首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The projections from the brainstem to the midline and intralaminar thalamic nuclei were examined in the rat. Stereotaxic injections of the retrograde tracer cholera toxin beta -subunit (CTb) were made in each of the intralaminar nuclei of the dorsal thalamus: the lateral parafascicular, medial parafascicular, central lateral, paracentral, oval paracentral, and central medial nuclei; in the midline thalamic nuclei-the paraventricular, intermediodorsal, mediodorsal, paratenial, rhomboid, reuniens, and submedius nuclei; and, in the anteroventral, parvicellular part of the ventral posterior, and caudal ventral medial nuclei. The retrograde cell body labeling pattern within the brainstem nuclei was then analyzed. Nearly every thalamic site received a projection from the deep mesencephalic reticular, pedunculopontine tegmental, dorsal raphe, median raphe, laterodorsal tegmental, and locus coeruleus nuclei. Most intralaminar thalamic sites were also innervated by unique combinations of medullary and pontine reticular formation nuclei such as the subnucleus reticularis dorsalis, gigantocellular, dorsal paragigantocellular, lateral, parvicellular, caudal pontine, ventral pontine, and oral pontine reticular nuclei; the dorsomedial tegmental, subpeduncular tegmental, and ventral tegmental areas; and, the central tegmental field. In addition, most intralaminar injections resulted in retrograde cell body labeling in the substantia nigra, nucleus Darkschewitsch, interstitial nucleus of Cajal, and cuneiform nucleus. Details concerning the pathways from the spinal trigeminal, nucleus tractus solitarius, raphe magnus, raphe pallidus, and the rostral and caudal linear raphe nuclei to subsets of midline and intralaminar thalamic sites are discussed in the text. The discussion focuses on brainstem-thalamic pathways that are likely involved in arousal, somatosensory, and visceral functions.  相似文献   

2.
The superior colliculus (SC) projections to the midline and intralaminar thalamic nuclei were examined in the rat. The retrograde tracer cholera toxin beta (CTb) was injected into one of the midline thalamic nuclei-paraventricular, intermediodorsal, rhomboid, reuniens, submedius, mediodorsal, paratenial, anteroventral, caudal ventromedial, or parvicellular part of the ventral posteriomedial nucleus-or into one of the intralaminar thalamic nuclei-medial parafascicular, lateral parafascicular, central medial, paracentral, oval paracentral, or central lateral nucleus. After 10-14 days, the brains from these animals were processed histochemically, and the retrogradely labeled neurons in the SC were mapped. The lateral sector of the intermediate gray and white layers of the SC send axonal projections to the medial and lateral parafascicular, central lateral, paracentral, central medial, rhomboid, reuniens, and submedius nuclei. The medial sector of the intermediate and deep SC layers project to the parafascicular and central lateral thalamic nuclei. The paraventricular thalamic nucleus is innervated almost exclusively by the medial sectors of the deep SC layers. The superficial gray and optic layers of the SC do not project to any of these thalamic areas. The discussion focuses on the role these SC-thalamic inputs may have on forebrain circuits controlling orienting and defense (i.e., fight-or-flight) reactions.  相似文献   

3.
The periaqueductal gray matter (PAG) projections to the intralaminar and midline thalamic nuclei were examined in rats. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in discrete regions of the PAG, and axonal labeling was examined in the thalamus. PHA-L was also placed into the dorsal raphe nuclei or nucleus of Darkschewitsch and interstitial nucleus of Cajal as controls. In a separate group of rats, the retrograde tracer cholera toxin beta-subunit (CTb) was injected into one of the intralaminar thalamic nuclei-lateral parafascicular, medial parafascicular, central lateral (CL), paracentral (PC), or central medial nucleus-or one of the midline thalamic nuclei-paraventricular (PVT), intermediodorsal (IMD), mediodorsal, paratenial, rhomboid (Rh), reuniens (Re), or caudal ventral medial (VMc) nucleus. The distribution of CTb labeled neurons in the PAG was then mapped. All PAG regions (the four columns of the caudal two-thirds of the PAG plus rostral PAG) and the precommissural nucleus projected to the rostral PVT, IMD, and CL. The ventrolateral, lateral, and rostral PAG provided additional inputs to most of the other intralaminar and midline thalamic nuclei. PAG inputs to the VMc originated from the rostral and ventrolateral PAG areas. In addition, the lateral and rostral PAG projected to the zona incerta. No evidence was found for a PAG input to the ventroposterior lateral parvicellular, ventroposterior medial parvicellular, caudal PC, oval paracentral, and reticular thalamic nuclei. PAG --> thalamic circuits may modulate autonomic-, nociceptive-, and behavior-related forebrain circuits associated with defense and emotional responses.  相似文献   

4.
In this study, we report the identification of a hitherto not reported direct retinal projection to midline and intralaminar thalamic nuclei in the marmoset brain. After unilateral intravitreal injections of cholera toxin subunit B (CTb), anterogradely transported CTb-immunoreactive fibers and presumptive terminals were seen in the following thalamic midline nuclei: paraventricular, rhomboid, interanteromedial, and reuniens, and thalamic intralaminar nuclei: central medial, central lateral, central dorsal, and parafascicular. Studies employing sensitive tracers in other primate species are needed in order to verify the possible universality of these projections. Some of the possible functional correlates of the present data are briefly discussed. The present results may contribute to the elucidation of the anatomical substrate of the functionally demonstrated involvement of this midline/intralaminar thalamic nuclear complex in several domains that include arousal and awareness, besides specific cognitive, sensory, and motor functions.  相似文献   

5.
After injections of fast blue into the rostral cortex and Evans blue into the caudate nucleus in cats, doubly labeled neurons were present in the ventral anterior, ventral lateral, rhomboid, and mediodorsal thalamic nuclei. Doubly labeled cells were also found in most members of the intralaminar group, including the central medial, paracentral, central lateral, and parafascicular nuclei. Although the centromedian nucleus contained large numbers of cells labeled with Evans blue which project to the caudate nucleus, and a few fast-blue labeled cells which projected to the cortex, doubly labeled neurons were absent from this posterior intralaminar nucleus in this study.  相似文献   

6.
Although thalamic projections to the dorsal striatum are well described in primates and other species, little is known about thalamic projections to the ventral or “limbic” striatum in the primate. This study explores the organization of the thalamic projections to the ventral striatum in the primate brain by means of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and Lucifer yellow (LY) retrograde tracer techniques. In addition, because functional and connective differences have been described for the core and shell components of the nucleus accumbens in the rat and are thought to be similar in the primate, this study also explores whether these regions of the nucleus accumbens can be distinguished by their thalamic input. Tracer injections are placed in different portions of the ventral striatum, including the medial and lateral regions of the ventral striatum; the central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens; and the shell region of the nucleus accumbens. Retrogradely labeled neurons are located mainly in the midline nuclear group (anterior and posterior paraventricular, paratenial, rhomboid, and reuniens thalamic nuclei) and in the parafascicular thalamic nucleus. Additional labeled cells are found in other portions of the intralaminar nuclear group as well as in other thalamic nuclei in the ventral, anterior, medial, lateral, and posterior thalamic nuclear groups. The distribution of labeled cells varies depending on the area of the ventral striatum injected. All regions of the ventral striatum receive strong projections from the midline thalamic nuclei and from the parafascicular nucleus. In addition, the medial region of the ventral striatum receives numerous projections from the central superior lateral nucleus, the magnocellular subdivision of the ventral anterior nucleus, and parts of the mediodorsal nucleus. After injection into the lateral region of the ventral striatum, few labeled neurons are seen scattered in nuclei of the intralaminar and ventral thalamic groups and occasional labeled cells in the mediodorsal nucleus. The central region of the ventral striatum, including the dorsal part of the core of the nucleus accumbens, receives a limited projection from the midline thqlamic, predominantly from the rhomboid nucleus. It receives much smaller projections from the central medial nucleus and the ventral, anterior, and medial thalamic groups. The shell of the nucleus accumbens receives the most limited projection from the thalamus and is innervated almost exclusively by the midline thalamic nuclei and the central medial and parafascicular nuclei. The shell is distinguished from the rest of the ventral striatum in that it receives the fewest projections from the ventral, anterior, medial, and lateral thalamic nuclei. © 1995 Wiley-Liss, Inc.  相似文献   

7.
The organization of the thalamic projections to the ventral striatum in the rat was studied by placing injections of the retrograde tracer cholera toxin subunit B in the ventral striatum and small deposits of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) in individual midline and intralaminar thalamic nuclei. In order to provide a complete map of the midline and intralaminar thalamostriatal projections, PHA-L injections were also made in those parts of the intralaminar nuclei that project to the dorsal striatum. The relationship of thalamic afferent fibres with the compartmental organization of the ventral striatum was assessed by combining PHA-L tracing and enkephalin immunohistochemistry. The various midline and intralaminar thalamic nuclei project to longitudinally oriented striatal sectors. The paraventricular thalamic nucleus sends most of its fibres to medial parts of the nucleus accumbens and the olfactory tubercle, whereas smaller contingents of fibres terminate in the lateral part of the nucleus accumbens and the most ventral, medial, and caudal parts of the caudate-putamen complex. The projections of the parataenial nucleus are directed towards central and ventral parts of the nucleus accumbens and intermediate mediolateral parts of the olfactory tubercle. The intermediodorsal nucleus projects to lateral parts of the nucleus accumbens and the olfactory tubercle and to ventral parts of the caudate-putamen. The projection of the rhomboid nucleus is restricted to the rostrolateral extreme of the striatum. A diffuse projection to the ventral striatum arises from neurons ventral and caudal to the nucleus reuniens rather than from cells inside the nucleus. Fibres from the central medial nucleus terminate centrally and dorsolaterally in the rostral part of the nucleus accumbens and medially in the caudate-putamen. Successively more lateral positions in the caudate-putamen are occupied by fibres from the paracentral and central lateral nuclei, respectively. The lateral part of the parafascicular nucleus projects to the most lateral part of the caudate-putamen, whereas projections from the medial part of this nucleus terminate in the medial part of the caudate-putamen and in the dorsolateral part of the nucleus accumbens. Furthermore, a rostral to caudal gradient in a midline or intralaminar nucleus corresponds to a dorsal to ventral and rostral to caudal gradient in the striatum. In the ventral striatum, thalamic afferent fibres in the "shell" region of the nucleus accumbens avoid areas of high cell density and weak enkephalin immunoreactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The organization of projections from the parabrachial (PB) area to the ventral posterior parvicellular (VPpc) "gustatory" and intralaminar nuclei of the thalamus was studied in the rat by using microinjections of Phaseolus vulgaris leucoagglutinin (PHA-L), into subregions of the PB area. The present study is a follow-up of three former studies (Bernard et al. [1993] J. Comp. Neurol. 329:201-229; Aldén et al. [1994] J. Comp. Neurol. 341:289-314; Bester et al. [1997a] J. Comp. Neurol. 383:245-281) that examined PB projections onto the amygdala, the bed nucleus of the stria terminalis, and the hypothalamus. Our data showed that (1) the region centered in the internal lateral PB subnucleus projects densely with a bilateral and symmetric pattern to the caudal portion of the paracentral and, to a lesser extent, to the adjacent portion of the central and parafascicular medial thalamic nuclei; (2) the mesencephalic PB region centered in the ventral lateral subnucleus and scattered neurons in the subjacent brachium conjunctivum project primarily, although diffusely, to the central medial thalamic nucleus. The third region includes two subgroups: (3a) the medial subgroup, including the medial, the waist area, and the ventral lateral subnuclei of the pontine PB area, projects bilaterally but with a weak ipsilateral predominance to the VPpc, terminals bearing large varicosities. Additionally, a diffuse projection with small varicosities spreads in the area between the two VPpc nuclei and the central medial nucleus. (3b) The lateral subgroup, centered in the external medial subnucleus, projects with a contralateral predominance in the periphery of the VPpc nuclei, most terminals being located around the dorsomedial tip. It is suggested that the PB projections to the intralaminar nucleus could be involved in cortical limbic arousal processing in relation with nociceptive, (somatic, visceral, and intraoral) and gustatory aversive stimuli. The projection with large varicosities inside the VPpc could process gustatory discrimination.  相似文献   

9.
Injections of calcitonin gene-related peptide (CGRP) into the amygdala evoke fear-related behaviors and antinociceptive effects. In the present study we therefore characterized CGRP-containing amygdaloid afferents by injecting the retrograde tracer FluoroGold (FG) into subnuclei of the amygdala and adjacent divisions of the extended amygdala, namely, the lateral (LA) and central (CE) amygdaloid nuclei, interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and the amygdalostriatal area (AStr). The distribution of retrogradely FG-labeled neurons and colocalization of CGRP-immunoreactivity with FG-labeling were mapped in the posterior paralaminar thalamic complex and parabrachial nuclei. The analysis of the posterior thalamus revealed that about 50% of CGRP-containing neurons projected to the AStr, the projections originating in the medial part of the medial geniculate body, posterior intralaminar nucleus, parvicellular subparafascicular nucleus, and peripeduncular nucleus. However, the percentage of CGRP-containing thalamic neurons projecting to the adjacent LA, medial part of the CE, and ventrocaudal part of the caudatoputamen rapidly dropped to 3-9%. There were no double-labeled cells after injections into the lateral and capsular parts of the CE and the IPAC. Thus, the AStr received the heaviest CGRP-containing projection from the posterior thalamus. CGRP-containing parabrachial neurons projected to the AStr and lateral, capsular, and medial parts of the CE, the projections originating in the external, crescent, and central parts of the lateral parabrachial nucleus and external part of the medial parabrachial nucleus. The results demonstrate a distinct projection pattern of CGRP-containing thalamic and parabrachial neurons to subnuclei of the amygdala and extended amygdala.  相似文献   

10.
Ascending projections from the dorsal raphe nucleus (DR) were examined in the rat by using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). The majority of labeled fibers from the DR ascended through the forebrain within the medial forebrain bundle. DR fibers were found to terminate heavily in several subcortical as well as cortical sites. The following subcortical nuclei receive dense projections from the DR: ventral regions of the midbrain central gray including the 'supraoculomotor central gray' region, the ventral tegmental area, the substantia nigra-pars compacta, midline and intralaminar nuclei of the thalamus including the posterior paraventricular, the parafascicular, reuniens, rhomboid, intermediodorsal/mediodorsal, and central medial thalamic nuclei, the central, lateral and basolateral nuclei of the amygdala, posteromedial regions of the striatum, the bed nucleus of the stria terminalis, the lateral septal nucleus, the lateral preoptic area, the substantia innominata, the magnocellular preoptic nucleus, the endopiriform nucleus, and the ventral pallidum. The following subcortical nuclei receive moderately dense projections from the DR: the median raphe nucleus, the midbrain reticular formation, the cuneiform/pedunculopontine tegmental area, the retrorubral nucleus, the supramammillary nucleus, the lateral hypothalamus, the paracentral and central lateral intralaminar nuclei of the thalamus, the globus pallidus, the medial preoptic area, the vertical and horizontal limbs of the diagonal band nuclei, the claustrum, the nucleus accumbens, and the olfactory tubercle. The piriform, insular and frontal cortices receive dense projections from the DR; the occipital, entorhinal, perirhinal, frontal orbital, anterior cingulate, and infralimbic cortices, as well as the hippocampal formation, receive moderately dense projections from the DR. Some notable differences were observed in projections from the caudal DR and the rostral DR. For example, the hippocampal formation receives moderately dense projections from the caudal DR and essentially none from the rostral DR. On the other hand, virtually all neocortical regions receive significantly denser projections from the rostral than from the caudal DR. The present results demonstrate that dorsal raphe fibers project significantly throughout widespread regions of the midbrain and forebrain.  相似文献   

11.
Künzle H 《Brain research》2006,1100(1):78-92
Unlike the basal ganglia input from the midline and intralaminar nuclei, the origin and prominence of striatal projections arising in the lateral thalamus varies considerably among mammals being most restricted in the opossum and monkey, most extensive in the rat. To get further insight into the evolution of thalamo-striatal pathways the Madagascar lesser hedgehog tenrec (Afrotheria) was investigated using anterograde and retrograde flow techniques. An extensive medial thalamic region (including presumed equivalents to the paraventricular, parataenial and dorsomedial nuclei as well as the reuniens complex), the rostral (central) and caudal (parafascicular) intralaminar nuclei were shown to give rise to striatal projections. Additional projections originated in the ventral anterolateral nuclear group and regions within and around the medial geniculate complex. Similar to the rat there was also substantial projections from the lateral posterior-pulvinar complex and the ventral posterior nucleus. The fibers terminated extensively across the striatum in a mainly homogeneous fashion. Isolated patches of low-density terminations were found in the caudoputamen. This inhomogeneous labeling pattern appeared similar to one described in the cat with the unlabeled islands showing features of striosomes. The medial and intralaminar nuclei also projected heavily upon the olfactory tubercle. Differential innervation patterns were noted in the polymorphous layer, the deep and the superficial molecular layer.  相似文献   

12.
The compartmental organization of the thalamostriatal connection in the cat was studied by labelling thalamic fibers in anterograde axonal transport experiments and comparing their striatal distributions with the arrangement of striosomes and matrix tissue identified by histochemical staining methods. When analyzed according to their principal compartmental targets in dorsal striatum, the thalamic deposits indicated the existence of medial and lateral divisions within the thalamostriatal projection. Nuclei of the medial division, which includes parts of the thalamic midline, projected primarily to striosomes. The lateral division, which embraces the anterior and posterior intralaminar groups, the rostral ventral tier nuclei, and parts of the posterior lateral nuclear complex, predominantly innervated matrix tissue. In the dorsal division of the nucleus accumbens, the medial system preferentially terminated in zones that stain heavily in butyrylcholinesterase and substance P preparations, but fibers from both the medial and the lateral systems largely avoided the histochemically marked compartments such as the border islands of the nucleus accumbens that are seen elsewhere in the ventral striatum. Medial division: Thalamic deposits involving the paraventricular and rhomboid nuclei of the thalamic midline elicited labelling of striosomes and, invariably, ventral extrastriosomal matrix, the nucleus accumbens, and the amygdala. This projection was topographically organized: rostral thalamic deposits elicited labelling in the medial caudate nucleus and the medial nucleus accumbens. More caudal injections produced more lateral labelling. Lateral division: The lateral division is composed of at least three projection systems distinguished by their patterns of matrix innervation. Deposits involving the anterior intralaminar nuclei and the striatally projecting cells located lateral to the stria medullaris (anterior intralaminar complex) produced an even, diffuse labelling of the matrix tissue and weak labelling of the striosomes. Injections placed in the ventroanterior, ventrolateral, and ventromedial nuclei (rostral ventral complex) elicited fibrous labelling of matrix tissue that often showed nonstriosomal inhomogeneities. Deposits involving the centromedian and parafascicular nuclei (posterior intralaminar complex) produced a highly variable pattern of matrix labelling that included both homogeneous and decidedly patchy innervations of the extrastriosomal matrix. Each of these lateral thalamostriatal systems showed a similar spatial organization, whereby dorsoventral and mediolateral thalamic axes were roughly preserved in the projection to striatum.  相似文献   

13.
The corticothalamic projections from the cat limbic cortex have been investigated with anterograde and retrograde axonal transport techniques. Five limbic cortical areas—the anterior limbic area, the cingular area, the granular and dysgranular retrosplenial areas, and the presubiculum—were identified on the basis of their cytoarchitecture. Emphasis was placed on determining the laminar distribution of the cells of origin of the efferent projections, the projection pathways, and the sites of termination within the thalamus. Projections to the thalamus originate in layers V and VI of limbic cortex. In the cingular region the cells of origin are predominantly in layer V and to a lesser extent in layer VI, while the majority of cells projecting from the more caudal retrosplenial areas and presubiculum are in layer VI. There are two fiber pathways from each cortical area to the thalamus. One system of fibers passes through the internal capsule and lateral thalamic peduncle, and a second system travels in the cingulate fasciculus before piercing the corpus callosum to join the postcommissural fornix. The lateral dorsal nucleus and the anterior nuclear group, including the anterior dorsal, anterior ventral, and anterior medial nuclei, are the major thalamic recipients of projections from limbic cortex. Corticothalamic projections also terminate sparsely in the midline and intralaminar nuclear complex, including the central lateral, central dorsal, paracentral, central medial, rhomboid, and reuniens nuclei. Projections from the anterior limbic area project predominantly to the anterior medial, centrall lateral, and paracentral nuclei. The anterior ventral nucleus, anterior medial nucleus, and lateral dorsal nucleus are the major thalamic recipients of projections from the cingular area, the granular and dysgranular retro-splenial areas, and the presubiculum. It appears that the anterior dorsal nucleus receives afferents only from the dysgranular retrosplenial area. Bilateral corticothalamic projections were found in the anterior medial, dorsal medial, central lateral, central medial, paracentral, and reuniens nuclei.  相似文献   

14.
The connections of the laterodorsal tegmental nucleus (LDTg) have been investigated using anterograde and retrograde lectin tracers with immunocytochemical detection. Inputs to LDTg were found from frontal cortex, diagonal band, preoptic areas, lateral hypothalamus, lateral mamillary nucleus, lateral habenula; the interpeduncular nucleus, ventral tegmental area, substantia nigra and retrorubral fields; the medial terminal nucleus, interstitial nucleus, supraoculomotor central grey, medial pretectum, nucleus of the posterior commissure, paramedian pontine reticular formation, paraabducens and paratrochlear region; the parabrachial nuclei and nucleus of the tractus solitarius. Terminal labelling from PHA-L injections of LDTg was found in infralimbic, cingulate and hippocampal cortex, lateral septum, septofimbrial and triangular nuclei, horizontal limb of diagonal band and preoptic areas; in the anterior, mediodorsal, reuniens, centrolateral, parafascicular, paraventricular and laterodorsal thalamic nuclei, rostral reticular thalamic nucleus, and zona incerta; the lateral habenula and the lateral hypothalamus. A number of brainstem structures apparently associated with visual functions were also innervated, mainly the superior colliculus, medial pretectum, medial terminal nucleus, paramedian pontine reticular formation, inferior olive, supraoculomotor, paraabducens and supragenual regions, prepositus hypoglossi and nucleus of the posterior commissure. Also innervated were substantia nigra compacta, ventral tegmental area, interfascicular nucleus, interpeduncular nucleus, dorsal and medial raphe, pedunculopontine tegmental region, parabrachial nuclei, and nucleus of the tractus solitarius. These findings suggest the LDTg to be a highly differentiated part of the ascending "reticular activating" system, concerned not only with specific cortical and thalamic regions, especially those associated with the limbic system, but also with the basal ganglia, and visual (particularly oculomotor) mechanisms. Additional links with the habenula-interpeduncular system are discussed in this context.  相似文献   

15.
16.
Paraffin-embedded blocks from the thalamus of 9 control patients, 9 moderately disabled, 12 severely disabled, and 10 vegetative head-injured patients assessed using the Glasgow Outcome Scale and identified from the Department of Neuropathology archive. Neurons, astrocytes, macrophages, and activated microglia were differentiated by Luxol fast blue/cresyl violet, GFAP, CD68, and CR3/43 staining and stereological techniques used to estimate cell number in a 28-microm-thick coronal section. Counts were made in subnuclei of the mediodorsal, lateral posterior, and ventral posterior nuclei, the intralaminar nuclei, and the related internal lamina. Neuronal loss occurred from mediodorsal parvocellularis, rostral center medial, central lateral and paracentral nuclei in moderately disabled patients; and from mediodorsal magnocellularis, caudal center medial, rhomboid, and parafascicular nuclei in severely disabled patients; and all of the above and the centre median nucleus in vegetative patients. Neuronal loss occurred primarily from cognitive and executive function nuclei, a lesser loss from somatosensory nuclei and the least loss from limbic motor nuclei. There was an increase in the number of reactive astrocytes, activated microglia, and macrophages with increasing severity of injury. The study provides novel quantitative evidence for differential neuronal loss, with survival after human head injury, from thalamic nuclei associated with different aspects of cortical activation.  相似文献   

17.
The infralimbic area (IL) and prelimbic area (PL) have been postulated as an autonomic motor region in the medial prefrontal cortex. The present study was conducted to reveal the projection sites of IL and PL of the monkey, Macaca fuscata, using biotinylated dextran amine as an anterograde tracer. IL and PL projected densely to the ventromedial caudate nucleus, the core and shell of the nucleus accumbens (Acb), parvicellular lateral basal and magnocellular accessory basal nuclei of the amygdala, lateral preoptic area, ventromedial hypothalamic nucleus, tubero-mammillary nucleus (TM), medial part of the magnocellular and dorsal part of the parvicellular (MDpc) dorsomedial thalamic nuclei, reunience and medial part of the medial pulvinar nucleus, and dorso-lateral part of the periaqueductal gray (PAGdl) in the mesencephalon. Moderately to weakly projected areas were the intermediate and lateral parts of the agranular insular cortex, orbital part of area 12, agranular and dysgranular part of the temporal pole cortex (TPa-g), auditory temporal cortex, lateral and medial (MS) septal nuclei, bed nucleus of the stria terminalis, diagonal band of Broca, substantia innominata, and medial preoptic area, dorsomedial, lateral, and posterior hypothalamic nuclei, magnocellular lateral basal and lateral amygdaloid nuclei, paratenial, paraventricular (PV), inter-antero-medial (IAM), reticular, central medial (CeM), parafascicular (PF) and limitans nuclei of the thalamus, lateral habenular nucleus, pedunculo-pontine nucleus, dorsal part of the lateral lemniscal nucleus, ventral tegmental area (VTA), dorsal raphe, superior central nucleus, medial and lateral parabrachial nuclei (PBl) and nucleus locus coeruleus (LC). A few scattered terminals were observed in the perifornical nucleus of the hypothalamus and substantia nigra pars compacta. PL and area 24 were characterized by projections to the entorhinal (Ent) and piriform (Pir) cortex as well as to the magnocellular part of the ventral anterior thalamic nucleus (VAmc). The morphology of the terminal arborization in each nuclei was different in appearance, perhaps reflecting the synaptic interaction between the nerve terminals and postsynaptic dendrites. PL projected uniquely to Ent, Pir and VAmc and IL projected uniquely to TPa-g, MS, IAM, CeM, MDpc, PF, PBl and LC. IL projected more strongly than PL to the shell of Acb, amygdaloid nuclei, PV, TM, VTA and PAGdl. The present results support the hypothesis that IL is a major cortical autonomic motor area and PL integrates limbic and autonomic inputs in the primate.  相似文献   

18.
The infralimbic area (IL) and prelimbic area (PL) have been postulated as an autonomic motor region in the medial prefrontal cortex. The present study was conducted to reveal the projection sites of IL and PL of the monkey, Macaca fuscata, using biotinylated dextran amine as an anterograde tracer. IL and PL projected densely to the ventromedial caudate nucleus, the core and shell of the nucleus accumbens (Acb), parvicellular lateral basal and magnocellular accessory basal nuclei of the amygdala, lateral preoptic area, ventromedial hypothalamic nucleus, tubero-mammillary nucleus (TM), medial part of the magnocellular and dorsal part of the parvicellular (MDpc) dorsomedial thalamic nuclei, reunience and medial part of the medial pulvinar nucleus, and dorso-lateral part of the periaqueductal gray (PAGdl) in the mesencephalon. Moderately to weakly projected areas were the intermediate and lateral parts of the agranular insular cortex, orbital part of area 12, agranular and dysgranular part of the temporal pole cortex (TPa-g), auditory temporal cortex, lateral and medial (MS) septal nuclei, bed nucleus of the stria terminalis, diagonal band of Broca, substantia innominata, and medial preoptic area, dorsomedial, lateral, and posterior hypothalamic nuclei, magnocellular lateral basal and lateral amygdaloid nuclei, paratenial, paraventricular (PV), inter-antero-medial (IAM), reticular, central medial (CeM), parafascicular (PF) and limitans nuclei of the thalamus, lateral habenular nucleus, pedunculo-pontine nucleus, dorsal part of the lateral lemniscal nucleus, ventral tegmental area (VTA), dorsal raphe, superior central nucleus, medial and lateral parabrachial nuclei (PBl) and nucleus locus coeruleus (LC). A few scattered terminals were observed in the perifornical nucleus of the hypothalamus and substantia nigra pars compacta. PL and area 24 were characterized by projections to the entorhinal (Ent) and piriform (Pir) cortex as well as to the magnocellular part of the ventral anterior thalamic nucleus (VAmc). The morphology of the terminal arborization in each nuclei was different in appearance, perhaps reflecting the synaptic interaction between the nerve terminals and postsynaptic dendrites. PL projected uniquely to Ent, Pir and VAmc and IL projected uniquely to TPa-g, MS, IAM, CeM, MDpc, PF, PBl and LC. IL projected more strongly than PL to the shell of Acb, amygdaloid nuclei, PV, TM, VTA and PAGdl. The present results support the hypothesis that IL is a major cortical autonomic motor area and PL integrates limbic and autonomic inputs in the primate.  相似文献   

19.
The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus. Moderately dense inputs are found in the parastrial, tuberal, dorsal raphé, and parabrachial nuclei and in the retrorubral area, ventrolateral division of the periaqueductal gray, and pontine central gray. Light projections end in the olfactory tubercle, lateral septal nucleus, posterior basolateral amygdalar nucleus, supramammillary nucleus, and nucleus of the solitary tract. These and other results suggest that the BSTov and BSTfu are basal telencephalic parts of a circuit that coordinates autonomic, neuroendocrine, and ingestive behavioral responses during stress.  相似文献   

20.
The organization of the projections from the intralaminar and other thalamic nuclei to the caudate nucleus (CD), putamen (PU), nucleus accumbens (Acc), and olfactory tubercle (TO) were examined in the cat by autoradiography after deposits of 3H-amino acids in individual thalamic nuclei and by retrograde cell labeling after intrastriatal deposits of wheat-germ-conjugated horseradish peroxidase. All of the rostral intralaminar nuclei, here considered to include the central lateral (CL), paracentral (PC), central medial (CeM), and rhomboid nuclei (Rh), project to the striatum. Projections closely associated with those of the rostral intralaminar group arise from cells of the paraventricular nucleus (PV) and a region lateral to the stria medullaris. These nuclei, which roughly form a ring around the mediodorsal nucleus, project in a highly particular, but loosely arranged topographic pattern to all parts of the striatum. The medially located cells in Rh, PV, and those alongside the stria medullaris project mainly to medial parts of Acc and CD; the dorsolaterally located cells of CL project mainly to the dorsolateral parts of CD and PU; cells in PC and CeM project to progressively more ventral and medial parts of CD and PU, and the lateral part of Acc. Superimposed on this projection from the rostral intralaminar region is the projection from the caudal intralaminar group including the centromedian (CM), parafascicular (PF), and subparafascicular nuclei (subPF). Together these nuclei project in a loosely but specifically organized topography to the entire striatum. The lateral and dorsal parts of CD and PU receive fibers mainly from CM. Ventral and medial parts of CD and PU and Acc receive fibers mainly from PF; TO receives fibers from subPF and the ventral part of PF. Several nuclei in the lateral nuclear mass of the thalamus also project to particular parts of the striatum. Thus, cells in the rostromedial part of the ventral anterior nucleus project to the head of CD and some cells in the rostral part of the ventromedial nucleus project to the head of CD and to PU. Several cells scattered in the lateral posterior complex project to lateral parts of the head of CD, and cells in the rostral extension of the medial subdivision of the posterior nuclear complex project to lateral parts of the head and body of CD. Finally, several cells of the paratenial nucleus project selectively to Acc. These data provide a detailed map of the total thalamostriatal projection in the cat and, hence, form a basis for more specific functional questions about this poorly understood system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号