首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 42 lipophilic bromovinyldeoxyuridine monophosphates (BVDUMPs) are presented as potential prodrugs of the antiviral agent (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU). The 5'-cycloSal-masking group technique has been applied to this cyclic nucleoside analogue to achieve delivery of the monophosphate of BVDU inside the target cells. The new substances have been tested for their antiviral activity against herpes simplex virus types 1 and 2 (HSV-1 and -2), thymidine kinase-deficient (TK(-)) HSV-1, varicella-zoster virus (VZV), human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). The XTT-based tetrazolium reduction assay EZ4U (for HSV), the plaque inhibition test (for VZV and HCMV) and a DNA hybridisation assay (for EBV) were used to assess antiviral activity. The results indicate that cycloSal-BVDUMP triesters proved to be potent and selective inhibitors of HSV-1 comparable with aciclovir. VZV replication was inhibited by very low concentrations, and two substances had a slightly better anti-VZV activity than the parent compound BVDU. No antiviral effect could be demonstrated against TK(-)-HSV-1, HSV-2 and HCMV, most likely owing to the lack of phosphorylation to BVDU diphosphate. Most remarkably, several cycloSal-BVDUMP triesters yielded promising anti-EBV activity whereas the parent compound BVDU was entirely inactive.  相似文献   

2.
We identified a novel class of 4-oxo-dihydroquinolines represented by PNU-183792 which specifically inhibit herpesvirus polymerases. PNU-183792 was highly active against human cytomegalovirus (HCMV, IC(50) value 0.69 microM), varicella zoster virus (VZV, IC(50) value 0.37 microM) and herpes simplex virus (HSV, IC(50) value 0.58 microM) polymerases but was inactive (IC(50) value >40 microM) against human alpha (alpha), gamma (gamma), or delta (delta) polymerases. In vitro antiviral activity against HCMV was determined using cytopathic effect, plaque reduction and virus yield reduction assays (IC(50) ranging from 0.3 to 2.4 microM). PNU-183792 antiviral activity against both VZV (IC(50) value 0.1 microM) and HSV (IC(50) ranging from 3 to 5 microM) was analyzed using plaque reduction assays. PNU-183792 was also active (IC(50) ranging 0.1-0.7 microM) in cell culture assays against simian varicella virus (SVV), murine cytomegalovirus (MCMV) and rat cytomegalovirus (RCMV). Cell culture activity was compared with the appropriate licensed drugs ganciclovir (GCV), cidofovir (CDV) and acyclovir (ACV). PNU-183792 was also active against both GCV-resistant and CDV-resistant HCMV and against ACV-resistant HSV. Toxicity assays using four different species of proliferating mammalian cells indicated PNU-183792 was not cytotoxic at relevant drug concentrations (CC(50) value >100 microM). PNU-183792 was inactive against unrelated DNA and RNA viruses indicating specificity for herpesviruses. In animals, PNU-183792 was orally bioavailable and was efficacious in a model of lethal MCMV infection.  相似文献   

3.
The synthesis of 5-heteroaryl-substituted 2'-deoxyuridines is described. The heteroaromatics were obtained from three different 5-substituted 2'-deoxyuridines. Cycloaddition reaction of nitrile oxides on the 5-ethynyl derivative 1 gave the isoxazoles 4a-e. The thiazole derivatives 14a-c were obtained from the 5-thiocarboxamide 11, while 5-pyrrol-1-yl-2'-deoxyuridine (17) could be synthesized directly from 5-amino-2'-deoxyuridine. The compounds were evaluated for antiviral activity. Selective activity against herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) was noted for 5-(3-bromoisoxazol-5-yl)-2'-deoxyuridine (4c). The compound was inactive against herpes simplex virus type 2, cytomegalovirus, and thymidine kinase (TK)-deficient mutants of HSV-1 and VZV, which indicates that, most likely, its antiviral activity depends on phosphorylation by the virus-specified TK.  相似文献   

4.
The synthesis of 5-(2-fluoroethyl)-2'-deoxyuridine (FEDU, 4b), its 2'-fluoro analogue 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-(2-fluoroethyl)-1H,3H- pyrimidine-2,4-dione (FEFAU, 4k), and the 2'-fluoro analogue of the potent antiherpes virus compound 5-(2-chloroethyl)-2'-deoxyuridine (CEDU), 5-(2-chloroethyl)-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-1H,3H-pyr imidine - 2,4-dione (CEFAU, 4i), is described. The antiviral activities of these compounds were determined in cell culture against herpes simplex virus (HSV) types 1 and 2 and varicella zoster virus (VZV). All compounds were shown to possess significant and selective antiviral activity. FEDU proved less potent than CEDU against VZV replication; however, it was more active against HSV-2. CEFAU showed marked activity against HSV-1, HSV-2, and VZV. The compound containing fluorine at both positions, FEFAU, exhibited the strongest antiviral potency against HSV-1, HSV-2, and VZV. It inhibited HSV-1 at a concentration of 0.03-0.2 microgram/mL, HSV-2 at 0.1-0.3 microgram/mL, and VZV at 0.03 microgram/mL. Neither FEDU nor CEFAU or FEFAU exerted a significant inhibitory effect on cell proliferation at a concentration of 100 micrograms/mL. Thus, the cytotoxicity of these compounds is as low as that of CEDU and compares favorably to that of previously described 2'-fluoroarabinosyl nucleoside analogues.  相似文献   

5.
Anti-herpesvirus activity of carbocyclic oxetanocin G in vitro   总被引:3,自引:0,他引:3  
A series of new compounds, carbocyclic oxetanocins, have been synthesized and their anti-herpesvirus activity determined. Carbocyclic oxetanocin G (OXT-G) was most active against herpes simplex virus (HSV) and human cytomegalovirus (HCMV) among carbocyclic oxetanocins tested; the median effective concentrations (EC50) for HSV-1, -2, and HCMV were 0.23, 0.04 and 0.40 micrograms/ml, respectively. The EC50 value of carbocyclic OXT-G against HSV-2 was significantly lower than those of acyclovir, ganciclovir (DHPG) and OXT-G, while the value for HCMV was comparable to those of DHPG and OXT-G. Carbocyclic OXT-G showed much higher activity against TK+ HSV-2 than against a TK- mutant, suggesting that this compound is a good substrate for HSV-2-induced TK. The antiviral activity of the compound was only partially reversed even by the addition of 100-fold excess deoxyguanosine. The results suggest that the mode of action of carbocyclic OXT-G is different from that of OXT-G.  相似文献   

6.
The compound 2,3-dimethyl-6(2-dimethylaminoethyl)6H-indolo-(2,3-b)quinoxaline (B-220) has been shown to exhibit potent antiviral activity against herpes simplex virus type 1 (HSV-1), varicella-zoster virus (VZV) and cytomegalovirus (CMV). The mechanism of antiviral action of B-220 against HSV-1 has been studied; from the results it appears that B-220 binds by intercalation into the DNA helix and then disturbs steps that are vital for viral uncoating.  相似文献   

7.
A fatty acid derivative of ganciclovir (GCV), elaidic acid ganciclovir (E-GCV), has been evaluated for its inhibitory activity against laboratory and clinical strains of herpes simplex type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) in human embryonic lung fibroblasts. GCV, cidofovir, acyclovir (ACV), brivudin (BVDU) and foscarnet (PFA) were included as reference compounds. The viruses studied were wild-type, thymidine kinase-deficient (TK(-)) and PFA-resistant (PFA(r)) HSV strains. The IC(50) values obtained for E-GCV were 5- to 30-fold lower than those observed for GCV, the IC(50) value of E-GCV for HSV-1 strain KOS being 0.07 nM. A similarly increased activity of E-GCV (as compared to GCV) was noted for TK(-) and PFA(r) HSV-1 or HSV-2 strains. However, E-GCV did not exhibit superior activity over GCV to VZV or HCMV in vitro. The antiviral efficacy of E-GCV was also evaluated in vivo against intracerebral HSV-2 infection in NMRI mice. Animals were treated intraperitoneally or perorally with E-GCV, GCV or placebo once daily for 10 days, starting the day of infection. E-GCV compared to GCV at equimolar doses, proved markedly more efficacious than GCV in terms of reduction of mortality rate and delay of mean time of death. The elaidic acid ester of GCV should therefore be considered as a novel approach towards the treatment of HSV infections.  相似文献   

8.
The synthesis of a series of novel 1-(2-deoxy-4-thio-beta-D-erythro-pentofuranosyl)-(6-azapyrimidine) nucleosides is described. X-ray crystallographic data of the thymidine derivative allowed conformational analysis, which indicated a twist (3T2) sugar conformation. Hydrogen-bonded assemblies for the crystal structure were determined using PLATON software to allow further interpretation of the crystal packing and base interactions. The 6-azapyrimidine nucleosides described were evaluated against a range of viral strains. The thymidine analogue showed pronounced activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV), and vaccinia virus. This compound lost only 5- to 10-fold of its antiviral activity against thymidine kinase (TK)-deficient HSV-1 and VZV strains. These observations suggest that the compounds may not entirely depend on viral TK-catalyzed phosphorylation for antiviral activity and/or use an alternative metabolic activation pathway, and/or display a unique mechanism of antiviral action by the unmetabolized nucleoside analogue.  相似文献   

9.
This review covers the non-HIV antiviral patent literature from December 2001 to April 2002. Most of the patent applications describe new compounds for the treatment of hepatitis C virus (HCV) by inhibition of the NS3 serine protease. Several examples of both nucleoside and non-nucleoside inhibitors of the HCV polymerase NS5B have been reported. Hepatitis B virus (HBV) therapy continues to be dominated by nucleoside analogs, but several non-nucleoside HBV polymerase inhibitors have also been reported. In addition, a number of patents describing non-nucleoside inhibitors of the human cytomegalovirus (HCMV), the herpes simplex virus (HSV-1 and HSV-2) and the varicella zoster virus (VZV) DNA polymerase are also reviewed. A number of patents that appeared in 2002 hold promise for the treatment of respiratory syncytial virus (RSV) with small molecule inhibitors. Various approaches to the treatment of hepatitis D virus (HDV), picornaviruses and the human papilloma virus (HPV) are also described.  相似文献   

10.
(+-)-(1 alpha,2 beta,3 alpha)-9-[2,3-bis(hydroxymethyl)cyclobutyl] guanine [(+-)-BHCG or SQ 33,054] is a newly synthesized nucleoside analog with potent and selective antiviral activity against members of the herpesvirus group, including human cytomegalovirus. The activity against a thymidine kinase deficient HSV-2 mutant was 25-fold poorer than against the parent virus, suggesting that phosphorylation is an important prerequisite for antiviral activity against HSV-2. (+-)-BHCG is readily phosphorylated by purified HSV-1 thymidine kinase, and BHCG triphosphate synthesized enzymatically is a selective inhibitor of HSV-1 DNA polymerase. (+-)-BHCG did not inhibit host cell growth at concentrations at least 1000-fold higher than HSV-2 inhibitory concentrations. Subcutaneous administration of (+-)-BHCG was protective against HSV-1 systemic infections in mice. BHCG is an exciting antiviral agent and represents a new class of nucleoside analogs.  相似文献   

11.
A new class of 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) and arabinouridines (7, 8) were synthesized by the regiospecific addition of halogenocyanamides (X-NHCN) to the 5-vinyl substituent of the respective 5-vinyl-2'-deoxyuridine (2) and 2'-arabinouridine (3). Reaction of 2 with sodium azide, ceric ammonium nitrate, and acetonitrile-methanol or water afforded the 5-(1-hydroxy-2-azidoethyl)-(10) and 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridines (11). In vitro antiviral activities against HSV-1-TK(+) (KOS and E-377), HSV-1-TK(-), HSV-2, VZV, HCMV, and DHBV were determined. Of the newly synthesized compounds, 5-(1-cyanamido-2-iodoethyl)-2'-deoxyuridine (6) exhibited the most potent anti-HSV-1 activity, which was equipotent to acyclovir and superior to 5-ethyl-2'-deoxyuridine (EDU). In addition, it was significantly inhibitory for thymidine kinase deficient strain of HSV-1 (EC(50) = 2.3-15.3 microM). The 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) all were approximately equipotent against HSV-2 and were approximately 1.5- and 15-fold less inhibitory for HSV-2 than EDU and acyclovir, respectively. Compounds 4-6 were all inactive against HCMV but exhibited appreciable antiviral activity against VZV. Their anti-VZV activity was similar or higher to that of EDU and approximately 5-12-fold lower than that of acyclovir. The 5-(1-cyanamido-2-haloethyl)-(7,8) analogues of arabinouridine were moderately inhibitory for VZV and HSV-1 (strain KOS), whereas compounds 10 and 11 were inactive against herpes viruses. Compounds 5 and 6 also demonstrated modest anti-hepatitis B virus activity against DHBV (EC(50) = 19.9-23.6 microM). Interestingly, the related 5-(1-azido-2-bromoethyl)-2'-deoxyuridine (1n) analogue proved to be markedly inhibitory to DHBV replication (EC(50) = 2.6-6.6 microM). All compounds investigated exhibited low host cell toxicity to several stationary and proliferating host cell lines as well as mitogen-stimulated proliferating human T lymphocytes.  相似文献   

12.
Phenylmethylphosphoro-L-alaninate prodrugs of antiviral Z-methylenecyclopropane nucleoside analogues and their inactive E-isomers were synthesized and evaluated for their antiviral activity against HCMV, HSV-1, HSV-2, HHV-6, EBV, VZV, HIV-1 and HBV. The adenine Z-analogue was a potent inhibitor of all these viruses but it displayed cellular toxicity. The guanine Z-derivative was active against HCMV, HBV, EBV and VZV and it was not cytotoxic. The 2,6-diaminopurine analogue was the most potent against HIV-1 and HBV and somewhat less against HHV-6, HCMV, EBV and VZV in a non-cytotoxic concentration range. The 2-amino-6-cyclopropylamino and 2-amino-6-methoxypurine prodrugs were also more active than parent analogues against several viruses but with a less favorable cytotoxicity profile. In the E-series of analogues, adenine derivative was active against HIV-1, HBV and EBV, and it was non-cytotoxic. The guanine analogue exhibited a significant effect only against HBV. The 2,6-diaminopurine E-analogue was inactive with the exception of a single EBV assay. The 2-amino-6-methoxypurine Z-methylenecyclopropane nucleoside analogue was an effective inhibitor of HCMV, MCMV and EBV. The 2,6-diaminopurine Z-prodrug seems to be the best candidate for further development.  相似文献   

13.
We examined whether phenoxazine derivatives, 2-amino-4,4alpha-dihydro-4alpha-7-dimethyl-3H-phenoxazine-3-one (Phx-1), 3-amino-1,4alpha-dihydro-4alpha-8-dimethyl-2H-phenoxazine-2-one (Phx-2), and 2-amino-phenoxazine-3-one (Phx-3) may have antiviral activity against herpes family viruses: human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2). The antiviral activity was evaluated by the selectivity index (SI), which is the ratio of 50% cytotoxic concentration (CC(50)) and 50% antiviral concentration (IC(50)). Among these phenoxazines, Phx-2 exerted strong antiviral activity to HCMV with the SI of 200, while Phx-1 and Phx-3 exerted no marked anti-HCMV activity. Phx-2 also showed moderate inhibition of HSV-1 and HSV-2, with the SI of 6.7 and 17, respectively. In the time-of-addition experiments, inhibitory effect of Phx-2 against HCMV was active even when applied to cells at 100 h after HCMV infection, while ganciclovir (GCV) showed potent inhibition when applied to cells before 42-h post-infection, but its inhibitory effects disappeared thereafter. Attachment and penetration of HCMV was not affected by the presence of Phx-2. When HCMV was pretreated with Phx-2, concentration-dependent virucidal action was observed, suggesting that Phx-2 inactivates HCMV directly. From these data, it was found that Phx-2 might have a different anti-HCMV target from GCV.  相似文献   

14.
(R,S)-9-(3-hydroxy-2-phosphonomethoxypropyl)guanine [(R,S)-HPMPG] exhibits broad spectrum antiviral activity with an ED50 of less than 1 microM against herpes simplex virus (HSV) types 1 and 2, varicella zoster virus, human cytomegalovirus (HCMV) and vaccinia in plaque reduction assays. Wild type HSV-2 and its thymidine kinase deficient variant are equally sensitive to (R,S)-HPMPG. (R,S)-HPMPG is 100-fold more potent than acyclovir (ED50 = 0.45 microM vs. 44 microM, respectively) against HCMV in cell culture, and 10-fold more active than acyclovir in extending survival time in mice intraperitoneally infected with 70 LD50 HSV-1. However, (R,S)-HPMPG is toxic when administered repeatedly at 44 mg/kg/day in uninfected adult mice. The diphosphoryl derivative of HPMPG was enzymatically synthesized and is a competitive inhibitor of HSV-1 DNA polymerase relative to dGTP (K1 = 0.03 microM). HPMPG-PP is 70-fold less active at inhibiting HeLa DNA polymerase alpha than HSV-1 DNA polymerase. At concentrations between 0.3 and 1.5 microM (R,S)-HPMPG inhibited HSV-1 DNA replication greater than or equal to 50% in infected cells as measured by nucleic acid hybridization. Consistent with inhibition of viral DNA synthesis, 6 to 30 microM (R,S)-HPMPG reduces late viral polypeptide synthesis in HSV-1 infected cells. These data indicate that (R,S)-HPMPG is a thymidine kinase independent broad spectrum antiviral drug which is capable of inhibiting viral DNA polymerase.  相似文献   

15.
Reaction of alkenoxyamines (3,5) or (R,S)-, (R)-, and (S)-hydroxy-protected derivatives of hydroxyalkoxyamines (20a,b, 37a-c) with 4,6-dichloro-2,5-diformamidopyrimidine (4) and cyclization of the resultant 6-[(alkenoxy)amino]-and 6-(alkoxyamino)pyrimidines (6,7,21a,b, 38a,b,c) by heating with diethoxymethyl acetate afforded 9-alkenoxy- and 9-alkoxy-6-chloropurines (9,10,22a,b, 39a-c, 40a). These were subsequently converted to 9-(2,3-dihydroxypropoxy), 9-(3,4-dihydroxybutoxy), and 9-(1,4-dihydroxybut-2-oxy) derivatives of guanine and 2-aminopurine (13-16, 25-28, 41a-c, 42a). A 2-amino-6-methoxypurine derivative (17) was also prepared. The racemic guanine derivative 13 showed potent and selective activity against herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), but was less active against varicella zoster virus (VZV). Its antiviral activity is attributable to the S isomer (28), which was found to be more active than acyclovir against HSV-1 and HSV-2 and about 4 times less active than acyclovir against VZV. The S enantiomer of 9-(1,4-dihydroxybut-2-oxy)guanine (41c) also showed noteworthy antiviral activity in cell culture. Although this acyclonucleoside (41c) is only weakly active against HSV-1 and inactive against HSV-2, it is about twice as active as acyclovir against VZV.  相似文献   

16.
The proteases encoded by herpesviruses including herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV) are attractive targets for antiviral drug development because of their important roles in viral replication. We randomly screened a chemical compound library for inhibitory activity against HSV-1 protease. 1,4-Dihydroxynaphthalene and three naphthoquinones were found to be potent inhibitors of HSV-1 protease with IC50 values of 6.4 to 16.9 microM. Inhibitory mode analysis of the compounds against HSV-1 protease suggested that, in spite of structural similarities, only 1,4-dihydroxynaphthalene was a competitive inhibitor, whereas the three naphthoquinones were noncompetitive inhibitors. Among all assayed dihydroxynaphthalene derivatives in the chemical compound library, 1,4-dihydroxynaphthalene proved to be the most potent inhibitor of HSV-1 protease. Therefore, the two hydroxyl groups located at positions 1 and 4 on the naphthalene structure seemed essential for exertion of a potent inhibitory activity against HSV-1 protease. In addition, we have found that these compounds are also potent inhibitors of HCMV protease with extremely low micromolar IC50 values. This differed from the results of inhibitory mode analysis of HSV-1 protease, 1,4-dihydroxynaphthalene was a noncompetitive inhibitor of HCMV protease, and three naphthoquinones were competitive inhibitors. These compounds showed no effective inhibitory activity against several mammalian serine proteases (trypsin, chymotrypsin, kallikrein, plasmin, thrombin and Factor Xa) at 100 microM. These results suggest that 1,4-dihydroxynaphthalene and three naphthoquinones may be useful in the development of nonpeptidic antiherpesvirus agents.  相似文献   

17.
Starting from commercially available (rac)-3-cyclohexene-1-carboxylic acid, a series of purine and pyrimidine cis-substituted cyclohexenyl and cyclohexanyl nucleosides were synthesized through a key Mitsunobu reaction. Antiviral evaluations were performed on HIV, coxsackie B3, and herpes viruses (HSV-1, HSV-2, VZV, HCMV). Three compounds showed moderate activity against HSV-1 and coxsackie viruses. Specific computer modeling studies were performed on HSV-1 thymidine kinase in order to understand the enzyme activation of an analogue showing moderate antiviral activity.  相似文献   

18.
The properties of DNA polymerases induced by two human herpesviruses, herpes simplex virus type-1 (HSV-1) and Epstein-Barr virus (EBV), have been compared. The HSV-1 and EBV polymerases can be distinguished from one another by differences in the elution profiles in phosphocellulose and single-stranded DNA cellulose columns. Although both enzymes require monovalent cations for optimum activity, the HSV-1 enzyme requires ammonium sulfate whereas the EBV enzyme activity is inhibited by it; on the other hand, the EBV polymerase requires KCl. Other reaction requirements are also different for the two viral enzymes. Thus, when the EBV DNA polymerase was assayed under conditions optimum for the HSV-1 DNA polymerase, only 15% of its activity was expressed. Differences were also noted in sensitivities of the two viral enzymes to the 5'-triphosphates of nucleoside analogs with antiherpesvirus activity such as BVdU, IVdU, ACV, FIAC and IdUrd. The HSV-1 polymerase was more sensitive than the EBV DNA polymerase to inhibition by phosphonoacetate, phosphonoformate, aphidicolin and N-ethylmaleimide. However, the EBV DNA polymerase was more sensitive than HSV-1 DNA polymerase to heat treatment at 42 degrees C. Thus, the marked differences between the two viral enzymes can be useful in identifying enzyme activities in cells producing the virus and also in studying the biochemical mechanism of action of some of the antiviral agents.  相似文献   

19.
A series of trichlorinated indole nucleosides has been synthesized and tested for activity against human cytomegalovirus (HCMV) and herpes simplex virus type-1 (HSV-1) and for cytotoxicity. Modifications of the previously reported 2,5,6-trichloro-1-(beta-d-ribofuranosyl)indole at the 3-position of the heterocycle were designed in part to test our hypothesis that hydrogen bonding is required at that position for antiviral activity. Analogues were synthesized using electrophilic addition at the 3-position or by synthesis of modified indole heterocycles followed by glycosylation and modification of the sugar. Among the modifications at the 3-position, only those analogues with hydrogen-bond-accepting character were active against HCMV (e.g., 3-formyl-2,5,6-trichloro-1-(beta-D-ribofuranosyl)indole, FTCRI, IC50 = 0.23 microM). Conversely, analogues with non-hydrogen-bonding substituents at the 3-position (e.g., 3-methyl-2,5,6-trichloro-1-(beta-D-ribofuranosyl)indole) were much less active (IC50 = 32 microM) than those with the requisite hydrogen-bonding capacity. The 5'-O-acyl analogue of FTCRI was obtained as an intermediate and also found to be a potent inhibitor of HCMV (IC50 < 0.1 microM). The synthesis of some additional 5'-O-acylated analogues did not provide a compound with increased antiviral activity. None of the indole nucleosides had significant activity against HSV-1, and none were cytotoxic to uninfected cells in their antiviral dose range. Results obtained from the antiviral evaluations have validated our hypothesis that hydrogen bonding at the 3-position is required for antiviral activity in this series of chlorinated indole nucleosides.  相似文献   

20.
Synthesis of esters of phosphonoformic acid and their antiherpes activity   总被引:1,自引:0,他引:1  
Aliphatic and aromatic mono-, di-, and triesters of phosphonoformic acid (foscarnet) were synthesized. The triesters were prepared by the Michaelis-Arbuzov reaction and were hydrolyzed to di- and monoesters. The compounds were tested for antiviral activity on isolated herpes simplex virus type 1 (HSV-1) DNA polymerase, in a HSV-1 plaque reduction assay, and on a cutaneous HSV-1 infection in guinea pigs. None of the esters inhibited the activity of isolated HSV-1 polymerases. Monoesters with a free carboxylic group and diesters with an aromatic carboxylic ester function were active against the cutaneous herpes infection. Mono- and diesters with an aromatic phosphonic ester group also showed activity in the plaque-reduction assay. However, mono- and diesters with an aromatic phosphonic ester group also showed activity in the plaque-reduction assay. However, mono- and diesters with aliphatic carboxylic ester groups were inactive in all test systems. The results show that all three acidic groups of phosphonoformic acid must be free in order to get antiviral activity at the enzyme level. However, certain esters of this acid may be biotransformed to the acid itself to give antiherpes activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号