首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the endoplasmic reticulum (ER) localized in dendritic spines has become a subject of intense interest because of its potential functions in local protein synthesis and signal transduction. Although it is recognized from electron microscopic studies that not all spines contain ER, little is know of its dynamic regulation or turnover. Here, we report a surprising degree of turnover of ER within spines. Using confocal microscopy imaging we observed continuity of spine-ER with dendritic ER in hippocampal primary neurons. Over 24 h, less than 50% of spine ER was stable. Despite this high degree of turn over, we identified a significant subset of spines that maintained ER for at least 4 days. These results indicate that within a single neuron, the organelle composition of a spine is unexpectedly dynamic and may explain aspects of the spine-to-spine variation in calcium spike magnitude and localized protein synthesis and trafficking.  相似文献   

2.
Physiological and morphological properties of cultured hippocampal neurons were measured to investigate whether NMDA receptors play a role in survival and differentiation. Neurons dissociated from mouse embryos with different NMDAR1 genotypes were grown in culture. Electrophysiological analysis verified the absence of NMDA receptor-mediated currents in neurons taken from homozygous mutant (NR1–/–) embryos. The number of surviving hippocampal neurons was 2.5-fold higher in cultures from the NR1–/– embryos compared with wild type (NR1 +/+) and heterozygous (NR1+/–) controls. Despite the lack of NMDA receptor function, NR1–/– neurons formed synapsin I-positive presynaptic boutons associated with MAP2ab-positive dendrites in culture. Confocal microscopic analysis of DiI labelled neurons confirmed the presence of dendritic spines on NR1–/– neurons with 80% of the density found in NR1 +/+ neurons. These results suggest that the NMDA receptor has little effect on general features of neuronal differentiation. In contrast, there is clear effect on neuronal survival. This finding establishes neuron number in standard culture conditions as a measure of NMDA receptor activity.  相似文献   

3.
Calcium distribution in dendritic spines of the dentate fascia was studied as a function of age with the oxalate-pyroantimonate precipitation technique. In postnatal ages P3, P9, P24 and P30 spines were analyzed as to the presence of the spine apparatus (SA) and as to the presence of Ca2+ deposits within the SA and within the spine cytoplasm. The percentage of spines with SA-containing precipitates declined significantly between P3 and P24. Conversely, the percentage of spines with precipitates in the spine cytoplasm was significantly increased by P24. In the absence of an SA loss, this result suggests an age-related decrease in the Ca2+-sequestering capacity by the SA. These parameters were improved by P30 so that they approximated the values of P3. Such a seeming amelioration could be attributed to the fact that the mortality rate in rats sharply increases by P24, so that animals surviving this age represent a selected population in which a compensatory growth of spines has occurred and has secured functionally valid connections.  相似文献   

4.
Dendritic spines, microstructures that receive the majority of excitatory synaptic inputs, are fundamental units to integrate and store neuronal information. The morphological reorganization of spines accompanies the functional alterations in synaptic strength underlying memory-relevant modifications of network connectivity. Here we report the rapid dynamics of cell population-selective spine reorganizations related to behavioral experiences. In Thy1-GFP transgenic mice, hippocampal CA1 pyramidal neurons that were putatively activated during environmental explorations were detected with their post hoc immunoreactivity for Arc, an activity-dependent immediately-early gene. Immediately after a 60-min exposure to a familiar environment, the spine densities of Arc-positive and Arc-negative neurons were differently distributed. This density imbalance was due exclusively to changes in the number of small, rather than large, spines. The change disappeared within 60 min after mice were returned to the home cages. Thus, spines possess the ability to rapidly and reversibly alter their morphology in response to a brief environmental change. We propose that these transient spine dynamics represent a latent preliminary stage for longer-term plasticity on demand.  相似文献   

5.
Dendritic spines are morphing structures believed to provide a cellular substrate for synaptic plasticity. It has been suggested that the actin cytoskeleton is the target of molecular mechanisms regulating spine morphology. Here we hypothesized that acidic calponin, an actin-binding protein, is one of the key regulators of actin filaments during spine plasticity. Our data showed that the overexpression of acidic calponin-GFP (green fluorescent protein) in primary cultures of rat hippocampal neurons causes an elongation of spines and an increase of their density as compared with those of GFP-expressing neurons. These effects required the actin-binding domains of acidic calponin. The close apposition of the presynatic marker synaptophysin to these long spines and the presence of specific postsynaptic markers actin, PSD-95, NR1, and GluR1 suggested the existence of functional excitatory synaptic contacts. Indeed, electrophysiological data showed that the postsynaptic overexpression of acidic calponin enhanced the frequency of miniature excitatory postsynaptic currents as compared with that of GFP-expressing neurons, but did not affect their properties such as amplitude, rise time, and half width. Studies in heterologous cells revealed that acidic calponin reorganized the actin filaments and stabilized them. Taken together, these findings show that acidic calponin regulates dendritic spine morphology and density, likely via regulation of the actin cytoskeleton reorganization and dynamic. Furthermore, the acidic calponin-induced spines are able to establish functional glutamatergic synapses. Such data suggest that acidic calponin is a key factor in the regulation of spine plasticity and synaptic activity.  相似文献   

6.
The posterodorsal medial amygdala (MePD) is a sexually dimorphic area and plays a central role in the social behavior network of rats. Dendritic spines modulate synaptic processing and plasticity. Here, we compared the number and structure of dendritic spines in the MePD of prepubertal males and females and postpubertal males with and without sexual experience. Spines were classified and measured after three‐dimensional image reconstruction using DiI fluorescent labeling and confocal microscopy. Significantly differences are as follows: (a) Prepubertal males have more proximal spines, stubby/wide spines with long length and large head diameter and thin and mushroom spines with wide neck and head diameters than prepubertal females, whereas (b) prepubertal females have more mushroom spines with long neck length than age‐matched males. (c) In males, the number of thin spines reduces after puberty and, compared to sexually experienced counterparts, (d) naive males have short stubby/wide spines as well as mushroom spines with reduced neck diameter. In addition, (e) sexually experienced males have an increase in the number of mushroom spines, the length of stubby/wide spines, the head diameter of thin and stubby/wide spines and the neck diameter of thin and mushroom spines. These data indicate that a sexual dimorphism in the MePD dendritic spines is evident before adulthood and a spine‐specific remodeling of number and shape can be brought about by both puberty and sexual experience. These fine‐tuned ontogenetic, hormonally and experience‐dependent changes in the MePD are relevant for plastic synaptic processing and the reproductive behavior of adult rats.  相似文献   

7.
The hippocampus is critical for spatial memory. Recently, subregional differences in the function of hippocampus have been described in a number of behavioral tasks. The present experiments assessed the effects of reversibly lesioning either the dorsal (dHip) or ventral hippocampus (vHip) on spontaneous tests of spatial recognition and temporal order memory. We report that although the dHip is necessary for spatial recognition memory (RM) (distinguishing a novel from a familiar spatial location), the vHip is involved in temporal order memory (the capacity to distinguish between two spatial locations visited at different points in time), but not RM. These findings and others are consistent with the hypothesis that temporal order memory is supported by an integrated circuit of limbic areas including the vHip and the medial prefrontal cortex.  相似文献   

8.
Ta AT  Huang SE  Chiu MJ  Hua MS  Tseng WY  Chen SH  Qiu A 《Human brain mapping》2012,33(10):2415-2427
Evidence for an anterior-posterior gradient of age-related volume reduction along the hippocampal longitudinal axis has been reported in normal aging, but functional changes have yet to be systematically investigated. The current study applied an advanced brain mapping technique, large deformation diffeomorphic metric mapping (LDDMM), automatically delineating the hippocampus into the anterior and posterior segments based on anatomical landmarks. We studied this anterior-posterior gradient in terms of structural and functional MRI in 66 participants aged from 19 to 79 years. The results showed age-related structural volume reduction in both anterior and posterior hippocampi, with greater tendency for anterior decrease. FMRI task contrasts that robustly activated the anterior (associative/relational processing) and posterior (novelty) hippocampus independently, showed only significant reduction of activation in the anterior hippocampus as age increased. Our results revealed positive correlation between structural atrophy and functional decrease in the anterior hippocampi, regardless of task performance in normal aging. These findings suggest that anatomy and functions related to the anterior hippocampus may be more vulnerable to aging, than previously thought.  相似文献   

9.
Accumulating evidence supports the role of sleep in synaptic plasticity and memory consolidation. One line of investigation, the synaptic homeostasis hypothesis, has emphasized the increase in synaptic strength during waking, and compensatory downsizing of (presumably less frequently used) synapses during sleep. Conversely, other studies have reported downsizing and loss of dendritic spines following sleep deprivation. We wanted to determine the effect of sleep deprivation on dendritic spines of hippocampal CA1 neurons using genetic methods for fluorescent labeling of dendritic spines. Male Vglut2-Cre mice were injected with an AAV-DIO-ChR2-mCherry reporter in CA1 hippocampus. Gentle handling was used to sleep deprive mice for 5 hr, from lights on (7 am ) to 12 noon. Control and sleep-deprived mice were euthanized at 12 noon and processed for quantification of dendritic spines. We used confocal microscope imaging and three-dimensional (3D) analysis to quantify thin, mushroom, and stubby spines from CA1 dendrites, distinguishing between branch segments. We observed significantly greater density of spines in CA1 of sleep-deprived mice, driven primarily by greater numbers of thin spines, and significantly larger spine volume and head diameter. Branch and region-specific analysis revealed that spine volume was greater in primary dendrites of apical and basal segments, along with proximal segments on both apical and basal dendrites, and spine density was increased in secondary branches and distal segments on apical dendrites following sleep deprivation. Our 3D quantification suggests sleep contributes to region- and branch-specific synaptic downscaling in the hippocampus, supporting the theory of broad but selective synaptic downscaling during sleep.  相似文献   

10.
In animal models of human amnesia, using lesion methods, it has been difficult to establish the role played by the hippocampus in the formation of long-term spatial knowledge. For example, lesions sustained after acquisition have generally produced a flat retrograde amnesia for spatial information. These results have not made it possible to dissociate the participation of the hippocampus in retrieval/performance processes from its participation in consolidation/retention. The present study was designed to investigate if electrolytic hippocampal lesions made before training lead to a deficit in the long-term retention of spatial knowledge when the rats show equal performance levels during the acquisition. Results show that lesioned rats learn a place response just as well as the control rats when, during the training, an intramaze cue orients the animal in its navigation towards the goal arm. One day after reaching criterion, lesioned and control rats remember the task perfectly during a transfer test in which the intramaze signal used previously is not present. However, 24 days later, the hippocampal animals manifest a profound deficit in the retention of the spatial information. When the spatial task learned during the acquisition phase requires only the use of a guidance strategy, control and lesioned animals show the same level of performance during the training phase and the same degree of retention during the retraining phase 24 days after criterion. Taken together, these results suggest that the hippocampus plays a crucial role in long-term retention of allocentric spatial information.  相似文献   

11.
Diverse protocadherins (Pcdhs), which are encoded as a large cluster (composed of alpha, beta and gamma clusters) in the genome, are localized to axons and synapses. The Pcdhs have been proposed to contribute to the generation of sophisticated neural networks and to regulate brain function. To address the molecular roles of Pcdhs in regulating individual behavior, here we generated knockdown mice of Pcdh-alpha proteins and examined their behavioral abnormalities. There are two alternative splicing variants of the Pcdh-alpha constant region, Pcdh-alpha A and B isoforms, with different cytoplasmic tails. Pcdh-alpha(DeltaBneo/DeltaBneo) mice, in which the Pcdh-alpha B splicing variant was absent and the Pcdh-alpha A isoforms were down-regulated to approximately 20% of the wild-type level, exhibited enhanced contextual fear conditioning and disparities in an eight-arm radial maze. Similar abnormalities were found in Pcdh-alpha(DeltaAneo/DeltaAneo) mice, which lacked 57 amino acids of the Pcdh-alpha A cytoplasmic tail. These learning abnormalities were, however, not seen in Pcdh-alpha(DeltaB/DeltaB) mice [in which the neomycin-resistance (neo) gene cassette was removed from the Pcdh-alpha(DeltaBneo/DeltaBneo) alleles], in which the expression level of the Pcdh-alpha A isoforms was recovered, although the Pcdh-alpha B isoforms were still completely missing in the brain. In addition, the amount of 5-hydroxytryptamine increased in the hippocampus of the hypomorphic Pcdh-alpha A mutant mice but not in recovery Pcdh-alpha(DeltaB/DeltaB). These results suggested that the level of Pcdh-alpha A isoforms in the brain has an important role in regulating learning and memory functions and the amount of 5-hydroxytryptamine in the hippocampus.  相似文献   

12.
Mice born from high care‐giving females show, as adults, low anxiety levels, decreased responsiveness to stress, and substantial improvements in cognitive function and hippocampal plasticity. Given the relevance of this issue for preventing emotional and cognitive abnormalities in high‐risk subjects, this study examines the possibility to further enhance the beneficial effects observed in the progeny by augmenting maternal care beyond the highest levels females can display in standard laboratory conditions. This was produced by placing a second female with the dam and its litter in the rearing cage from the partum until pups weaning. Maternal behavior of all females was scored during the first week postpartum, and behavioral indices of emotionality, prestress and poststress corticosterone levels, cognitive performance, and hippocampal morphology were assessed in the adult offspring. We found that pups reared by female dyads received more maternal care than pups reared by dams alone, but as adults, they did not exhibit alterations in emotionality or corticosterone response estimated in basal condition or following restraint stress. Conversely, they showed enhanced performance in hippocampal‐dependent tasks including long‐term object discrimination, reactivity to spatial change, and fear conditioning together with an increase in dendritic length and spine density in the CA1 region of the hippocampus. In general, the beneficial effects of dyadic maternal care were stronger when both the females were lactating. This study demonstrates that double‐mothering exerts a long‐term positive control on cognitive function and hippocampal neuronal connectivity. This experimental manipulation, especially if associated with increased feeding, might offer a concrete possibility to limit or reverse the consequences of negative predisposing conditions for normal cognitive development. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
It is well documented that estrogen increases dendritic spine density in CA1 pyramidal cells of young female rats. However, this effect is attenuated in aged rats. We report here a quantitative analysis of estrogen effects on hippocampal spine number as visualized with antispinophilin in young (6-8 years old) and aged (19-23 years old) female rhesus monkeys, a species with a pattern of female endocrine senescence comparable to that of humans. Monkeys were ovariectomized and administered either vehicle or estradiol cypionate 3 months postovariectomy, followed by an additional dose 3 weeks later, with perfusion 24 hours after the last estrogen treatment. Immunolocalization of spinophilin, a spine-associated protein, was used for quantitative stereologic analyses of total spinophilin-immunoreactive spine numbers in CA1 stratum radiatum and the inner and outer molecular layers of dentate gyrus. In both young and aged female monkeys, the estrogen-treated groups had an increase in spinophilin-immunoreactive spines (37% in young, P <.005; 35% in aged, P <.05) compared with the untreated groups that amounted to more than 1 billion additional immunoreactive spines. The young group also showed a trend toward an estrogen-induced increase in immunoreactive spines in the dentate gyrus outer molecular layer, but this effect was not statistically significant (P =.097). We conclude that spine number in the rhesus monkey hippocampus is highly responsive to estrogen, yet, unlike the female rat, aged female rhesus monkeys retain the capacity for spine induction in response to estrogen. These data have important implications for cognitive effects of estrogen replacement in postmenopausal women and demonstrate that an estrogen replacement protocol that mimics normal physiological cycles with timed, intermittent peaks can have profound neurobiological effects.  相似文献   

14.
The effects of dorsal hippocampal and medial frontal lesions of the cortex on a spatial learning problem were studied in two inbred strains of mice (C57BL/6 and DBA/2) which present both neuroanatomical differences of such structures and various patterns of spontaneous exploration. The results showed that hippocampal lesions produced impairments of the learning performance in each strain of mouse, but the temporal distribution of the errors over the experiment was found to be strain dependent. On the other hand, medial frontal cortex lesions selectively affected the learning performances since the acquisition process of only the C57BL/6 lesioned mice differed significantly from the other groups. The effects of these lesions are discussed in terms of genetically associated differences of brain structures and functions. It is suggested that investigations of such differences can provide an experimental model for the study of functional and structural recovery.  相似文献   

15.
High affinity uptake of [3H](-)-norepinephrine (NE) was investigated in synaptosomes from rat cerebral cortex (Km = 360 +/- 30 nM) and hypothalamus (Km = 307 +/- 90 nM). Estrogens but not androgens, glucocorticoids or progestin interfered competitively with NE uptake. Ethinylestradiol was the most effective competitor tested, its Ki value being 200 nM in the cortex and 144 nM in the hypothalamus. Stereospecificity of the inhibitory effect of estradiol-17 beta with a preference for the 17 beta-hydroxy group was indicated by the ineffectiveness of estradiol-17 alpha and estrone as competitors. A-ring substitution of estradiol-17 beta or ethinylestradiol by hydroxyl groups in positions 2 and 4 (yielding catecholestrogens) or methyl substitution in positions 2 and 4 (yielding methylestrogens) significantly reduced the inhibitory potency of the estrogen. Methoxylation in positions 2, 4 or 11 beta completely abolished the competitive action of estradiol-17 beta or ethinylestradiol on NE uptake.  相似文献   

16.
The extent to which small ensembles of neighboring hippocampal neurons alter their spatial firing patterns concurrently in response to stimulus manipulations was examined in young adult rats as well as in aged rats with and without memory impairment. Recordings from CA1 and CA3 cells were taken as rats performed a spatial radial-maze task that employed prominent distal visual stimuli attached to dark curtains surrounding the maze and local cues on each maze arm provided by inserts with distinctive visual, tactile, and olfactory stimuli. To test the influence of the different stimulus subsets, the distal and local cues were rotated 90° in opposite directions (a Double Rotation). In response to this manipulation, place fields could maintain a fixed position to room coordinates, rotate with either the local or the distal cues, disappear, or new fields could appear. On average 79% of the cells within an ensemble responded in the same way, but only 37% of all ensembles were fully concordant. Typically discordant ensembles had place fields that rotated with one set of cues, whereas the other fields disappeared or new fields appeared. Ensembles in which the place fields rotated in two opposite directions were less frequent in young rats than would be expected by the occurrence of the individual responses, indicating selective competition between directly conflicting representations and ultimate suppression of one. These findings indicate that hippocampal neurons independently encode distinct subsets of the cues in a complex environment, although processing within the hippocampal network may actively reduce the simultaneous representation of conflicting orientation information. This kind of population activity might reflect the higher-order organization of new memories within an established knowledge framework or schema. Concordance was higher in aged memory-impaired rats than in young rats, and the suppression of conflicting representations was absent in these rats. These findings suggest that age-related memory impairment is at least in part associated with a decrease in the scope of information coded and in the coordination of encoded representations. Hippocampus 1997;7:613–623. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Converging results link histone acetylation dynamics to hippocampus‐dependent memory, including evidence that histone deacetylase inhibitor (HDACi) administration enhances long‐term memory. Previously, we demonstrated that aging disrupts the coordinated epigenetic response to recent experience observed in the young adult hippocampus. Here, we extended that work to test the cognitive effects of a novel, brain‐penetrant HDACi (EVX001688; EVX) that we confirmed yields robust, relatively long lasting dose‐dependent increases in histone acetylation in the hippocampus. In young rats, acute systemic EVX administration, scheduled to yield elevated histone acetylation levels during training in a contextual fear conditioning (CFC) task, had no effect on memory retention at 24 h at any dose examined (10, 30, or 60 mg/kg). Pretraining injection of another HDACi, sodium butyrate, also failed to affect fear memory, and CFC training itself had no influence on hippocampal histone acetylation at 1 hour in mice or two strains of rats. EVX administration before water maze training in young rats yielded a modest effect such that the middle dose produced marginally better 24‐h retention than either the low or high dose, but only a small numerical benefit relative to vehicle. Guided by those findings, a final experiment tested the influence of pretraining EVX treatment on age‐related spatial memory impairment. The results, revealing no effect on performance, are consistent with the idea that effective procognitive HDACi treatments in aging may require intervention aimed at restoring coordinated epigenetic regulation rather than bulk increases in hippocampal histone acetylation. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
GABAergic signaling in the basolateral amygdala complex (BLA) plays a crucial role on the modulation of the stress influence on fear memory. Moreover, accumulating evidence suggests that the dorsal hippocampus (DH) is a downstream target of BLA neurons in contextual fear. Given that hippocampal structural plasticity is proposed to provide a substrate for the storage of long‐term memories, the main aim of this study is to evaluate the modulation of GABA neurotransmission in the BLA on spine density in the DH following stress on contextual fear learning. The present findings show that prior stressful experience promoted contextual fear memory and enhanced spine density in the DH. Intra‐BLA infusion of midazolam, a positive modulator of GABAa sites, prevented the facilitating influence of stress on both fear retention and hippocampal dendritic spine remodeling. Similarly to the stress‐induced effects, the blockade of GABAa sites within the BLA ameliorated fear memory emergence and induced structural remodeling in the DH. These findings suggest that GABAergic transmission in BLA modulates the structural changes in DH associated to the influence of stress on fear memory. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Adrenalectomy (ADX) of normal adult rats causes selective hippocampal dentate granule cell degeneration that is prevented by corticosterone. The ability to destroy this one hippocampal cell type noninvasively made it possible to address the role of the dentate granule cells in learning and memory. Four months after ADX, 31 of 45 rats failed to show obvious granule cell loss and displayed behavior in the Morris water maze that was similar to 16 sham-operated control rats and 16 ADX rats maintained on corticosterone throughout the study. Conversely, 14 of the 45 ADX rats experienced a loss of granule cells that varied from minimal to extensive. Although there were no obvious differences between groups in motoric and motivational characteristics or search strategies, ADX rats with moderate to extensive granule cell loss acquired place learning slightly slower than controls or ADX rats with minimal or no obvious cell loss. Furthermore, the ADX rats with moderate to extensive cell loss were temporarily impaired following alteration of either intramaze or extramaze cues compared to controls. In contrast, the rats with granule cell loss remembered an old place and learned a new place as quickly as controls. These results suggest that a normal complement of dentate granule cells may not be necessary for the acquisition or retention of spatial information in the Morris water maze.  相似文献   

20.
The physiological role of platelet-derived growth factor (PDGF) in the central nervous system (CNS) synaptic function remains uncharacterized. Here we identify physiological roles of PDGF receptor-β (PDGFR-β) in the CNS by conditional knockout of the gene encoding it. In the hippocampus, PDGFR-β colocalized immunohistochemically with both presynaptic synaptophysin and postsynaptic density-95 (PSD-95). In the hippocampal CA1 region, expression levels of postsynaptic proteins, including spinophilin, drebrin, and PSD-95, were significantly decreased in PDGFR-β knockout mice, although presynaptic synaptophysin levels remained comparable to controls. Interestingly, in hippocampal CA1 pyramidal neurons, dendritic spine density in PDGFR-β knockout mice was significantly decreased compared with that seen in wild-type mice, although spine length and number of dendritic branches remained unchanged. Consistent with these findings, impairment in hippocampal long-term potentiation (LTP) and in hippocampus-dependent memory formation were seen in PDGFR-β knockout mice. These results suggest PDGFR-β plays critical roles in spine morphology and memory formation in mouse brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号