首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shah SR  Vyavahare NR 《Biomaterials》2008,29(11):1645-1653
Bioprosthetic valves are used in thousands of heart valve replacement surgeries. Existing glutaraldehyde-crosslinked bioprosthetic valves fail due to either calcification or degeneration. Glutaraldehyde crosslinking does not stabilize valvular glycosaminoglycans (GAGs). GAGs, predominantly present in the medial spongiosa layer of native heart valve cusps, play an important role in regulating physico-mechanical behavior of the native cuspal tissue during dynamic motion. The primary objective of this study was to identify the role of cuspal GAGs in valve tissue buckling. Glutaraldehyde-crosslinked cusps showed extensive buckling compared to fresh, native cusps. Removal of GAGs by treatment with GAG-degrading enzymes led to a marked increase in buckling behavior in glutaraldehyde-crosslinked cusps. We demonstrate that the retention of valvular GAGs by carbodiimide crosslinking together with chemical attachment of neomycin trisulfate (a hyaluronidase inhibitor), prior to glutaraldehyde crosslinking, reduces the extent of buckling in bioprosthetic heart valves. Furthermore, following exposure to GAG-digestive enzymes, neomycin-trisulfate-bound cusps experienced no alterations in buckling behavior. Such moderate buckling patterns mimicked that of fresh, untreated cusps subjected to similar bending curvatures. Thus, GAG stabilization may subsequently improve the durability of these bioprostheses.  相似文献   

2.
Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of surgeries annually. Here we report for the first time, in a series of in vitro accelerated fatigue studies (5-500 million cycles) with glutaraldehyde fixed porcine aortic valve bioprostheses, that the mechanical function of cardiac valve cusps caused progressive damage to the molecular structure of type I collagen as assessed by Fourier transform IR spectroscopy (FTIR). The cyclic fatigue caused a progressive loss of helicity of the bioprosthetic cuspal collagen, which was evident from FTIR spectral changes in the amide I carbonyl stretching region. Furthermore, cardiac valve fatigue in these studies also led to loss of glycosaminoglycans (GAGs) from the cuspal extracellular matrix. The GAG levels in glutaraldehyde crosslinked porcine aortic valve cusps were 65.2 +/- 8.66 microg uronic acid/10 mg of dry weight for control and 7.91 +/- 1.1 microg uronic acid/10 mg of dry weight for 10-300 million cycled cusps. Together, these molecular changes contribute to a significant gradual decrease in cuspal bending strength as documented in a biomechanical bending assay measuring three point deformation. We conclude that fatigue-induced damage to type I collagen and loss of GAGs are major contributing factors to material degeneration in bioprosthetic cardiac valve deterioration.  相似文献   

3.
Heart valve replacements fabricated from glutaraldehyde (Glut)-crosslinked heterograft materials, porcine aortic valves or bovine pericardium, have been widely used in cardiac surgery to treat heart valve disease. However, these bioprosthetic heart valves often fail in long-term clinical implants due to pathologic calcification of the bioprosthetic leaflets, and for stentless porcine aortic valve bioprostheses, bioprosthetic aortic wall calcification also typically occurs. Previous use of the epoxide-based crosslinker, triglycidyl amine (TGA), on cardiac bioprosthetic valve materials demonstrated superior biocompatibility, mechanics, and calcification resistance for porcine aortic valve cusps (but not porcine aortic wall) and bovine pericardium, vs. Glut-prepared controls. However, TGA preparation did not completely prevent long-term calcification of cusps or pericardium. Herein we report further mechanistic investigations of an added therapeutic component to this system, 2-mercaptoethylidene-1,1-bisphosphonic acid (MABP), a custom synthesized thiol bisphosphonate, which has previously been shown in a preliminary report to prevent bioprosthetic heterograft biomaterial calcification when used in combination with initial TGA crosslinking for 7 days. In the present studies, we have further investigated the effectiveness of MABP in experiments that examined: (1) The use of MABP after optimal TGA crosslinking, in order to avoid any competitive interference of MABP-reactions with TGA during crosslinking; (2) Furthermore, recognizing the importance of alkaline phosphatase (ALP) in the formation of dystrophic calcific nodules, we have investigated the hypothesis that the mechanism by which MABP primarily functions is through the reduction of ALP activity. Results from cell-free model systems, cell culture studies, and rat subcutaneous implants, show that materials functionalized with MABP after TGA crosslinking have reduced ALP activity, and in vivo have no significant calcification in long-term implant studies. It is concluded that bioprosthetic heart valves prepared in this fashion are compelling alternatives for Glut-prepared bioprostheses.  相似文献   

4.
Glycosaminoglycans (GAGs) are important structural and functional components in native aortic heart valves and in glutaraldehyde (Glut)-fixed bioprosthetic heart valves (BHVs). However, very little is known about the fate of GAGs within the extracellular matrix of BHVs and their contribution to BHV longevity. BHVs used in heart valve replacement surgery have limited durability due to mechanical failure and pathologic calcification. In the present study we bring evidence for the dramatic loss of GAGs from within the BHV cusp structure during storage in saline and both short- and long-term Glut fixation. In order to gain insight into role of GAGs, we compared properties of fresh and Glut-fixed porcine heart valve cusps before and after complete GAG removal. GAG removal resulted in significant morphological and functional tissue alterations, including decreases in cuspal thickness, reduction of water content and diminution of rehydration capacity. By virtue of this diminished hydration, loss of GAGs also greatly increased the "with-curvature" flexural rigidity of cuspal tissue. However, removal of GAGs did not alter calcification potential of BHV cups when implanted in the rat subdermal model. Controlling the extent of pre-implantation GAG degradation in BHVs and development of improved GAG crosslinking techniques are expected to improve the mechanical durability of future cardiovascular bioprostheses.  相似文献   

5.
Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats. Non-crosslinked valves and valves crosslinked with glutaraldehyde or carbodiimide functioned as control. Epoxy-crosslinked valves had somewhat lower shrinkage temperatures than the crosslinked controls, and within the series also some macroscopic and microscopic differences were obvious. After 8 weeks implantation, cusps from non-crosslinked valves were not retrieved. The matching walls were more degraded than the epoxy- and control-crosslinked walls. This was observed from the higher cellular ingrowth with fibroblasts, macrophages, and giant cells. Furthermore, non-crosslinked walls showed highest numbers of lymphocytes, which were most obvious in the capsules. Epoxy- and control-crosslinked cusps and walls induced lower reactions. Calcification, measured by von Kossa-staining and by Ca-analysis, was always observed. Crosslinked cusps calcified more than walls. Of all wall samples, the non-crosslinked walls showed the highest calcification. It is concluded that epoxy-crosslinked valve tissue induced a foreign body and calcification reaction similar to the two crosslinked controls. Therefore, epoxy-crosslinking does not represent a solution for the calcification problem of heart valve bioprostheses.  相似文献   

6.
Congo red staining with microscopic examination under polarized light was performed in 30 porcine bioprosthetic cardiac valves and one autologous fascia lata valve explanted from 31 patients in order to detect the presence of amyloid. Microdeposits of amyloid were present in the sewing ring of the fascia lata valve and in 10 porcine bioprostheses, and this finding was confirmed by transmission electron microscopy in 3 porcine bioprostheses. All amyloid-laden porcine valves had been implanted for at least 33 months before removal, and all except two showed dysfunction and/or severe degeneration of cuspal tissue. Statistical analyses failed to establish any correlation between the presence of amyloid and patient-related factors. In a majority of porcine bioprostheses amyloid was permanganate-sensitive and tryptophan-positive. The pathogenesis of this new form of heart valve amyloidosis might consist in penetration of human macrophages in deteriorated bioprosthetic cusps and their interaction with blood-borne amyloid precursors.  相似文献   

7.
Calcification limits the long-term durability of xenograft glutaraldehyde (GA)-crosslinked heart valves. Previously, a study in rats showed that epoxy-crosslinked heart valves reduced lymphocyte reactions to the same extent as the GA-crosslinked control and induced a similar foreign-body response and calcification reaction. The present study was aimed at reducing the occurrence of calcification of epoxy-crosslinked tissue. Two modifications were carried out and their influence on cellular reactions and the extent of calcification after 8 weeks' implantation in weanling rats was evaluated. First, epoxy-crosslinked valves were post-treated with two detergents to remove cellular elements, phospholipids and small soluble proteins, known to act as nucleation sites for calcification. The second approach was to study the effect of the impaired balance between negatively and positively charged amino acids by an additional crosslinking step with a dicarboxylic acid. The detergent treatment resulted in a washed-out appearance of especially the cusp tissue. With the dicarboxylic acid, both the cusps and the walls had a limited washed-out appearance. The wall also demonstrated some detachment of the subendothelium. After implantation, both detergent and dicarboxylic acid post-treatment histologically resulted in reduced calcification at the edges of cusps and walls. However, total amounts of calcification, measured by atomic emission spectroscopy, were not significantly reduced. Data concerning the presence of lymphocytes varied slightly, but were in the same range as the GA-crosslinked control, i.e., clearly reduced compared with a noncrosslinked control. It is concluded that both the double detergent and the dicarboxylic acid post-treatment of epoxy-crosslinked heart valve tissue do not represent a sound alternative in the fabrication of heart valve bioprostheses.  相似文献   

8.
Bioprosthetic heart valves (BHVs) derived from glutaraldehyde crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, BHVs have limited durability and fail either due to degeneration or calcification. Glycosaminoglycans (GAGs), one of the integral components of heart valve cuspal tissue, are not stabilized by conventional glutaraldehyde crosslinking. Previously we have shown that valvular GAGs could be chemically fixed with GAG-targeted chemistry. However, chemically stabilized GAGs were only partially stable to enzymatic degradation. In the present study an enzyme inhibitor was incorporated in the cusps to effectively prevent enzymatic degradation. Thus, neomycin trisulfate, a known hyaluronidase inhibitor, was incorporated in cusps via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry followed by glutaraldehyde crosslinking (NEG). Controls included cusps crosslinked with either EDC/NHS followed by glutaraldehyde (ENG) or only with glutaraldehyde (GLUT). NEG group showed improved resistance to in vitro enzymatic degradation as compared to GLUT and ENG groups. All groups showed similar collagen stability, measured as a thermal denaturation temperature by differential scanning calorimetry (DSC). The cusps were implanted subdermally in rats to study in vivo degradation of GAGs. NEG group preserved significantly more GAGs than ENG and GLUT. NEG and ENG groups showed reduced calcification than GLUT.  相似文献   

9.
We investigated a novel polyepoxide crosslinker that was hypothesized to confer both material stabilization and calcification resistance when used to prepare bioprosthetic heart valves. Triglycidylamine (TGA) was synthesized via reacting epichlorhydrin and NH(3). TGA was used to crosslink porcine aortic cusps, bovine pericardium, and type I collagen. Control materials were crosslinked with glutaraldehyde (Glut). TGA-pretreated materials had shrink temperatures comparable to Glut fixation. However, TGA crosslinking conferred significantly greater collagenase resistance than Glut pretreatment, and significantly improved biomechanical compliance. Sheep aortic valve interstitial cells grown on TGA-pretreated collagen did not calcify, whereas sheep aortic valve interstitial cells grown on control substrates calcified extensively. Rat subdermal implants (porcine aortic cusps/bovine pericardium) pretreated with TGA demonstrated significantly less calcification than Glut pretreated implants. Investigations of extracellular matrix proteins associated with calcification, matrix metalloproteinases (MMPs) 2 and 9, tenascin-C, and osteopontin, revealed that MMP-9 and tenascin-C demonstrated reduced expression both in vitro and in vivo with TGA crosslinking compared to controls, whereas osteopontin and MMP-2 expression were not affected. TGA pretreatment of heterograft biomaterials results in improved stability compared to Glut, confers biomechanical properties superior to Glut crosslinking, and demonstrates significant calcification resistance.  相似文献   

10.
Glutaraldehyde-fixed porcine aortic valve tissues are widely used for heart valve replacement surgery in the form of bioprosthetic heart valves (BHVs). The durability of BHVs in the clinical setting is limited by tissue degeneration, mechanical failure, and calcification. BHVs rely on the putative ability of glutaraldehyde to render biologic tissues metabolically inert and fully resistant to enzymatic attack. In the present study, we detected and partially characterized the activity of collagen and elastin-degrading enzymes in unimplanted, glutaraldehyde-fixed porcine aortic cusp and wall tissues and compared enzyme activities with those extracted from fresh tissues. Active enzymes capable of degrading extracellular matrix were found to be present in soluble form as well as immobilized on glutaraldehyde-crosslinked tissue matrix. Total levels of collagenolytic activities were evaluated to approximately 0.25 microg of degraded collagen/mg of dry tissue/24 h for both glutaraldehyde-fixed wall and cusp tissues. A major finding of this study was the ability of soluble tissue enzymes to partially degrade glutaraldehyde-fixed collagen and particularly large amounts of glutaraldehyde-fixed elastin. These calcium-dependent gelatinases share many biochemical similarities with matrix metalloproteinases. These data strongly indicate that glutaraldehyde-fixed porcine valvular tissues are not metabolically inert and are not entirely resistant to enzymatic attack, thereby rendering BHVs vulnerable to biologic degeneration and subsequent chronic failure.  相似文献   

11.
Bioprosthetic heart valve (BHV) cusps have a complex architecture consisting of an anisotropic arrangement of collagen, glycosaminoglycans (GAGs) and elastin. Glutaraldehyde (GLUT) is used as a fixative for all clinical BHV implants; however, it only stabilizes the collagen component of the tissue, and other components such as GAGs and elastin are lost from the tissue during processing, storage or after implantation. We have shown previously that the effectiveness of the chemical crosslinking can be increased by incorporating neomycin trisulfate, a hyaluronidase inhibitor, to prevent the enzyme-mediated GAG degradation. In the present study, we optimized carbodiimide-based GAG-targeted chemistry to incorporate neomycin into BHV cusps prior to conventional GLUT crosslinking. This crosslinking leads to enhanced preservation of GAGs during in vitro cyclic fatigue and storage. The neomycin group showed greater GAG retention after both 10 and 50 million accelerated fatigue cycles and after 1 year of storage in GLUT solution. Thus, additional binding of neomycin to the cusps prior to standard GLUT crosslinking could enhance tissue stability and thus heart valve durability.  相似文献   

12.
The durability of bioprosthetic heart valves (BHV) is severely limited by tissue deterioration, manifested as calcification and mechanical damage to the extracellular matrix. Extensive research on mineralization mechanisms has led to prevention strategies, but little work has been done on understanding the mechanisms of noncalcific matrix damage. The present study tested the hypothesis that calcification-independent damage to the valvular structural matrix mediated by mechanical factors occurs in clinical implants and could contribute to porcine aortic BHV structural failure. We correlated quantitative assessment of collagen fiber orientation and structural integrity by small angle light scattering (SALS) with morphologic analysis in 14 porcine aortic valve bioprostheses removed from patients for structural deterioration following 5-20 years of function. Calcification of the explants varied from 0 (none) to 1+ (minimal) to 4+ (extensive), as assessed radiographically. SALS tests were performed over entire excised cusps using a 0.254-mm spaced grid, and the resultant structural information used to generate maps of the local collagen fiber damage that were compared with sites of calcific deposits. All 42 cusps showed clear evidence of substantial noncalcific structural damage. In 29 cusps that were calcified, structural damage was consistently spatially distinct from the calcification deposits, generally in a distribution similar to that noted in porcine BHV subjected to in vitro durability testing. Our results suggest a mechanism of noncalcific degradation dependent on cuspal mechanics that could contribute to porcine aortic BHV failure.  相似文献   

13.
Numerous crosslinking chemistries and methodologies have been investigated as alternative fixatives to glutaraldehyde (GLUT) for the stabilization of bioprosthetic heart valves (BHVs). Particular attention has been paid to valve leaflet collagen and elastin stability following fixation. However, the stability of glycosaminoglycans (GAGs), the primary component of the spongiosa layer of the BHV, has been largely overlooked despite recent evidence provided by our group illustrating their structural and functional importance. In the present study we investigate the ability of two different crosslinking chemistries: sodium metaperiodate (NaIO(4)) followed by GLUT (PG) and 1-Ethyl-3-(3 dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) followed by GLUT (ENG) to stabilize GAGs within BHV leaflets and compare resulting leaflet characteristics with that of GLUT-treated tissue. Incubation of fixed leaflets in GAG-degrading enzymes illustrated in vitro resistance of GAGs towards degradation in PG and ENG treated tissue while GLUT fixation alone was not effective in preventing GAG loss from BHV leaflets. Following subdermal implantation, significant amounts of GAGs were retained in leaflets in the ENG group in comparison to GLUT-treated tissue, although GAG loss was evident in all groups. Utilizing GAG-targeted fixation did not alter calcification potential of the leaflets while collagen stability was maintained at levels similar to that observed in conventional GLUT-treated tissue.  相似文献   

14.
Khan NA  Butany J  Zhou T  Ross HJ  Rao V 《Pathology》2008,40(4):377-384
AIMS: Ventricular assist devices (VADs) are now a mainstay in the management of patients with end-stage heart failure. An important consideration in the long-term durability of these devices is the structural integrity of the prosthetic valves. Herein, we report the morphological findings in inflow and outflow explanted bioprostheses from seven such devices. METHODS: The porcine bioprostheses (n = 7; HeartMate, Novacor) were examined from inflow and outflow valve conduits. Cusp tears were assessed on gross examination. Tissues were then processed for histology and graded for pannus, thrombus, and calcification. Immunohistochemistry was performed using anti-CD68 (macrophages), CD45 (leukocytes) and CD31 (endothelial cells) antibodies to assess inflammation. RESULTS: There was no evidence of infection, host tissue growth, or calcification in either the inflow or the outflow valves in any case. A mild-to-moderate mononuclear cell 'deposit' was present on all porcine bioprostheses, largely on the non-flow surface of the valve cusps. In the case of the longest implant (HeartMate, duration 567 days), a significant mononuclear cell infiltrate was seen on the flow surface, the non-flow surface, as well as the base of the cusp tissue. Variably sized cusp tears were found in all inflow porcine bioprostheses at and beyond 3 months post-implantation, with the longest duration implant showing multiple tears. No tears were identified in the outflow valves. Histology revealed thrombus deposition in all inflow and outflow porcine valves. In addition, inflow valve cusps were characterised by the presence of longitudinally running 'cystic' spaces, which seem to increase in size with increasing implant duration. CONCLUSION: Bioprosthetic heart valves in VADs show significant changes which appear to correlate with duration post-implantation. These changes suggest that haemodynamic forces and the inflammatory reaction may play a significant role in the long-term durability of the porcine bioprostheses in these devices.  相似文献   

15.
Stentless aortic heart valve substitutes, manufactured from biological tissues, are fixed with glutaraldehyde to cross-link collagen, reduce antigenicity, and sterilize the tissue. Despite improved cross linking, reduced antigenicity, and various anticalcification measures, the aortic wall tissue present in these prostheses tends to calcify. The aim of this study was to assess the morphology, collagen cross-link stability, and calcification potential of glutaraldehyde-preserved kangaroo aortic wall tissue as opposed to porcine aortic wall tissue. Porcine and kangaroo aortic wall tissues were fixed in 0.625% buffered glutaraldehyde. Histology and cross-link stability were examined. Calcification potential was determined in the subcutaneous rat model. Kangaroo aortic wall tissue was significantly (p < 0.01) less calcified than porcine aortic wall tissue (26.67 +/- 6.53 versus 41.959 +/- 2.75 microg/mg tissue) at 8 weeks. In conclusion, the histological differences between kangaroo and porcine aortic wall tissue correlate well with the reduced calcification potential of kangaroo aortic wall tissue. The reduced calcification potential could result in improved long-term durability of stentless kangaroo heart valves as bioprostheses.  相似文献   

16.
Gross anatomic, histologic, and transmission and scanning electron microscopic observations were made of 29 bioprosthetic valves that had been implanted in patients for up to 115 months. On the basis of these morphologic data, no significant evidence of tissue rejection was seen. However, the durability of these valve bioprostheses is still questionable. Our observation primarily emphasize three factors: (1) disruption of the endothelial cell barrier and the lack of significant host endothelialization even 115 months after transplantation; (2) increased permeability that eased diffusion of circulating host plasma proteins into valve tissue, and increased activity of infiltration processes, eg. calcification and lipid accumulation; and (3) biodegradation of the collagen framework. Each of these factors may contribute further to valve dysfunction. Development of an intimal fibrous sheath seems to occur in porcine bioprostheses that have been implanted for the longest periods of time, but the rate of host tissue ingrowth varies.  相似文献   

17.
Studies were done on the structural changes that develop in Ionescu-Shiley valves that are used as replacement heart valves for 4 to 8 years. These changes were compared with those found in similarly used porcine aortic valve (PAV) bioprostheses. A variety of morphologic differences were observed between bovine pericardial valve (BPV) and PAV bioprostheses after orthotopic implantation including: primary tissue failure associated with the use of an alignment suture, thickening of valve leaflet, leaflet tissue delamination, leaflet calcification, and dystrophic alterations of collagen. These findings indicate that valve design criteria directly influence the durability of pericardial valves. However, other factors unique to pericardial tissue also affect the durability and performance of BPVs. These factors include the inability of pericardial tissue to accommodate dynamic stresses; the extensive insudation of plasma proteins and lipids; and the inability to reduce leaflet calcification using agents that effectively mitigate calcification in PAV bioprostheses.  相似文献   

18.
Calcification of bioprosthetic heart valves fabricated from glutaraldehyde-pretreated bovine pericardium has not been investigated. The objectives of this study were to characterize pericardium before and after glutaraldehyde pretreatment and to study the pathophysiology of mineralization of glutaraldehyde-preserved pericardium. Pericardial protein was approximately 90% collagen, predominantly Type I. Glutaraldehyde incorporation was complete following 24 hours' incubation (151 X 10(-9) mol/mg). Bovine pericardium pretreated in buffered 0.6% glutaraldehyde, implanted subcutaneously in young rats for 24 hours to 112 days, was analyzed chemically (calcium and phosphorus) and morphologically. Mineralization, detected at 48 hours' implantation, was initially associated with pericardial connective tissue cells and later also collagen. Mean calcium content was 114 micrograms/mg at 21 days and 199 micrograms/mg at 112 days. The morphologic features and the kinetics and degree of mineral accumulation in glutaraldehyde-pretreated bovine pericardium were strikingly similar to those previously determined for porcine aortic valve. These results predict that calcification will critically limit the late durability of clinical pericardial bioprostheses and suggest generalized mechanisms of bioprosthetic tissue mineralization which are probably dependent on modification of implant microstructure by glutaraldehyde pretreatment.  相似文献   

19.
Most failures of bioprosthetic heart valves in children are due to stenosis secondary to thrombus, calcific deposits, or tissue ingrowth. Valve failures due to regurgitation typically involve cuspal detachment, tears, or perforations. We present four cases of prosthetic valve regurgitation in children caused by cuspal retraction without stenosis and describe the morphologic findings related to the valves at autopsy or explantation. A mononuclear cell and giant cell response to the cusps of the valve was a striking finding in one patient.  相似文献   

20.
Primary tissue failure of bioprosthetic heart valves refers primarily to calcification of the leaflets of the bioprosthesis. A 75 year old patient underwent reoperation 15 years after mitral valve replacement with a Carpentier-Edwards porcine bioprosthesis. The extracted bioprosthetic valve was found to have one prolapsed leaflet and a small amount of calcification on all three leaflets without tear or perforation. The two commissures suspending the prolapsed leaflet were detached, causing mitral valve regurgitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号