首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
目的获得编码弓形虫RH株棒状体蛋白2和主要表面抗原1重组复合蛋白为弓形虫病快速诊断试剂盒及蛋白质疫苗的研制作准备。方法用PCR技术从弓形虫基因组DNA中扩增出ROP2和P30基因片段,分别克隆入pMD18T载体,并对重组入外源基因的质粒通过PCR.,双酶切和测序鉴定,将pMD ROP2中的ROP2基因片段经EcoRⅠ和HindⅢ酶切,连接等反应,亚克隆入pET30a(+)原核表达载体构建pET ROP2载体,然后再将pMD P30中的P30基因片段与经BglⅡandEcoRⅠ酶切的pET ROP2载体连接,构建pET ROP2P30载体,经含卡那霉素的LB平板筛选,酶切和PCR鉴定。阳性重组质粒转化到大肠埃氏菌BL21(DE3)中,经IPTG诱导,表达产物用SDS PAGE进行鉴定。大量的表达融合蛋白经纯化和复性后,用Westernblot分析。结果从弓形虫RH株基因组DNA中扩增出特异的ROP2和P30基因片段,成功构建成pET ROP2和pET ROP2P30载体,成功表达了弓形虫棒状体蛋白2和弓形虫棒状体蛋白与主要表面抗原1的融合复合蛋白,表达出的蛋白经纯化复性后具有免疫反应性。结论ROP2和P30基因重组后,在原核表达载体中表达出的蛋白经纯化复性后具有活性,获得纯化和复性的弓形虫ROP2和ROP2P30的高效表达产物,为弓形虫病的诊断和疫苗研究奠定了基础。  相似文献   

2.
目的:构建含弓形虫主要表面抗原基因SAG1和棒状体蛋白ROP1复合基因重组质粒,并在大肠杆菌中表达,检测复合基因表达产物的免疫活性。方法:用亚克隆技术分别把SAG1与ROP1基因克隆至pET28aR T7启动子下游,转化大肠菌DH5α感受态细胞,经IPTG诱导表达,SDS-PAGE及Westem-Blot分析。结果:获得pET28-SAG1/ROP1重组表达载体;SDS-PAGE及Western-Blot印迹显示SAG1/ROP1复合基因表达蛋白产物分子量约为66kD,具有一定的免疫活性。结论:弓形虫复合抗原基因SAG1/ROP1可在大肠杆菌中表达,表达产物具有免疫活性。  相似文献   

3.
目的 构建恶性疟原虫FCC-1/HN株CSP基因的重组真核表达质粒pBK-CSP,在大肠杆菌中进行表达,并进行鉴定。方法 采用限制性内切酶法从重组的大肠杆菌-分枝杆菌穿梭质粒pBCG5.6/CSP中分离出经过测序鉴定的CSP基因片段,将其亚克隆于pBK-CMV真核表达载体,构建重组真核表达质粒pBK-CSP.经IPTG诱导,重组质粒在大肠杆菌DH5α中进行表达,并进行SDS-PAGE及免疫印迹分析。结果 从pBCG5.6/CSP中分离出SP基因片段,成功构建pBK-CSP重组质粒;SDS-PAGE及免疫印迹分析结果显示特异性蛋白条带的相对分子质量约为42000。结论 从pBCG5.6/CSP中成功分离出CSP基因片段,并成功构建pBK-CSP重组质粒,诱导表达CSP非融合蛋白,为恶性疟原虫DNA疫苗的研制奠定了基础。  相似文献   

4.
弓形虫ZS2株抗原基因的扩增及克隆   总被引:2,自引:0,他引:2  
扩增弓形虫ZS2株P30抗原基因,构建PcDNA3—P30真核表达重组质粒。方法本文采用PCR技术,自行设计一对寡核苷酸引物(P1,P2),从弓形虫ZS2基因组DNA中特异扩增出编码P30抗原的基因片段。扩增的目的片段经纯化后用EcoRI和Hind双酶切后,克隆到真核表达质粒pcDNA3中,转化入大肠杆菌TG1,用氨共青霉素和PCR初筛,将PCR扩增阳性的重组子用EcoRI和Kind双酶切鉴定。结果从弓形虫ZS2株DNA中扩增出1025bP的P30基因,构建重组质粒PcDNA3—P30,酶切产物的大小分别与预期相符。结论成功地对弓形虫ZS2株P30基因进行体外扩增及构建真核表达重组质粒PcDNA3—P30,为重组P30抗原及核酸疫苗研究做好准备。  相似文献   

5.
目的分析基因工程生产的弓形虫棒状体蛋白2(ROP2)和膜表面蛋白1(P30)的体外免疫反应性,并对表达产物进行复性处理以获得表达产物的天然构象,为体内免疫学活性的研究作准备。方法重组质粒pET28b/ROP2-P30转化大肠杆菌BL21-Codon Plus(DE3)-RIL菌株,经IPTG诱导的表达产物超声破壁后,SDS-PAGE分析表达产物的表达形式,对产生的重组蛋白ROP2-P30过Sephadex G-25交联葡聚糖柱,经尿素梯度洗脱进行目的蛋白的复性,通过免疫共沉淀反应及免疫印迹实验检测其复性后的重组蛋白的免疫反应性。结果重组质粒pET28b/ROP2-P30在大肠杆菌中以融合形式表达,融合表达的产物主要以包涵体形式存在,该重组蛋白复性后具有明显的免疫反应性。结论利用SephadexG-25交联葡聚糖柱尿素梯度可以复性重组的弓形虫复合蛋白ROP2-P30,该蛋白复性后体外具有免疫反应性,可用于进一步开展弓形虫病复合型疫苗的研制工作。  相似文献   

6.
刚地弓形虫P30(SAG1)基因的克隆与表达   总被引:3,自引:1,他引:3  
目的构建弓形虫P30基因表达载体并获得重组表达蛋白。方法将弓形虫P30基因的开读框用PCR扩增,NcoⅠ和HindⅢ酶切后,与同样酶切的表达质粒pET30a(+)经T4连接酶连接,然后转化到DH5α中。菌液经PCR扩增和质粒酶切及基因测序鉴定后,将阳性重组质粒转化到大肠埃希菌BL21(DE3)中,经IPTG诱导,表达产物用SDS PAGE和Westernblot进行鉴定。结果扩增的P30基因片段为750bp,重组质粒诱导表达产物分子质量单位为30ku,与理论值相符。Westernblot确认重组质粒表达蛋白与小鼠抗弓形虫单克隆抗体(P30McAb)发生特异性反应。结论成功构建重组体并获得弓形虫主要表面抗原P30的高效表达产物,为弓形虫病的诊断和疫苗研究奠定了基础。  相似文献   

7.
弓形虫表面抗原P22编码基因片段的亚克隆与表达   总被引:3,自引:1,他引:3  
目的 亚克隆弓形虫RH株表面抗原P22编码基因,构建表达质粒pBK/P22,并对其在大肠杆菌(E.coli)中的表达作初步研究。方法 以限制性内切酶BamHⅠ和KpnⅠ双酶切质粒pBCG5.6/P22,获得弓形虫表面抗原P22编码基因目的片段,在以低熔点琼脂糖回收纯化后,插入表达质粒载体pBK-CMV的多克隆位点,构建重组体pBK/P22,并转化大肠杆菌DH5α,快速酚法初筛阳性重组子,阳性克隆以PCR法与限制性酶切分析鉴定后,以IPTG进行诱导在E.coliDH5α中表达,表达产物以SDS-PAGE与免疫印迹分析。要双酶切质粒pBCG5.6/P22,获得约593bp的P22码基因片段,与预期片段大小相符;所构建pBK/P22重组性体阳性克隆以双酶切和PCR鉴定与预期结果一致;SDS-PAGE与免疫印迹显示,表达产物的大小约28ku。结论 成功亚克隆并构建了弓形虫表面抗原P22编码基因pBK/P22表达质粒,诱导表达了弓形虫P22表面抗原蛋白,为抗原免疫特性的研究奠定了基础。  相似文献   

8.
目的 扩增弓形虫表面抗原P2 2基因编码序列 ,并进行表达和鉴定。 方法 设计合成引物 ,PCR法从RH株弓形虫基因组DNA中扩增P2 2基因编码序列 ,克隆入载体pET 3 2a ,转化大肠埃希菌BL2 1,IPTG诱导表达 ,表达产物进行SDS PAGE和Westernblot鉴定。 结果 从弓形虫基因组DNA中扩增出P2 2基因编码序列 ,并诱导表达出能被兔抗弓形虫血清识别的重组P2 2。 结论 成功获得弓形虫表面抗原P2 2的表达产物 ,为弓形虫病的诊断和疫苗研究创造了条件。  相似文献   

9.
弓形虫棒状体蛋白2和膜表面蛋白1融合基因的克隆与表达   总被引:2,自引:1,他引:2  
目的 进行弓形虫棒状体蛋白2(ROP2)和膜表面蛋白1(P30)融合基因的克隆与表达,为弓形虫ROP2?鄄P30基因工程复合抗原的制备做准备。 方法 半套式PCR扩增编码弓形虫P30的基因片段,克隆至已构建成功的重组质粒pUC119/ROP2中,经PCR和酶切鉴定正确的重组质粒pUC119/ROP2-P30再以SacⅠ/HindⅢ双酶切克隆至表达载体pET28b上,鉴定正确的重组质粒pET28b/ROP2-P30转化大肠埃希菌表达菌株BL21-Codon Plus(DE3)-RIL,经异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达。 结果 从弓形虫RH株基因组DNA中扩增出700 bp P30基因片段,成功构建重组质粒pET28b/ROP2-P30,该质粒经PCR和酶切鉴定,与预期结果一致,并在大肠埃希菌中高效表达,产生相对分子质量(Mr)约为 69 000的重组目的蛋白。 结论 弓形虫ROP2和P301融合基因克隆成功,并表达出预期的复合重组蛋白ROP2-P30。  相似文献   

10.
目的表达和纯化弓形虫P30(SAG1)蛋白,为弓形虫病快速诊断试剂盒及蛋白质疫苗的研制奠定基础。方法PCR法从弓形虫基因组DNA中扩增P30基因片段,P30产物克隆到表达质粒pET-30a(+)构建重组载体,将其转化到DH5α中。经PCR扩增和质粒酶切及基因测序鉴定后,阳性重组质粒转化到大肠埃氏菌BL21(DE3)中,经IPTG诱导,表达产物用SDS-PAGE和Western blot进行鉴定。大量的诱导表达产物用SNBC3S NTA Resin方法纯化并进行复性。结果扩增的P30基因片段为750bp,重组表达融合蛋白量单位为30ku,与理论值相符。结论成功构建重组体,获得纯化和复性的弓形虫主要表面抗原P30的高效表达产物,为弓形虫病的诊断和疫苗研究奠定了基础。  相似文献   

11.
目的 构建弓形虫GRA8原核重组表达质粒,分析其表达状况。 方法 采用PCR技术扩增GRA8及其截短型片段的基因序列,经克隆后,亚克隆至原核表达载体中,构建GRA8及其截短型片段的重组表达质粒,分析GRA8的表达;将各重组菌进行诱导,将裂解上清用谷胱甘肽-琼脂糖亲合层析法和SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)纯化目的蛋白,免疫印迹法(Western blotting)分析纯化蛋白的活性。 结果 GRA8基因被正确插入原核表达质粒中,原核重组表达质粒在大肠埃希菌JM109中表达GRA8的水平低,几乎无完整GRA8的表达,截短型GRA8经谷胱甘肽-琼脂糖亲合层析法和SDS-PAGE获得纯化。纯化的截短型GRA8能被弓形虫感染兔血清识别。 结论 GRA8的原核重组表达质粒表达GRA8的水平低,纯化的截短型GRA8具一定的抗原反应性。  相似文献   

12.
目的构建弓形虫表面抗原2(SAG2)基因重组质粒并在大肠埃希菌中表达。方法根据SAG2基因序列设计并合成引物,用PCR法从弓形虫基因组DNA中扩增SAG2基因片段,再克隆到p GEX-4T载体中,构建重组质粒。重组质粒经酶切鉴定并测序后,在大肠埃希菌BL21中诱导表达,产物经SDS-PAGE分析并纯化,以Western blotting分析其反应原性。结果 SAG2基因PCR产物大小约为561 bp,与预期相符。重组质粒经酶切及PCR鉴定构建成功,测序结果与已知序列吻合。重组质粒转化菌经IPTG诱导后表达的SAG2融合蛋白分子量约为47 ku,该蛋白可被GST标签抗体识别。结论成功重组了弓形虫SAG2基因,表达蛋白具有反应原性。  相似文献   

13.
目的 对刚地弓形虫三磷酸核苷水解酶基因(NTPase)进行克隆、表达和鉴定。 方法 采用PCR扩增刚地弓形虫RH株的NTPase基因,克隆入pGEM?-T Easy载体,经酶切与测序鉴定后亚克隆至表达质粒pBAD-HisB,并转入大肠埃希菌(E.coli)BL21(DE3)中进行诱导表达。用镍-次氮基三乙酸亲和层析柱纯化重组质粒pBAD-HisB-NTPase表达产生的含组氨酸的重组蛋白,用十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质印迹(Western blotting)分析蛋白表达产物。 结果 PCR扩增得到特异的刚地弓形虫NTPase-Ⅱ基因序列,经测序鉴定无基因突变。SDS-PAGE结果表明NTPase-Ⅱ基因在E.coli BL21(DE3)中获得高效表达,其融合蛋白相对分子质量(Mr)约70 000,与理论值相近。Western blotting分析结果显示,纯化的重组蛋白可被弓形虫感染的鼠血清及鼠抗重组蛋白血清识别。 结论 所克隆表达的弓形虫NTPase-Ⅱ重组蛋白具有良好的抗原性。  相似文献   

14.
编码弓形虫表面抗原P30基因的克隆及在E.coli中的表达   总被引:3,自引:0,他引:3  
目的 构建编码弓形虫RH株表面抗原P30基因重组表达质粒 ,初步观察P30基因在E coli表达。方法 将P30基因定向克隆到分支杆菌 -大肠杆菌穿梭表达质粒热休克蛋白 70 (hsp70 )起动基因的下游的多克隆位点 ,构建重组表达质粒pBCG -P30 ;采用亚克隆技术 ,将含P30和hsp70起动基因的复合片段 ,插入表达载体 pBK -CMV质粒 ,转化大肠杆菌DH5α ,在卡那霉素阳性LB培养基平板筛选阳性重组子 ,并经双酶切及PCR扩增鉴定。重组质粒 pBK -P30转化大肠杆菌 ,IPTG诱导表达后进行SDS -PAGE和Westernboltting分析。 结果  1)阳性重组质粒 pBCG -P30、pBK -P30经酶切和PCR鉴定 ,与预期的结果相符合。 2 )序列测定证实克隆的基因为编码P30抗原的基因。 3)P30基因在大肠杆菌诱导表达后获得4 5kDa融合蛋白 ,此抗原未被弓形虫高免兔血清识别。结论 成功构建编码弓形虫表面抗原P30重组表达质粒 ,并在大肠杆菌中获得表达 ,为弓形虫DNA疫苗的研制奠定基础  相似文献   

15.
弓形虫P30基因MBP融合蛋白的表达   总被引:4,自引:0,他引:4  
目的 构建弓形虫主要表面抗原P30 基因的原核表达载体并在E-coli 中表达。方法 根据已发表的弓形虫P30基因序列,自行设计合成一对引物并在引物5’端分别引入限制性内切酶EcoRI、SalI酶切位点,用PCR技术从弓形虫RH 株基因组DNA中扩增P30 基因片段,插入pMALP2 质粒转化大肠杆菌DH5aα感受态细胞,于氨苄LB培养平板上筛选阳性克隆,经过酶切及PCR扩增鉴定重组子。将阳性重组子经IPTG诱导表达,SDS- PAGE及免疫印迹分析。结果 从弓形虫RH 株DNA中扩增出976bp 的P30 基因,构建成功pMALP2 - P30 重组质粒;SDS- PAGE电泳及Western - blot 显示MBP/P30 融合蛋白条带的分子量约为77-5kD,减去MBP的分子量43kD,得出P30 蛋白分子量为34-5kD,且能被弓形虫高免鼠血清识别。结论 从弓形虫基因组DNA中获取P30 基因,并成功构建pMALP2 - P30 重组质粒,诱导表达了P30 的融合蛋白。为进一步P30 蛋白的分离纯化及其对动物的免疫原性研究作好准备。  相似文献   

16.
目的?摇分析弓形虫不同分离株致密颗粒蛋白7(dense granule protein,GRA7)基因的异同及在大肠埃希菌中表达致密颗粒蛋白。 方法 从弓形虫不同分离株(RH株、ZS2株和GT株)的基因组中特异地扩增出GRA7基因,将目的基因定向克隆至原核表达载体pGEX-4T-1,转化大肠埃希菌JM109并测序。利用互联网上的在线工具CLUSTALW进行序列分析。异丙基-B-D-硫代半乳糖苷(IPTG)体外诱导pGEX-4T-1/GRA7重组质粒菌的表达,对表达的目的蛋白进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),分别以抗抗谷胱甘肽巯基转移酶(GST)抗体、人抗弓形虫阳性血清为一抗进行Western blotting分析。以纯化的重组蛋白作为包被抗原,ELISA 法检测抗弓形虫阴性、阳性血清。 结果 弓形虫不同分离株GRA7的基因序列相同;pGEX-4T-1/GRA7重组质粒在大肠埃希菌中表达了目的蛋白,Western blotting分析表明该蛋白为GST融合蛋白,且能被人抗弓形虫阳性血清所识别;ELISA结果表明该蛋白能与人抗弓形虫阳性血清、兔抗弓形虫阳性血清特异结合,而与抗弓形虫阴性血清无反应。 结论 弓形虫不同分离株GRA7基因具有高度保守性;GRA7基因在大肠埃希菌中以GST融合蛋白的形式得到表达,且该重组蛋白具有一定免疫反应性。  相似文献   

17.
目的 构建编码弓形虫RH株棒状体蛋白2(ROP2)和主要表面抗原1的重组表达质粒,纯化和复性的融合蛋白为弓形虫病快速诊断试剂盒及蛋白质疫苗的研制作准备。方法 用PCR技术从弓形虫基因组DNA中扩增出ROP2和P30基因片段,分别克隆人pMDl8-T载体,并对重组人外源基因的质粒通过PCR、双酶切和测序鉴定,将pMD-ROP2中RoP2基因片段经EcoRI和HindⅢ酶切、连接等反应,亚克隆入pET-30a(+)原核表达载体,构建pET-ROP2载体,然后再将pMD-P30中的P30基因片段与经同样NcoI和EcoRI酶切的pET-30a(+)载体连接,经含卡那霉素的LB平板筛选,酶切和PCR鉴定。阳性重组质粒转化到大肠埃希菌BL21(DE3)中,经IPTG诱导,表达产物用SDS-PAGE进行鉴定。大量的表达融合蛋白经纯化和复性后,用Westernblot分析。结果 从弓形虫RH株DNA中扩增出特异的RoP2和P30基因片段,成功克隆出pET-ROP2和pET-P30载体。结论 成功构建了pET-ROP2和pET-P30重组体,获得纯化和复性的弓形虫ROP2和P30的高效表达产物,为弓形虫病的诊断和疫苗研究奠定了基础。  相似文献   

18.
刚地弓形虫RH株微线体蛋白MIC3成熟肽的克隆与表达   总被引:2,自引:0,他引:2  
目的 克隆编码刚地弓形虫(Toxoplasmagondii)RH株微线体蛋白MIC3成熟肽的基因,构建原核表达载体pET MMIC3,并在大肠杆菌BL2 1株中表达。方法 采用PCR技术从刚地弓形虫RH株基因组DNA中扩增编码微线体蛋白MIC3成熟肽的基因,并克隆到T载体上,经测序鉴定后,将目的基因亚克隆到表达载体pET30a(+)上,构建质粒pET MMIC3。表达产物用Westernblot进行进一步确认。结果 经初步菌液PCR鉴定,提取质粒双酶切鉴定并测序,确认插入T载体的序列为所需的目的序列;亚克隆构建pET -MMIC3,转化到宿主菌大肠杆菌BL2 1,得到分子量为37.2kDa的重组表达蛋白,Westernblot的结果与预测相符。结论 成功的克隆并融合表达了刚地弓形虫RH株微线体蛋白MIC3成熟肽,为进一步研究其在弓形虫粘附和入侵中的作用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号