首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of cultured ovine pituitary cells with growth hormone-releasing hormone (GHRH) (10(-12)-10(-7) M) stimulated growth hormone secretion up to 3-fold. At a maximal stimulatory concentration of GHRH (10(-10) M), thyrotropin-releasing hormone (TRH) (10(-7) M) caused an inhibition of growth hormone release to approx. 50% of the response obtained with GHRH alone (during a 15 min incubation period). TRH also caused a small inhibition of the GHRH-stimulated cellular cyclic AMP level but this effect was only significant at a relatively high concentration of GHRH (10(-9) M). Incubation of cultured bovine pituitary cells with GHRH (10(-11)-10(-8) M) plus TRH (10(-7) M) caused a significant stimulation of growth hormone release by up to 40%, compared with the response obtained with GHRH alone (at all concentrations of GHRH). TRH (10(-7) M) had no effect on GHRH (10(-8) M)-stimulated cellular cyclic AMP levels in a partially purified bovine pituitary cell preparation. The effects of varying extracellular [Ca2+] (0.1-10 mM) on intracellular [Ca2+] and on the responsiveness to releasing hormones were also determined using ovine pituitary cells. GHRH (10(-10) M)-stimulated growth hormone release was inhibited when cells were incubated at both high (10 mM) and low (0.1 mM) [Ca2+] (compared with 1 mM or 3 mM Ca2+) with or without TRH (10(-7) M). At 1 mM Ca2+, TRH produced a synergistic effect with GHRH to stimulate growth hormone release. However, at 3 mM Ca2+ TRH inhibited GHRH-stimulated growth hormone release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We previously reported that thyrotropin-releasing hormone (TRH) and human pancreatic growth hormone-releasing factor (hpGRF) exert synergistic (greater than additive) effects on growth hormone (GH) release from chicken pituitary cells in primary culture. In the present studies the possible participation of calcium in GH release and in TRH and hpGRF synergy was investigated. Following dispersion with collagenase, cells were cultured for 48 hr prior to exposure (2 hr) to test agents. Cultured cells were exposed to a range of calcium concentrations (0, 0.02, 0.2, and 2.0 mM) in the presence and absence of secretagogues. These results demonstrated that basal GH release was not altered by the concentration of calcium in the medium: however, secretagogue-induced GH release required calcium. Thus, TRH, hpGRF, 8 Br-cAMP, or forskolin stimulated GH release in the absence of calcium. Furthermore, synergistic GH release evoked by TRH and hpGRF, 8 Br-cAMP, or forskolin was observed only at the highest calcium concentration (2.0 mM). In other studies, ionomycin (10(-5) M), a calcium ionophore, stimulated GH release to a value about 125% over the basal (absence of test agent) value. Ionomycin-induced GH release was not affected by TRH (5.0 ng/ml); the combined effects of ionomycin (10(-7)-10(-5) M) and hpGRF (5.0 ng/ml) on GH release were less than additive. However, ionomycin (10(-5) M) further increased GH release over that resulting from the synergistic action of TRH and hpGRF (5.0 ng/ml each). Verapamil (a calcium channel blocker) did not affect GH release induced by either TRH or hpGRF (5.0 ng/ml each). However, this agent did inhibit synergistic GH release evoked by TRH and hpGRF, 8 Br-cAMP, forskolin, or isobutylmethylxanthine. These results suggest that calcium participates in secretagogue-induced GH release from chicken somatotrophs in vitro.  相似文献   

3.
Prolactin secretion from ovine pituitary cell cultures was stimulated by thyrotropin-releasing hormone (TRH) (10(-10)-10(-7) M) with a half-maximal effect at approximately 2.5 X 10(-9) M. A maximally effective concentration of TRH produced a peak secretory response, 5-10-fold stimulation over basal release, within 15 min. Dopamine (10(-10)-10(-7) M) but not somatostatin caused a dose-related inhibition of TRH (10(-8) M) stimulated prolactin release. Both dopamine (10(-7) M) and somatostatin (10(-7) M) inhibited basal secretion from the cells. TRH did not significantly increase pituitary cell cyclic AMP levels under any of the conditions tested. Stimulation of prolactin secretion by TRH was not prevented when Ca2+ was omitted from the incubation medium. Dopamine inhibited secretion induced by TRH under low Ca2+ conditions. Our results are consistent with a hypothesis that TRH may stimulate prolactin secretion via release of intracellular Ca2+ rather than increased cellular Ca2+ uptake, and imply that dopamine inhibition involves a lowering of intracellular Ca2+ levels.  相似文献   

4.
The effects of the dopamine (DA) agonist bromocriptine on prolactin (Prl) release, electrical membrane properties and transmembrane Ca2+ fluxes have been studied in a clonal strain of rat pituitary adenoma cells (GH3). These cells generate Ca2+ dependent action potentials, and produce and secrete spontaneously both Prl and growth hormone. Prl release stimulated by thyroliberin (TRH) and elevated extracellular K+ concentration was completely blocked by bromocriptine, whereas the basal release was only moderately affected. The TRH and K+ evoked Prl release were half maximally inhibited by bromocriptine at 5-10 and 10-50 microM, respectively. The normal biphasic membrane response to TRH and the depolarizing effect of elevated K+ concentration were not altered by bromocriptine, whereas the Ca2+- spikes in Na+-free solution were suppressed by the drug. We therefore suggest that bromocriptine blocks the voltage sensitive Ca2+-channels of GH3 cell. In agreement with this notion, bromocriptine also suppressed the basal and TRH induced 45Ca2+ efflux from preloaded cells. We conclude that the inhibitory effect of bromocriptine on the voltage dependent Ca2+- channels is an important mechanism responsible for suppression of Prl release.  相似文献   

5.
A mitochondrial fraction prepared from homogenates of rat hypothalamic tissue was found by means of electron microscopy to be enriched with synaptosomes. The release of luteinizing hormone releasing hormone (LHRH) and thyrotropin releasing hormone (TRH) from this preparation was investigated. After incubation, the synaptosomes were re-isolated by ultrafiltration; and the concentration of LHRH and TRH in the ultrafiltrate was determined by radioimmunoassay. When the synaptosome-enriched preparation was incubated in 0.32M sucrose at 1 or 30 C, less than 10% of the total LHRH and TRH was recovered in the ultrafiltrate. The two hormones were released by depolarizing concentrations (60 mM) of K+ in a Ca++-dependent manner, and the stimulatory effect of K+ was essentially complete within 2 min. In the presence of 2 mM Ca++, the release of LHRH and TRH increased with increasing K+ concentrations in the range 30-120 mM. Prostaglandin E2 (PGE2), PGF2 alpha, and PGF2 beta had little if any effect on LHRH or TRH release. When the synaptosome-enriched fraction was incubated in Hanks' balanced salt solution, the release of LHRH and TRH was about 10 times greater than that seen in 0.32M sucrose. It is concluded that a synaptosome-enriched fraction from the hypothalamus contains readily releasable pools of LHRH and TRH which are mobilized rapidly by depolarizing concentrations of K+ in a Ca++-dependent manner.  相似文献   

6.
Our earlier work showed that the effects of thyrotropin-releasing hormone (TRH) and human pancreatic growth hormone-releasing factor (hpGRF) on growth hormone (GH) release are synergistic (greater than additive) in a primary culture of chicken adenohypophyseal cells. The purpose of the present studies was to investigate the possible participation of protein synthesis and cyclic adenosine 3'5'-monophosphate (cAMP) in GH release. Following culture (48 hr), cells were incubated for 2 hr with test agents. Cycloheximide (an inhibitor of protein synthesis) had no effect on basal (absence of test agent) GH release or hpGRF-induced GH release. However, cycloheximide abolished the synergy between TRH and hpGRF. Although neither TRH nor hpGRF alone stimulated GH production (intracellular GH plus GH release) during a 2-hr incubation period, in combination these secretagogues increased total GH. These findings suggest that GH release from the chicken somatotroph under conditions of TRH and hpGRF synergy requires protein synthesis. In other studies, cells were exposed to agents inducing the formation of cAMP and either TRH or hpGRF. 8 Br-cAMP (10(-3) M), forskolin (10(-6) M), or isobutylmethylxanthine (IBMX; 10(-3) M) alone stimulated GH release to values between 30 and 50% over the basal value. The combined effects of each of these agents and TRH on GH release were synergistic. Similarly, IBMX and hpGRF exerted synergistic effects on GH release. In contrast, no synergy was shown between hpGRF and either 8 Br-cAMP or forskolin; their combined actions were less than additive.  相似文献   

7.
We have examined the interaction of thyroid hormone and TRH on GH release from rat pituitary monolayer cultures and perifused rat pituitary fragments. TRH (10(-9) and 10(-8)M) consistently stimulated the release of TSH and PRL, but not GH, in pituitary cell cultures of euthyroid male rats. Basal and TRH-stimulated TSH secretion were significantly increased in cells from thyroidectomized rats cultured in medium supplemented with hypothyroid serum, and a dose-related stimulation of GH release by 10(-9)-10(-8) M TRH was observed. The minimum duration of hypothyroidism required to demonstrate the onset of this GH stimulatory effect of TRH was 4 weeks, a period significantly longer than that required to cause intracellular GH depletion, decreased basal secretion of GH, elevated serum TSH, or increased basal secretion of TSH by cultured cells. In vivo T4 replacement of hypothyroid rats (20 micrograms/kg, ip, daily for 4 days) restored serum TSH, intracellular GH, and basal secretion of GH and TSH to normal levels, but suppressed only slightly the stimulatory effect of TRH on GH release. The GH response to TRH was maintained for up to 10 days of T4 replacement. In vitro addition of T3 (10(-6) M) during the 4-day primary culture period significantly stimulated basal GH release, but did not affect the GH response to TRH. A GH stimulatory effect of TRH was also demonstrated in cultured adenohypophyseal cells from rats rendered hypothyroid by oral administration of methimazole for 6 weeks. TRH stimulated GH secretion in perifused [3H]leucine-prelabeled anterior pituitary fragments from euthyroid rats. A 15-min pulse of 10(-8) M TRH stimulated the release of both immunoprecipitable [3H]rat GH and [3H]rat PRL. The GH release response was markedly enhanced in pituitary fragments from hypothyroid rats, and this enhanced response was significantly suppressed by T4 replacement for 4 days. The PRL response to TRH was enhanced to a lesser extent by thyroidectomy and was not affected by T4 replacement. These data suggest the existence of TRH receptors on somatotrophs which are suppressed by normal amounts of thyroid hormones and may provide an explanation for the TRH-stimulated GH secretion observed clinically in primary hypothyroidism.  相似文献   

8.
In this study, we demonstrated that the cell content and basal secretion of vasoactive intestinal peptide (VIP) in primary rat pituitary cell cultures were increased in hypothyroidism. VIP release from hypothyroid pituitary cells in vitro was stimulated by thyrotropin releasing hormone (TRH 10(-8) to 10(-6) M) and growth hormone (GH)-releasing hormone (GHRH 10(-9) to 10(-8) M) but not by corticotropin-releasing hormone or luteinizing hormone-releasing hormone in concentrations up to 10(-6) M. In the presence of anti-VIP antisera, there was a significant decrease in basal prolactin secretion from cultured hypothyroid pituitary cells (p less than 0.005) indicating that VIP exerts a tonic stimulatory effect on prolactin (PRL) secretion. The increment in PRL secretion following TRH was not affected by exposure to anti-VIP indicating that PRL release after TRH is not mediated by VIP at the pituitary level. In contrast to changes in PRL, exposure to anti-VIP had no effect on basal GH secretion, indicating that the PRL changes are hormone specific. Similarly, GHRH-induced GH release was unaffected by VIP immunoneutralization.  相似文献   

9.
The characteristics of TRH-induced acute PRL and GH secretion were studied in GH4C1 cells, a clonal rat anterior pituitary tumor cell line which secretes PRL and GH. The experiments were carried out both in a flow system in which microcarrier (Cytodex)-attached cells were perifused at a constant rate and in a conventional static culture system. In both systems, cells responded to TRH in a qualitatively similar manner. TRH significantly stimulated PRL and GH secretion within 5 sec without a detectable lag period. The secretion rate was highest during the initial 1 min, declined sharply thereafter despite the continuous presence of TRH, and plateaued at a lower level. The maximum dose of TRH caused 250-700% of basal secretion during the early period (approximately 8 min; first phase) and about 150% of basal secretion thereafter (second phase). The sustained lower secretion (second phase) was maintained as long as cells were exposed to TRH (up to 2.5 h), and the secretion rate returned to the basal level within 30 min of removal of TRH from the medium. The half-maximal doses for the first and second phase secretion were 2-3 and 0.5-1 nM, respectively, in both the perifusion and static culture systems. Over a 2-day period, TRH stimulated PRL synthesis and inhibited GH synthesis. The dose-response curves for these long term effects on hormone synthesis were similar to the dose-response curves for the first phase of release. [N3-methyl-His2]TRH gave similar results, but was more potent than TRH. [N3-methyl-His2]TRH stimulated first phase release with an ED50 of 0.4-0.8 nM, second phase release with an ED50 of 0.1-0.2 nM, and hormone synthesis with an ED50 of 0.7-0.8 nM. Preincubation of the cells with Ca+2-free medium significantly depressed both first and second phase secretion. Preexposure of the cells to cycloheximide (10 micrograms/ml) had little effect on the first phase of secretion, but reduced second phase secretion. The acute effects of TRH on GH and PRL were identical, except that the secretory response tended to be greater for PRL. We conclude that 1) TRH causes hormone secretion very rapidly in a biphasic manner; 2) the first phase of secretion consists primarily of the release of stored hormone, whereas the second phase includes the release of newly synthesized hormone; 3) the dose-response curve of second phase secretion is shifted to the left compared with that of first phase secretion; and 4) both phases of secretion are at least partially dependent on extracellular Ca+2.  相似文献   

10.
M C Gershengorn  C Thaw 《Endocrinology》1983,113(4):1522-1524
TRH stimulation of prolactin secretion is thought to be mediated by an elevation of free cytoplasmic Ca2+. However, whether TRH-induced influx of extracellular Ca2+ is required to elevate cytoplasmic Ca2+ remains controversial. We measured cytoplasmic free Ca2+ concentration in GH3 cells with an intracellularly trapped fluorescent indicator, Quin 2. In unstimulated cells incubated in medium containing 1.5 mM Ca2+, cytoplasmic free Ca2+ concentration was 118 +/- 18 nM (mean +/- SD). TRH (1 microM) caused a rapid transient elevation of free cytoplasmic Ca2+ to a level estimated to be at least 500 nM. High extracellular K+, which induces extracellular Ca2+ influx, caused an elevation of free cytoplasmic Ca2+ which was greater and longer in duration that that caused by TRH. When cells were incubated in medium containing 3 mM EGTA, the K+ depolarization-induced increase in free cytoplasmic Ca2+ was abolished. By contrast, the TRH-induced increase was not affected by incubating cells in medium with 3 mM EGTA, or high K+, or both; incubation of cells in medium with EGTA and high K+ abolishes the electrochemical driving force for Ca2+ influx. These data demonstrate that Ca2+ influx is not required for TRH-induced elevation of free cytoplasmic Ca2+ in GH3 cells. We conclude that in GH3 cells TRH induces an elevation of free cytoplasmic Ca2+ leading to stimulated prolactin secretion by mobilizing cellular Ca2+.  相似文献   

11.
Thyrotropin-releasing hormone (TRH) stimulates pituitary secretion by steps involving a cytosolic Ca2+ rise. We examined various pathways of Ca2+ elevation in pituitary GH3 cells. By using the patch clamp technique in the whole-cell configuration and Ba2+ as divalent charge carrier through Ca2+ channels, TRH (1 microM) reversibly reduced the current by about 55%. This hormonal effect was prevented by infusing guanine 5'-[beta-thio]diphosphate (GDP[beta S]) intracellularly but not by pretreating the cell with pertussis toxin (PT). Since PT-insensitive guanine nucleotide-binding regulatory (G) proteins are known to mediate a hormone-stimulated inositol trisphosphate-mediated Ca2+ release from intracellular stores, we assume that the inhibitory effect of TRH on Ba2+ currents through Ca2+ channels is caused by the increased intracellular Ca2+. To prevent a Ca(2+)-release-dependent inhibition of Ca2+ channels, we preincubated GH3 cells in a medium free of divalent charge carriers and measured the Na+ current through Ca2+ channels. When fura-2 was used as indicator for the cytosolic Ca2+, TRH induced a release from intracellular stores only once and had no effect on the intracellular Ca2+ concentration during further applications. In line with this observation, TRH initially reduced the Na+ current through Ca2+ channels but stimulated it during subsequent applications. The stimulation was sensitive to GDP[beta S] and was abolished by pretreatment with PT, suggesting that the stimulatory action of TRH is mediated by a G protein different from the one that functionally couples the receptor to phosphatidylinositol 4,5-bisphosphate hydrolysis. In conclusion, the present data suggest that TRH increases the intracellular Ca2+ concentration by two interacting pathways, that release from intracellular stores causes a secondary blockage of Ca2+ channels, and that, especially with empty intracellular Ca2+ stores, Ca2+ channels are stimulated by a PT-sensitive G protein.  相似文献   

12.
Synergism between thyrotropin-releasing hormone (TRH) and human pancreatic growth hormone-releasing factor (hpGRF) has been shown in a primary (48 hr) culture of chicken adenohypophyseal cells established in this laboratory. The purpose of the present study was to determine if phorbol esters acting alone or in concert with TRH or hpGRF affect chicken GH release. Collagenase-dissociated chicken adenohypophyseal cells were treated (2 hr) with combinations of TRH, hpGRF, phorbol esters (activators of protein kinase C; PKC), and pharmacologic agents that increase cAMP. Phorbol myristate acetate (PMA) or phorbol dibutyrate (PDBu) alone stimulated GH release in a dose-dependent manner; either phorbol ester (10(-6) M) increased GH release from 100 to 390% over the value obtained in the absence of test agents (control). Similarly, hpGRF (10(-9) M), 8 Br-cAMP (10(-3) M), forskolin (10(-6) M), or isobutylmethylxanthine (IBMX, 10(-3) M) alone elevated GH release by at least 60% over the control value. The combined effects of phorbol esters (either PMA or PDBu) and hpGRF, 8 Br-cAMP, or forskolin on GH release were additive. Only one combination, phorbol esters with IBMX, exerted synergistic effects on GH release. No synergy was shown between TRH (1.3 x 10(-9) M) and either phorbol ester. These findings are the first to implicate PKC in chicken GH release in vitro. In addition, these studies, together with previous results, suggest that TRH and hpGRF synergy occurs via a pathway that arises prior to activation of PKC.  相似文献   

13.
TRH stimulation of prolactin release from GH3 cells is associated with loss of cellular Ca2+. Chlortetracycline (CTC), a fluorescent probe of Ca2+ in biological membranes, was previously employed to monitor indirectly changes in membrane Ca2+ in GH3 cells. Tetracaine, propranolol and trifluoperazine, agents that are known to displace Ca2+ from biological membranes, were utilized to demonstrate more rigorously that TRH affects cellular membrane Ca2+ in GH3 cells. Tetracaine (1 mM), propranolol (1 mM), and trifluoperazine (0.03 mM) inhibited basal and TRH-stimulated prolactin release, decreased cellular 45Ca2+ content and decreased cell-associated CTC fluorescence. Most importantly, these agents abolished the decrease in CTC fluorescence induced by TRH. These data suggest that tetracaine, propranolol and trifluoperazine displace membrane Ca2+ in intact GH3 cells and offer further evidence that TRH acts to mobilize cellular Ca2+ from a membrane-bound pool(s) during stimulation of GH3 cells.  相似文献   

14.
The precise roles of the calcium and lipid pathways in TRH-stimulated PRL secretion from rat pituitary (GH3) cells are controversial. In particular, it is debated whether elevation of cytoplasmic free Ca2+ concentration [( Ca2+]i) is sufficient to cause burst secretion (0-2 min) or whether an increase in 1,2-diacylglycerol must accompany the Ca2+ elevation. In this study, the effects of TRH, which elevates 1,2-diacylglycerol, on [Ca2+]i and stimulation of burst secretion were compared with those of depolarization by high extracellular K+, which does not increase 1,2-diacylglycerol. A maximal concentration of TRH (1 microM) and depolarization by 17.5 mM K+ caused elevation of [Ca2+]i from the resting level of 140 +/- 20 nM to 470 +/- 70 nM and 514 +/- 60 nM, respectively, and stimulated burst secretion from 0.6 +/- 0.2 ng/10(6) cells/min to 3.3 +/- 0.8 and 3.1 +/- 0.4 ng/10(6) cells/min, respectively, when a small component of TRH-stimulated secretion that is independent of elevation of [Ca2+]i was subtracted. A detailed comparison of multiple levels to which [Ca2+]i was elevated (up to 600 nM) and the degree of stimulation of burst phase secretion demonstrated the same positive linear correlation (correlation coefficient = 0.96) for TRH and K+ depolarization. Hence, elevation of [Ca2+]i is sufficient to cause burst secretion irrespective of elevation of 1,2-diacylglycerol. Optimal stimulation by TRH of sustained secretion of PRL did not depend on elevation of [Ca2+]i; sustained PRL secretion stimulated by 10 nM TRH was 2.6 +/- 0.4 and 2.7 +/- 0.2 ng/10(6) cells/min in control cells and arachidonic acid-pretreated cells in which [Ca2+]i was not elevated, respectively. The data from this and previous studies demonstrate that elevation of [Ca2+]i and 1,2-diacylglycerol may act coordinately, but not synergistically, to mediate TRH stimulation of PRL secretion from GH3 cells.  相似文献   

15.
In the present work, we determined the activity of voltage-dependent dihydropyridine (DHP)-sensitive Ca2+ channels related to PRL, GH, and LH secretion in primary cultures of pituitary cells from male or female rats. We investigated their modulation by 17 beta-estradiol (E2) and their involvement in dopamine (DA) and somatostatin (SRIF) inhibition of PRL and GH release. BAY-K-8644 (BAYK), a DHP agonist which increases the opening time of already activated channels, stimulated PRL and GH secretion in a dose-dependent manner. The effect was more pronounced on PRL than on GH release. BAYK-evoked hormone secretion was further amplified by simultaneous application of K+ (30 or 56 mM) to the cell cultures; in parallel, BAYK-induced 45Ca uptake by the cells was potentiated in the presence of depolarizing stimuli. In contrast, BAYK was unable to stimulate LH secretion from male pituitary cells, but it potentiated LHRH- as well as K+-induced LH release; it had only a weak effect on LH secretion from female cell cultures. Basal and BAYK-induced pituitary hormone release were blocked by the Ca2+ channel antagonist nitrendipine. Under no condition did BAYK affect the hydrolysis of phosphoinositides or cAMP formation. Pretreatment of female pituitary cell cultures with E2 (10(-9) M) for 72 h enhanced LH and PRL responses to BAYK, but was ineffective on GH secretion. DA (10(-7) M) inhibited basal and BAYK-induced PRL release from male or female pituitary cells treated or not treated with E2 (10(-9) M). SRIF (10(-9) and 10(-8) M) reversed BAYK-evoked GH release to the same extent in cell cultures derived from male or female animals. It was ineffective on BAYK-induced PRL secretion in the absence of E2, but antagonized it after E2 pretreatment. The effect was dependent upon the time of steroid treatment and was specific, since 17 alpha-estradiol was inactive. In addition, DA and SRIF decreased the 45Ca uptake induced by the calcium agonist. These data demonstrate that DHP-sensitive voltage-dependent calcium channels of the L type present on different pituitary cells are not equally susceptible to BAYK activation under steady state basal conditions, indicating that their spontaneous activity and/or distribution vary according to the cell type; their activity is modulated by sex steroids. In addition, these data suggest that Ca2+ channels represent a possible site of DA and SRIF inhibition of PRL and GH release, respectively, by gating calcium entry into the corresponding cells.  相似文献   

16.
TRH stimulation appears to be coupled to PRL secretion, at least in part, by elevation of the concentration of Ca2+ free in the cytoplasm [( Ca2+]i). We employed an intracellularly trapped fluorescent probe of Ca2+, Quin 2, to measure [Ca2+]i in GH3 cells, cloned rat pituitary tumor cells. Basal [Ca2+]i in GH3 cells incubated in medium containing 1.5 mM Ca2+ was 148 +/- 8.6 nM (mean +/- SE). TRH caused a biphasic elevation of [Ca2+]i to 517 +/- 29 nM at less than 10 sec after TRH addition, followed by a decline towards the resting level over 1.5 min (first phase) and then a sustained elevation to 261 +/- 14 nM (second phase). We attempted to determine whether mobilization of cellular calcium or enhanced influx of extracellular Ca2+, or both, were involved in the elevation of [Ca2+]i during each of the two phases. In all experiments, the elevation of [Ca2+]i stimulated by TRH was compared with that induced by depolarization of the plasma membrane with high extracellular K+, which enhances Ca2+ influx. In medium with 1.5 mM Ca2+, K+-depolarization caused an elevation of [Ca2+]i to 780 +/- 12 nM. When the concentration of Ca2+ in the medium was lowered to 0.1 mM and 0.01 mM, basal [Ca2+]i was lowered to 114 +/- 3.4 and 110 +/- 11 nM, respectively. In medium with 0.1 and 0.01 mM Ca2+, peak K+ depolarization-induced elevation of [Ca2+]i was lowered to 30 +/- 3.9% and 7.3 +/- 2.0% of control, respectively. The peak second phase increase caused by TRH was reduced to 33 +/- 2.8% and 16 +/- 5.6% of control, respectively, whereas the peak first phase elevation of [Ca2+]i was lowered only to 79 +/- 5.5% and 52 +/- 10% of control in medium with 0.1 mM and 0.01 mM Ca2+, respectively. When cells were incubated in medium with 1.5 mM Ca2+ containing the Ca2+-channel blocking agents, nifedipine and verapamil, basal [Ca2+]i was not affected. Nifedipine plus verapamil, each at a maximally effective dose, lowered K+ depolarization-induced elevation of [Ca2+]i to 6.5 +/- 1.0% of control, the peak second phase increase caused by TRH to 28 +/- 4.3% of control, but the peak first phase elevation only to 64 +/- 3.7% of control. The decrease in the first phase response to TRH caused by the channel blockers appeared to be secondary to partial depletion of an intracellular, nonmitochondrial calcium pool.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) and other secretion-stimulating hormones trigger an increase in the cytosolic Ca2+ concentration by two mechanisms. Ca2+ is released from intracellular stores in response to inositol 1,4,5-trisphosphate and can enter the cell through voltage-dependent L-type Ca2+ channels. Stimulation of these channels is sensitive to pertussis toxin, indicating that a pertussis toxin-sensitive heterotrimeric guanine nucleotide-binding regulatory protein (G protein) is involved in functional coupling of the receptor to the Ca2+ channel. We identified the G protein involved in the stimulatory effect of TRH on the Ca2+ channel by type-selective suppression of G-protein synthesis. Antisense oligonucleotides were microinjected into GH3 cell nuclei, and 48 h after injection the TRH effect was tested. Whereas antisense oligonucleotides hybridizing to the mRNA of G(o) or Gi1 alpha-subunit sequences did not affect stimulation by TRH, oligonucleotides suppressing the expression of the Gi2 alpha subunit abolished this effect, and oligonucleotides directed against the mRNA of the Gi3 alpha subunit had less effect. The requirement of a concurrent inositol phospholipid degradation and subsequent protein kinase C (PKC) activation for the TRH effect on Ca(2+)-channel activity was demonstrated by inhibitory effects of antisense oligonucleotides directed against Gq/G11/Gz alpha-subunit sequences and treatment of GH3 cells with PKC inhibitors, respectively. Our results suggest that TRH elevates the cytosolic Ca2+ concentration in GH3 cells transiently via Ca2+ release from internal stores, followed by a phase of sustained Ca2+ influx through voltage-dependent Ca2+ channels stimulated by the concerted action of Gi2 (and Gi3) plus PKC.  相似文献   

18.
T Aizawa  P M Hinkle 《Endocrinology》1985,116(3):909-919
The sequence of PRL and GH release from GH4C1 cells was studied in perifusion and static culture systems. The secretory pattern elicited by TRH differed from those caused by depolarizing concentrations of KCl (Ca2+-initiated secretion), vasoactive intestinal peptide (VIP), 8-bromo-cAMP, and forskolin (cAMP-mediated secretion), and 12-O-tetradecanoylphorbol-13-acetate (TPA) (protein kinase C activation). TRH, K+, VIP, and TPA all caused secretion within 1 min in the perifusion system but the peak response to TRH and depolarization occurred earlier than the peak responses to TPA and VIP. PRL and GH release in response to a pulsatile application of TRH (0.4-min pulse every 5 min for 25 min) did not decline with a low dose, indicating that acute desensitization does not occur, but did decrease with a high concentration. When cells in the perifusion system were subjected to continuous stimulation, TRH caused a biphasic response with a 2- to 3-min period of high secretion followed by a second phase in which GH and PRL secretion were 60-70% the rates in the first phase. KCl caused predominantly first-phase secretion, and TPA caused a biphasic secretory pattern with a delay in its peak of action. VIP caused a modest but prolonged response whether administered in a pulsatile or sustained manner. When GH-cells were exposed to 100 nM TRH for 2 days, [3H] [N3-methyl-His2]TRH binding was decreased (down-regulation), intracellular PRL was increased (170% of control), and intracellular GH was decreased (65% of control). In these down-regulated cells, baseline PRL and GH secretion were changed in proportion to the relative intracellular hormone content. The responsiveness to TRH, KCl, and TPA during the initial 10-min period (first phase) was reduced; however, the responsiveness to these substances in the subsequent 50-min period (second phase) was unchanged. The ED50 for TRH stimulation of hormone release was increased 2- to 4-fold in down-regulated cells, but the dose-response curves for other secretagogues were not shifted. These data suggest that the initial burst of hormone release caused by TRH is mediated by Ca2+, and that prolonged exposure to TRH causes homologous desensitization.  相似文献   

19.
The effect of Ca+2 and somatostatin on prolactin and growth hormone (GH) secretion was studied in the primary cell culture of the rat adenohypophysis. A decrease in Ca+2 concentration of the medium from 1.8 to 0.1 mM inhibited prolactin release and did not influence GH secretion. An elevation of extracellular Ca+2 level up to 5 mM did not affect prolactin secretion and slightly decreased GH release. Somatostatin inhibited prolactin and GH release provided Ca+2 concentration in the medium was normal (1.8 mM) and/or diminished (0.1 mM). An increase in Ca+2 level up to 5 mM blocked the inhibitory effect of somatostatin. The results obtained show Ca+2 and somatostatin to be antagonistic in the prolactin control and GH release from adenohypophyseal cells.  相似文献   

20.
Lidocaine at greater than or equal to 1 mM and procaine at greater than or equal to 2.5 mM exerted dose-dependent inhibition of the increment in [Ca2+]i induced by 100 nM thyrotropin-releasing hormone (TRH) or 30 mM K+ in GH4C1 cells. The rise in [Ca2+]i induced by K+ was more sensitive to this inhibition than that induced by TRH. Lidocaine was more potent than procaine in inhibiting the [Ca2+]i increment induced by secretagogues. Maximal lidocaine inhibition of the TRH-induced [Ca2+]i increment occurred within 15-20 min and a normal response to secretagogues returned within 20 min after removal of lidocaine from the incubation medium. Our data suggest that in GH4C1 cells local anesthetics depress secretagogue-induced intracellular Ca2+ mobilization, depolarization of the cell membrane, and the opening of voltage-dependent Ca2+ channels. This may explain the depression of secretagogue-stimulated hormone secretion induced by these agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号