首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Co-polymers based on acrylonitrile, N-vinylpyrrolidone, aminoethylmethacrylate and sodium methallylsulfonate were used to prepare flat membranes by phase inversion. The surface properties of membranes were characterised by water contact angle measurements, atomic force microscopy and X-ray photoelectron spectroscopy (XPS). Membrane permeability was estimated by porosity measurements with water as test liquid. Human C3A hepatoblastoma cells were plated on these materials. Cell-material interaction was characterised by overall cell morphology, formation of focal adhesion contacts and intercellular junctions. Furthermore, cell proliferation was measured and compared with the functional activity of cells as indicated by 7-ethoxycoumarin-O-deethylation. More hydrophilic materials reduced spreading of cells, formation of focal adhesion and subsequent proliferation while homotypic cell adhesion was facilitated in correlation with stronger expressions of intercellular junctions and improved functional activity. In contrast, membranes with stronger adhesivity enhanced cell proliferation but reduced the functional activity of cells. It was concluded that the co-polymerisation of acrylonitrile with hydrophilic co-monomers, such as N-vinylpyrrolidone, could be used to tailor membrane materials for the application in biohybrid liver support systems.  相似文献   

2.
It was found previously that membranes based on co-polymers of acrylonitrile (AN) and 2-acrylamido-2-methyl-propansulfonic acid (AMPS) greatly stimulated the functionality and survival of primary hepatocytes. In those studies, however, the pure AN–AMPS co-polymer had poor membrane-forming properties, resulting in quite dense rubber-like membranes. Hence, membranes with required permeability and optimal biocompatibility were obtained by blending the AN–AMPS co-polymer with poly(acrylonitrile) homopolymer (PAN). The amount of PAN (P) and AN–AMPS (A) in the blend was varied from pure PAN (P/A-100/0) over P/A-75/25 and P/A-50/50 to pure AN–AMPS co-polymer (P/A-0/100). A gradual decrease of molecular cut-off of membranes with increase of AMPS concentration was found, which allows tailoring membrane permeability as necessary. C3A hepatoblastoma cells were applied as a widely accepted cellular model for assessment of hepatocyte behaviour by attachment, viability, growth and metabolic activity. It was found that the blend P/A-50/50, which possessed an optimal permeability for biohybrid liver systems, supported also the attachment, growth and function of C3A cells in terms of fibronectin synthesis and P-450 isoenzyme activity. Hence, blend membranes based on a one to one mixture of PAN and AN–AMPS combine sufficient permeability with the desired cellular compatibility for application in bioreactors for liver replacement.  相似文献   

3.
In this paper the effect of surface wettability on hepatocyte morphology and function was studied, using clean and octadecylsylane (ODS)-coated glass as a model for hydrophilic and hydrophobic surfaces, respectively. C3A cells - a hepatoblastoma cell line, and freshly obtained porcine hepatocytes were cultured for a short-time period of up to 4 days on the above substrata. Hepatocyte adhesive interactions were characterized monitoring the initial cell attachment, the overall cell morphology, the formation of focal adhesions, and actin filaments. Since hepatocytes showed a clear tendency for homotypic adhesion on ODS, specific E-cadherin staining was used to visualize the intercellular contacts by immunofluorescence microscopy. Additionally, functional assays were carried out to monitor proliferation, metabolic activity, and albumin synthesis of C3A cells. It could be shown that both C3A cells and normal porcine hepatocytes spread better on hydrophilic glass; spreading being accompanied by the development of pronounced actin stress fibers and focal adhesion contacts. In contrast, on hydrophobic substrata predominant cell-cell interactions took place which led to intense E-cadherin staining in the intercellular contacts of porcine hepatocytes but not in C3A cells. On the other hand, metabolic activity and growth of C3A cells were reduced on hydrophobic ODS, but albumin synthesis was similar on both surfaces. It was concluded that the wettability of materials has a strong influence on the attachment and morphology of hepatocytes while the influence of surface properties on the functional activity of hepatocytes still remains to be elucidated.  相似文献   

4.
Development of membranes for the cultivation of kidney epithelial cells   总被引:1,自引:0,他引:1  
The development of biohybrid organs (BHO) will benefit from improved membranes regarding transport and cell contacting properties. Here we describe in a first study the development and testing of membranes made of polyacrylonitrile (PAN) and polysulfone (PSU) for the immobilisation of kidney epithelial cells. Comparative investigations on overall polymer toxicity tested with 3T3 fibroblasts, and morphology and proliferation of Madin-Darby canine kidney (MDCK) cells cultured on the membranes could show that these materials have comparable cell contacting properties like Millicell membranes. Since PAN and PSU have superior membrane forming properties with regard to membrane geometry, i.e. for the preparation of hollow fibres, and porosity, i.e. for immuno isolation, both materials or modifications thereof seem to be suitable for the application in BHO such as biohybrid kidney.  相似文献   

5.
A hollow fiber-in-fiber-based bioreactor system was tested for the applicability to host kidney epithelial cells as a model system for a bioartificial kidney. Hollow fibers were prepared from polyacrylonitrile (PAN), polysulfone-polyvinylpyrollidinone (PVP) blend (PSU) and poly(acrylonitrile-N-vinylpyrollidinone) copolymer P(AN-NVP). Hollow fibers with smaller and larger diameters were prepared so that the smaller fitted into the larger, with a distance of 50-100 microm in between. The following material combinations as outer and inner fiber were applied: PAN-PAN; PSU-PSU, PSU-P(AN-NVP). Madin-Darby kidney epithelial cells (MDCK) were seeded in the interfiber space and cultured for a period up to 14 days. Light, scanning, and transmission electron microscopy were used to follow the adhesion and growth of cells, and to characterize their morphology. As a result, we found that MDCK cells were able to grow in the interfiber space in mono- and multilayers without signs of systemic degeneration. Comparison of the different materials showed that PAN and P(AN-NVP) provided the best growth conditions, indicated by a tight attachment of cells on hollow fiber membrane, and subsequent proliferation and development of structural elements of normal epithelia, such as tight junctions and microvilli. In conclusion, the fiber-in-fiber design seems to be an interesting system for the construction of a bioartificial kidney.  相似文献   

6.
There has been growing interest in innovative materials with physico-chemical properties that provide improved blood/cell compatibility. We propose new polymeric membranes made of modified polyetheretherketone (PEEK-WC) as materials with potential for use in biohybrid devices. PEEK-WC exhibits high chemical, thermal stability and mechanical resistance. Owing to its lack of crystallinity this polymer can be used for preparing membranes with cheap and flexible methods. We compared the properties of PEEK-WC membranes to polyurethane membranes prepared using the same phase inverse technique and commercial membranes. The physico-chemical properties of the membranes were characterised by contact angle measurements. The different parameters acid (gamma+), base (gamma-) and Lifshitz-van der Waals (gammaLW) of the surface free energy were calculated according to Good-van Oss's model. We evaluated the cytocompatibility of PEEK-WC membranes by culturing hepatocytes isolated from rat liver. Cell adhesion and metabolic behaviour in terms of ammonia elimination, urea synthesis and protein synthesis were evaluated during the first days of culture. Liver cells adhered and formed three-dimensional aggregates on the most tested membranes. PEEK-WC membranes promoted hepatocyte adhesion most effectively. Urea synthesis, ammonia elimination and protein synthesis improved significantly when cells adhered to PEEK-WC membrane. The considerable metabolic activities of cells cultured on this membrane confirmed the good structural and physico-chemical properties of the PEEK-WC membrane that could be a promising biomaterial for cell culture in biohybrid devices.  相似文献   

7.
In this paper the effect of surface wettability on hepatocyte morphology and function was studied, using clean and octadecylsylane (ODS)-coated glass as a model for hydrophilic and hydrophobic surfaces, respectively. C3A cells--a hepatoblastoma cell line, and freshly obtained porcine hepatocytes were cultured for a short-time period of up to 4 days on the above substrata. Hepatocyte adhesive interactions were characterized monitoring the initial cell attachment, the overall cell morphology, the formation of focal adhesions, and actin filaments. Since hepatocytes showed a clear tendency for homotypic adhesion on ODS, specific E-cadherin staining was used to visualize the intercellular contacts by immunofluorescence microscopy. Additionally, functional assays were carried out to monitor proliferation, metabolic activity, and albumin synthesis of C3A cells. It could be shown that both C3A cells and normal porcine hepatocytes spread better on hydrophilic glass; spreading being accompanied by the development of pronounced actin stress fibers and focal adhesion contacts. In contrast, on hydrophobic substrata predominant cell-cell interactions took place which led to intense E-cadherin staining in the intercellular contacts of porcine hepatocytes but not in C3A cells. On the other hand, metabolic activity and growth of C3A cells were reduced on hydrophobic ODS, but albumin synthesis was similar on both surfaces. It was concluded that the wettability of materials has a strong influence on the attachment and morphology of hepatocytes while the influence of surface properties on the functional activity of hepatocytes still remains to be elucidated.  相似文献   

8.
Lu HF  Lim WS  Wang J  Tang ZQ  Zhang PC  Leong KW  Chia SM  Yu H  Mao HQ 《Biomaterials》2003,24(27):4893-4903
One of the major challenges in BLAD design is to develop functional substrates suitable for hepatocyte attachment and functional maintenance. In the present study, we designed a poly(vinylidene difluoride) (PVDF) surface coated with galactose-tethered Pluronic polymer. The galactose-derived Pluronic F68 (F68-Gal) was adsorbed on PVDF membrane through hydrophobic-hydrophobic interaction between PVDF and the polypropylene oxide segment in Pluronic. The galactose density on the modified PVDF surface increased with the concentration of the F68-Gal solution, reaching 15.4 nmol galactosyl groups per cm2 when a 1 mg/ml of F68-Gal solution was used. The adsorbed F68-Gal remained relatively stable in culture medium. Rat hepatocytes attachment efficiency on F68-Gal modified PVDF membrane was similar to that on collagen-coated surface. The attached hepatocytes on PVDF/F68-Gal membrane self-assembled into multi-cellular spheroids after 1 day of culture. These attached hepatocytes in spheroids exhibited higher cell functions such as albumin synthesis and P450 1A1 detoxification function compared to unmodified PVDF membrane and collagen-coated surface. These results suggest the potential of this galactose-immobilized PVDF membrane as a suitable substrate for hepatocyte culture.  相似文献   

9.
Recently we have developed a novel type of membrane based on poly(ether imide) (PEI) which is considered for biomedical application. To improve its physical and biological performance it was modified by blending with poly(benzimidazole) (PBI). In the present study both membranes were characterized in terms of their physicochemical properties and in vitro tissue compatibility using human dermal fibroblasts and keratinocytes. The modified membrane (PEI*) was more hydrophilic, less porous and had an increased surface (zeta) potential. We further found that blending with PBI tends to promote cell contact, at least initially, as indicated by the improved overall cell morphology, adhesion and spreading of fibroblasts, and the development of focal adhesion complexes. The effects of fibronectin (FN) and serum coating were also beneficial when compared to pure PEI and tissue culture polystyrene (TCP), which correlates to a higher adsorption of both FN and vitronectin detected by ELISA. However, a clear tendency for homotypic cellular interaction particularly of keratinocytes was obtained in contact with membranes, which was much stronger pronounced on PEI*. Although the initial adhesion was greater on PEI*, a surprising decrease in cell growth was observed at later stages of incubation, which may be explained with the membrane-promoted cellular aggregation leading to an easier detachment from the substratum. Thus, membranes based on blends of PEI with PBI could provide a tissue compatible scaffold with lowered adhesive properties, which might be a useful tool for the transfer of cells, for example, to in vitro engineered tissue constructs.  相似文献   

10.
Recently we have developed a novel type of membrane based on poly(ether imide) (PEI) which is considered for biomedical application. To improve its physical and biological performance it was modified by blending with poly(benzimidazole) (PBI). In the present study both membranes were characterized in terms of their physicochemical properties and in vitro tissue compatibility using human dermal fibroblasts and keratinocytes. The modified membrane (PEI*) was more hydrophilic, less porous and had an increased surface (zeta) potential. We further found that blending with PBI tends to promote cell contact, at least initially, as indicated by the improved overall cell morphology, adhesion and spreading of fibroblasts, and the development of focal adhesion complexes. The effects of fibronectin (FN) and serum coating were also beneficial when compared to pure PEI and tissue culture polystyrene (TCP), which correlates to a higher adsorption of both FN and vitronectin detected by ELISA. However, a clear tendency for homotypic cellular interaction particularly of keratinocytes was obtained in contact with membranes, which was much stronger pronounced on PEI*. Although the initial adhesion was greater on PEI*, a surprising decrease in cell growth was observed at later stages of incubation, which may be explained with the membrane-promoted cellular aggregation leading to an easier detachment from the substratum. Thus, membranes based on blends of PEI with PBI could provide a tissue compatible scaffold with lowered adhesive properties, which might be a useful tool for the transfer of cells, for example, to in vitro engineered tissue constructs.  相似文献   

11.
The effect of the porosity of acrylonitrile-N-vinylpyrrolidone copolymer membranes on human C3A hepatoblastoma cell adhesive interaction and functioning is investigated on four membranes with an average pore size ranging between 6 and 12 nm. Adhesion of C3A cells was quantified and characterized by studying overall cell morphology and focal adhesion formation. Cell-cell interactions were characterized by E-cadherin expression and organization. Cell growth, fibronectin synthesis and cytochrome P450 activity were estimated as criteria of functional cell activity. The results suggest that membrane porosity influences the initial cell-surface interactions since an increasing pore size augmented cell adhesion and aggregate formation. Cell growth after 7 d was diminished on membranes with an average pore size of 12 nm. The activity of P450 measured by 7-ethoxycoumarin conversion at day 7 was influenced by membrane topography representing a clear optimum in the range of 7-10 nm pore size. These results indicate that membrane porosity is a determinant for the function of hepatocytes in extracorporal liver assist devices.  相似文献   

12.
Liu TY  Lin WC  Huang LY  Chen SY  Yang MC 《Biomaterials》2005,26(12):1437-1444
Plasma proteins were covalently immobilized onto polyacrylonitrile (PAN) membrane to evaluate the hemocompatibility and anaphylatoxin formation. This is used as a model to study the effect of protein-adsorption on the blood-contacting response of hemodializing membranes. The proteins used were either platelet-adhesion-promoting collagen (COL) or platelet-adhesion-inhibiting human serum albumin (HSA). The microstructure and characterization of the protein-immobilizing PAN membranes were evaluated by Coomassie dye assay, atomic force microscopy, X-ray photoelectron spectroscopy and water contact angle measurement. PAN-HSA membrane improved not only hemocompatibility including less platelet adhesion, longer blood coagulation times, and higher thrombin inactivity level, but also induced lower complement activation. On the other hand, PAN-COL membrane exhibited blood incompatibility, although induced less increase of C3, C4 antigens of serum. Overall results of this study demonstrated that the immobilization of HSA onto the surface of PAN membrane would be beneficial to improve the hemocompatibility and to reduce the anaphylatoxin formation during hemodialysis.  相似文献   

13.
Poly(ether imide) (PEI) membranes of which the surface was modified with carboxylic groups were tested in comparison to pure PEI and poly(ethylene terephtalate) (PET) for their ability to support attachment, growth and function of human umbilical vein endothelial cells (HUVEC) with respect to endothelization of the above materials. Flat sheet PEI membranes were modified by covalent binding of iminodiacetic acid (IDA) for different periods of time (1 to 30 min) to obtain surfaces with various content of carboxylic groups. In addition, fibronectin (FN) and fibrinogen (FNG) pre-adsorption on the various membranes were studied for their effect on HUVEC behaviour. The results show a decreased protein adsorption and HUVEC adhesion, growth and function in terms of prostacyclin production with an increase in carboxylic groups. Pre-adsorption of the membranes with FN or FNG promoted activity of HUVEC, which became superior to cells on PET. FN-coated membranes were found to be a better substrate for HUVEC adhesion and prostacyclin production, while on FNG-coated membranes cells grew better. Overall it can be concluded that PEI is a promising materials for endothelial cells immobilization as it is needed for improving the haemocompatibility of cardiovascular devices.  相似文献   

14.
Poly(ether imide) (PEI) membranes of which the surface was modified with carboxylic groups were tested in comparison to pure PEI and poly(ethylene terephtalate) (PET) for their ability to support attachment, growth and function of human umbilical vein endothelial cells (HUVEC) with respect to endothelization of the above materials. Flat sheet PEI membranes were modified by covalent binding of iminodiacetic acid (IDA) for different periods of time (1 to 30 min) to obtain surfaces with various content of carboxylic groups. In addition, fibronectin (FN) and fibrinogen (FNG) pre-adsorption on the various membranes were studied for their effect on HUVEC behaviour. The results show a decreased protein adsorption and HUVEC adhesion, growth and function in terms of prostacyclin production with an increase in carboxylic groups. Pre-adsorption of the membranes with FN or FNG promoted activity of HUVEC, which became superior to cells on PET. FN-coated membranes were found to be a better substrate for HUVEC adhesion and prostacyclin production, while on FNG-coated membranes cells grew better. Overall it can be concluded that PEI is a promising materials for endothelial cells immobilization as it is needed for improving the haemocompatibility of cardiovascular devices.  相似文献   

15.
In this study, we tested the ability of microporous membranes synthesised from a polymeric blend of modified polyetheretherketone (PEEK-WC) and polyurethane (PU) to support long-term maintenance and differentiation of human liver cells. The effect of isoliquiritigenin (ISL), which is a component of liquorice extract, exhibiting growth stimulatory and antiproliferative dose-dependent effect was investigated by comparing cultures treated with ISL with those untreated. To this purpose, flat-sheet membranes were prepared by a blend of PEEK-WC and PU polymers by phase inverse technique. The morphological and physico-chemical properties were characterised, respectively, by scanning electron microscopy and water contact angle measurements. Human hepatocytes cultured on PEEK-WC-PU membranes were constant up to 1 month albumin production and urea synthesis as well as the synthesis of total proteins. The liver-specific functions were expressed at high levels when cells were cultured on membranes with respect to collagen. Also the biotransformation functions were maintained for all culture periods: the ISL elimination rate increased during the culture time and high values were measured up to 22 days. Thereafter, a decrease was observed. ISL stimulated the proliferation of hepatocytes cultured on both substrata but did not affect their liver-specific functions. Hepatocytes cultured on PEEK-WC-PU membranes responded very well to ISL and expressed high levels of P450 cytochrome. These results demonstrated that long-term maintenance of human liver differentiation can be achieved on PEEK-WC-PU membranes. The incubation with ISL at the investigated concentration could stimulate the proliferation of human hepatocytes in biohybrid systems.  相似文献   

16.
Cell adhesion to biomaterials is mediated primarily by the interaction between surface bound proteins and corresponding receptors on the membrane of the cells. The attachment of fibronectin onto poly(vinylidenefluoride) (PVDF) surface and the application of PVDF as biomaterial in bone contact was the subject of our study. PVDF is a biomaterial established for soft tissue applications. Surface modifications of PVDF were performed by plasma induced graft copolymerisation of acrylic acid or CVD polymerisation of 4-amino[2.2]paracyclophane. The provided functionalised PVDF surface was used to immobilise fibronectin using different techniques. All modification steps were verified by means of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (IR-ATR) and contact angle measurements. Surface topology was studied by atomic force measurements (AFM). Protein adsorption was controlled by enzyme linked immunosorbent assay (ELISA). Cell attachment was enhanced if physically adsorbed fibronectin was used, while enhanced attachment and proliferation were induced by covalently binding fibronectin to the surface modified PVDF.  相似文献   

17.
Extracorporeal therapies based on membrane hybrid liver support devices using primary hepatocytes are an interesting approach to the treatment of acute hepatic failure. In such devices, semipermeable polymeric membranes are effectively used as immunoselective barriers between a patient's blood and the xenocytes in order to prevent the immune rejection of the graft. The membranes may act also as the substratum for cell adhesion, thus favouring the viability and functions of anchorage-dependent cells such as the hepatocytes. Membrane cytocompatibility is expected to depend on the surface properties of the polymer, such as its morphology and its physico-chemical properties. In this paper, we report our investigation on the effect of the surface wettability of membranes on hepatocyte viability and functions. Polypropylene microporous membranes were modified to increase their surface wettability and were used as substrata for rat hepatocyte adhesion culture. Isolated hepatocytes were also cultured on collagen as a reference substratum. Hepatocyte viability generally improved as the cells were cultured on more wettable membranes. In agreement with the viability data, the increasing wettability of the membrane surface also improved some metabolic functions.  相似文献   

18.
Membranes made from nanoporous alumina exhibit interesting properties for their use in biomedical research. They show high porosity and the pore diameters can be easily adjusted in a reproducible manner. Nanoporous alumina membranes are thus ideal substrates for the cultivation of polar cells (e.g., hepatocytes) or the establishment of indirect co-cultures. The porous nature of the material allows supply of nutrients to both sides of adherent cells and the exchange of molecules across the membrane. However, it is well-known that surface features in the nanometer range affect cellular behavior. In this study, the response of HepG2 cells to nanoporous alumina membranes with three different pore diameters, ranging from 50 to 250 nm, has been evaluated. The cellular interactions with the nanoporous materials were assessed by investigating cell adhesion, morphology, and proliferation. Cell functionality was measured by means of albumin production. The membranes supported good cell adhesion and spreading. Compared to tissue culture plastic, the cells on the porous substrates developed distinct focal adhesion sites and actin stress fibers. Additionally, electron microscopical investigations revealed the penetration of cellular extensions into pores with diameters bigger than 200 nm. Furthermore, cell proliferation significantly increased with an increase in pore diameter, whereas the albumin production followed a reverse trend. Thus, it seems to be possible to direct cellular behavior of HepG2 cells growing on nanoporous alumina by changing the pore diameter of the material. Hence, nanoporous alumina membranes can be useful culture substrates to develop new approaches in the field of liver tissue engineering.  相似文献   

19.
Functional maintenance of primary hepatocytes in culture can be improved by several distinct approaches involving optimization of the extracellular matrix microenvironment, media composition and cell-cell interactions, both homotypic and heterotypic. Using a galactose-decorated surface, we have developed a method to combine these two approaches by co-culturing rat primary hepatocyte spheroids with NIH/3T3 mouse fibroblast cells. Spheroids were performed by culturing hepatocytes for 3 days on galactosylated poly(vinylidene difluoride) membrane; NIH/3T3 cells were subsequently seeded and co-cultured with the spheroids. Results showed that although NIH/3T3 cells alone responded poorly to the galactosylated PVDF surface and displayed limited attachment, NIH/3T3 fibroblasts attached to the periphery of the hepatocyte spheroids and proliferated around them. Co-cultured hepatocyte spheroids exhibited significantly higher liver-specific functions as compared to spheroids cultured alone. Albumin secretion level in this co-culture system peaked on day 11, which was 1.8- and 2.9-times higher than the peak expression level in spheroid homo-culture control in serum-free (day 3) and serum-containing media (day 4), respectively. The albumin secretion function was maintained for at least two weeks; it was 5.1 (in serum-free medium) and 17.8 (in serum-containing medium) times higher than spheroid homo-culture on day 13. Similarly, the co-culture system also expressed approximately 5.5- and 3.1-times higher 3-methylcholanthrene-induced cytochrome P450 enzymatic activity on day 14 as compared to the homo-culture control in serum-free and serum-containing medium, respectively. In conclusion, this unique co-culture system demonstrated the synergistic roles of homotypic cell-cell interaction, heterotypic cell-cell interaction, cell-substrate interaction and soluble stimuli in hepatocyte functional maintenance.  相似文献   

20.
The development of a bioartificial skin is a step toward the treatment of patients with deep burns or nonhealing skin ulcers. One possible approach is based on growing dermal cells on membranes to obtain appropriate living cellular stroma (sheets) to cover the wound. New membrane-forming copolymers were synthesized, based on acrylonitrile (AN) copolymerization with hydrophilic N-vinylpyrrolidone (NVP) monomer, in different percentage ratios, such as 5, 20, and 30% w/w, and with two other relatively high polar comonomers--namely, sodium 2-methyl-2-propene-1-sulfonic acid (NaMAS) and aminoethylmethacrylate (AeMA). All these copolymers were characterized for their bulk composition and number average molecular weight, and used to prepare ultrafiltration membranes. Water contact angles and water uptake were estimated to characterize the wettability and scanning force microscopy to visualize the morphology of the resulting polymer surface. Cytotoxicity was estimated according to the international standard regulations, and the materials were found to be nontoxic. The interaction of the membranes with human skin fibroblasts was investigated considering that these cells are among the first to colonize membranes upon implantation or with prolonged external contact. The overall cell morphology, formation of focal adhesion contacts, and cell proliferation were estimated to characterize the cell material interactions. It was found that the pure polyacrylonitrile homopolymer (PAN) membrane provides excellent conditions for seeding with fibroblasts, comparable only to a copolymer containing AeMA. In contrast, the presence of NaMAS with acidic ionic groups decreased both the attachment and proliferation of fibroblasts. Low content of NVP in the copolymer, up to about 5%, still enabled good attachment and spreading of cells, as well as subsequent proliferation of fibroblasts, but higher ratios of 20 and 30% resulted in a significant decrease of these cellular activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号