of several tumor cell types including the LNCaP, DU145 and PC-3 prostate cancer cell lines as well as primary prostate tumor lines. 1,25(OH)2D3 can also decrease invasion of breast and prostate cancer cell lines in vitro. We confirm this latter finding in the DU145 and PC-3 prostate cancer cell lines, and further show that 1,25(OH)2D3 inhibits overall invasion, cell adhesion and migration to the basement membrane matrix protein laminin. These changes appear to be due in part to a 1,25(OH)2D3-induced decrease in expression of alpha6 and beta4 integrins, both of which are receptors for laminin and associated with increased migration and invasion of prostate cancer cells in vitro. Blocking function of these particular integrins with antibodies inhibits both adhesion and migration of the cells. Collectively, these data demonstrate that 1,25(OH)2D3, in addition to decreasing proliferation of tumor cells, can also inhibit prostate cancer cell invasion through modulation of select cell surface adhesion molecules.  相似文献   

18.
Parathyroid hormone-related protein (PTHrP) is expressed by prostate cancer cells. Since PTHrP increases the growth and enhances the osteolytic effects of prostate cancer cells, it is important to control the level of PTHrP expression in these cells. We show that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and its non-calcemic analogue, EB1089, suppress PTHrP mRNA and protein levels in the human prostate cancer cell lines PC-3 and LNCaP. The human PTHrP gene contains a sequence element homologous to the negative vitamin D response element within the parathyroid hormone gene. This DNA sequence (nVDRE(hPTHrP)) bound the vitamin D receptor (VDR) present in nuclear extracts from both PC-3 and LNCaP cells. However, when cloned upstream of the SV40 promoter and transiently transfected into PC-3 and LNCaP cells, nVDRE(hPTHrP) downregulated promoter activity in response to 1,25(OH)2D3 or EB1089 treatment in LNCaP, but not in PC-3, cells. These results may help to explain why some prostate cancers appear to be refractory to treatment with vitamin D analogues.  相似文献   

19.
The androgen receptor (AR) contributes to growth of prostate cancer even under conditions of androgen ablation. Thus, new strategies to target AR activity are needed. The AR interacts with the immunophilin FK506-binding protein 52 (FKBP52), and studies in the FKBP52 knockout mouse have shown that this protein is essential to AR activity in the prostate. Therefore, we tested whether the immunophilin ligand FK506 affected AR activity in prostate cancer cell lines. We also tested the hypothesis that the AR interacts with another immunophilin, cyclophilin 40 (Cyp40), and is regulated by its cognate ligand cyclosporin A (CsA). We show that levels of FKBP52, FKBP51, Cyp40, and a related co-chaperone PP5 were much higher in prostate cancer cells lines [(LNCaP), PC-3, and DU145] compared with primary prostate cells, and that the AR of LNCaP cells can interact with Cyp40. In the absence of androgen, CsA caused inhibition of cell growth in the AR-positive LNCaP and AR-negative PC-3 and DU145 cell lines. Interestingly, FK506 only inhibited LNCaP cells, suggesting a dependence on the AR for this effect. Both CsA and FK506 inhibited growth without inducing apoptosis. In LNCaP cells, CsA completely blocked androgen-stimulated growth, whereas FK506 was partially effective. Further studies in LNCaP cells revealed that CsA and FK506 were able to block or attenuate several stages of AR signaling, including hormone binding, nuclear translocation, and activity at several AR-responsive reporter and endogenous genes. These findings provide the first evidence that CsA and FK506 can negatively modulate proliferation of prostate cells in vitro. Immunophilins may now serve as new targets to disrupt AR-mediated prostate cancer growth.  相似文献   

20.
Calcitonin is a prostate epithelium-derived growth stimulatory peptide   总被引:2,自引:0,他引:2  
Locally secreted growth factors and neuropeptides may play an important role in sustaining the growth of hormone-independent prostate cancer. Our previous studies have shown that calcitonin-like immunoreactive peptide (CTI) is secreted by primary prostate cells in culture, and its secretion from malignant prostate cells is significantly higher than benign cells. Exogenously added calcitonin (CT) induces DNA synthesis in serum-starved prostate cancer LNCaP and PC-3M cells. Present studies extended these findings by cloning cDNAs for CT and CT receptor (CT-R) from prostate cancer cells and studying the expression of CT and CT-R mRNA in prostate cancer cell lines and primary prostate tumor specimens.The results have shown that PC-3 cells expressed CT, and not CT-R, mRNA, whereas CT-R, but not CT, mRNA was expressed by LNCaP cells. Conditioned media from PC-3 cells induced DNA synthesis of LNCaP cells, and this mitogenic response was abolished by anti-CT serum. Highly aggressive PC-3M cells co-expressed CT and CT-R mRNAs. CT also induced a twofold increase in DNA synthesis of primary prostate cells and anti-CT serum caused a 56% decline. In-situ hybridization histochemistry of archival prostate specimens has selectively localized CT and CT-R mRNA in basal epithelium of benign and low grade PC specimens, and these mRNAs were not detected in either luminal epithelium or stroma. In contrast, CT and CT-R mRNA were detected throughout the luminal epithelium of moderate and high-grade PC specimens. Most epithelial cells of low and moderately differentiated tumors expressed either CT or CT-R mRNA, suggesting that CT may serve as a paracrine factor. In contrast, CT and CT-R mRNAs were co-expressed by most tumor cells in advanced PC specimens. The cells expressing CT-R mRNA in primary tumors also co-expressed PCNA. These results, when combined with mitogenic actions of CT on primary prostate cells as well as PC cell lines, strongly support the role for CT in sustaining the growth of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号