首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial respiratory chain disease represents one of the most common inborn errors of metabolism and is genetically heterogeneous, with biochemical defects arising from mutations in the mitochondrial genome (mtDNA) or the nuclear genome. As such, inheritance of mitochondrial respiratory chain disease can either follow dominant or recessive autosomal (Mendelian) inheritance patterns, the strictly matrilineal inheritance observed with mtDNA point mutations or X-linked inheritance. Parental consanguinity in respiratory chain disease is often assumed to infer an autosomal recessive inheritance pattern, and the analysis of mtDNA may be overlooked in the pursuit of a presumed nuclear genetic defect. We report the histochemical, biochemical and molecular genetic investigations of two patients with suspected mitochondrial disease who, despite being born to consanguineous first-cousin parents, were found to harbour well-characterised pathogenic mtDNA mutations, both of which were maternally transmitted. Our findings highlight that any diagnostic algorithm for the investigation of mitochondrial respiratory chain disease must include a full and complete analysis of the entire coding sequence of the mitochondrial genome in a clinically relevant tissue. An autosomal basis for respiratory chain disease should not be assumed in consanguineous families and that 'maternally inherited consanguineous' mitochondrial disease may thus be going undiagnosed.  相似文献   

2.
Mitochondria are the largest generator of ATP in the cell. It is therefore expected that energy‐requiring processes such as oocyte maturation, early embryonic or fetal development, would be adversely impacted in case of mitochondrial deficiency. Human mitochondrial DNA (mtDNA) mutations constitute a spontaneous model of mitochondrial failure and offer the opportunity to study the consequences of energetic defects over fertility and embryofetal development. This review provides an update on the mtDNA metabolism in the early preimplantation embryo, and compiles data showing the impact of mtDNA mutations over mtDNA segregation. Despite convincing evidences about the essential role of mitochondria in oogenesis and preimplantation development, no correlation between the presence of a mtDNA mutation and fertilization failure, impaired oocyte quality, or embryofetal development arrest was found. In some cases, mutant cells might upregulate their mitochondrial content to overcome the bioenergetic defects induced by mtDNA mutations, and might escape negative selection. Finally we discuss some of the clinical consequences of these observations.  相似文献   

3.
Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality.  相似文献   

4.
Mitochondrial DNA (mtDNA) defects are a relatively common cause of inherited disease and have been implicated in both ageing and cancer. MtDNA encodes essential subunits of the mitochondrial respiratory chain and defects result in impaired oxidative phosphorylation (OXPHOS). Similar OXPHOS defects have been shown to be present in a number of neurodegenerative conditions, including Parkinson's disease, as well as in normal ageing human tissues. Additionally, a number of tumours have been shown to contain mtDNA mutations and an altered metabolic phenotype. In this review we outline the unique characteristics of mitochondrial genetics before detailing important pathological features of mtDNA diseases, focusing on adult neurological disease as well as the role of mtDNA mutations in neurodegenerative diseases, ageing and cancer.  相似文献   

5.
Defects of Mitochondrial DNA   总被引:2,自引:0,他引:2  
In the past few years several syndromes have been associated with lesions of the human mitochondrial DNA. MtDNA is a small, circular extra-nuclear chromosome encoding essential components of the respiratory chain. MtDNA-related syndromes can be divided into two groups: mitochondrial encephalomyopathies, characterized by the presence of ragged-red fibres (RRF) as the morphological hallmark, or "pure" encephalopathies with no gross morphological abnormalities in muscle. The first group includes myoclonic epilepsy with ragged-red fibres (MERRF), mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), Kearns-Sayre syndrome (KSS), chronic progressive external ophthalmoplegia (CPEO) and a new entity, maternally inherited myopathy and cardiomyopathy. The second group includes Leber's Hereditary Optic Neuroretinopathy (LHON) and the newly described ataxia-retinitis pigmentosa-dementia complex. Three kinds of molecular lesions have been identified: point mutations of protein encoding mtDNA-genes (similar to yeast mit- mutations); point mutations of mtDNA-tRNA genes (similar to yeast syn- mutations); and large-scale rearrangements of mtDNA (similar to yeast rho- mutations). In general, "mit-" mutations are responsible for non-RRF encephalopathies, while "syn-" and "rho-" mutations are associated with mitochondrial encephalomyopathies with RRF. Furthermore, point mutations (mit- and syn-) are usually maternally- inherited, while large-scale mtDNA rearrangements are either sporadic or inherited as mendelian traits. In most cases, the molecular detection of the known defects of mtDNA can be carried out by non-invasive techniques, thus making it an easy and relatively inexpensive procedure in the differential diagnosis of the mitochondrial disorders, a rapidly expanding area of clinical neurology.  相似文献   

6.

Introduction

mtDNA defects, both deletions and point mutations, have been associated with hypertrophic cardiomyopathies. The aim of this study was to establish a spectrum for mtDNA mutations in Iranian hypertrophic cardiomyopathy (HCM) patients.

Material and methods

The control group was chosen among the special medical centre visitors who did not have hypertrophic cardiomyopathy or any related heart disease. Hypertrophic cardiomyopathy (HCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of HCM. Point mutations and deletions in the two hot spot regions of mtDNA were investigated by PCR and sequencing methods.

Results

Some unreported point mutations have been found in this study but no deletion was detected. Meanwhile some of these point mutations have been investigated among HCM patients for the first time.

Conclusions

A8860G transition was detected in a high proportion, raising the question whether this rare polymorphism is associated as a secondary effect in HCM disease.  相似文献   

7.
Nuclear genetic defects of oxidative phosphorylation.   总被引:6,自引:0,他引:6  
ATP generated by oxidative phosphorylation is necessary for the normal function of most cells in the body. Partial deficiencies in this system are an important cause of a large and diverse group of multisystem disorders. As both the nuclear and mitochondrial genomes encode structural components of the enzyme complexes of the oxidative phosphorylation system, the disorders can be transmitted either in a Mendelian fashion or maternally, or can occur as sporadic cases. Over the last 12 years more than 100 mutations have been uncovered in mtDNA, mostly associated with disease in the adult population. Recently, much attention has turned to the investigation of the nuclear oxidative phosphorylation gene defects. The majority of these are inherited as autosomal recessive traits, producing severe, and usually fatal disease in infants. Adult-onset Mendelian oxidative phosphorylation diseases, which can be inherited as autosomal recessive or dominant traits, have a milder phenotype, and most are associated with multiple mtDNA deletions. Approximately 20 different nuclear gene defects have now been identified in genes coding for structural components of the complexes, assembly/maintenance factors and factors necessary for the maintenance of mtDNA integrity. Some clear genotype-phenotype associations have emerged, and there is an unexpected link between some structural gene mutations and rare cancers, implicating mitochondria as oxygen sensors in the hypoxia response.  相似文献   

8.
Patients with mitochondrial disease usually manifest multisystemic dysfunction with a broad clinical spectrum. When the tests for common mitochondrial DNA (mtDNA) point mutations are negative and the mtDNA defects are still hypothesized, it is necessary to screen the entire mitochondrial genome for unknown mutations in order to confirm the diagnosis. We report an 8-year-old girl who had a long history of ragged-red fiber myopathy, short stature, and deafness, who ultimately developed renal failure and fatal cardiac dysfunction. Respiratory chain enzyme analysis on muscle biopsy revealed deficiency in complexes I, II/III, and IV. Whole mitochondrial genome sequencing analysis was performed. Three novel changes: homoplasmic 15458T > C and 15519T > C in cytochrome b, and a near homoplasmic 5783G > A in tRNA(cys), were found in the proband in various tissues. Her mother and asymptomatic sibling also carry the two homoplasmic mutations and the heteroplasmic 5783G > A mutation in blood, hair follicles, and buccal cells, at lower percentage. The 5783G > A mutation occurs at the T arm of tRNA(cys), resulting in the disruption of the stem structure, which may reduce the stability of the tRNA. 15458T > C changes an amino acid serine to proline at a conserved alpha-helix, which may force the helix to bend. These two mutations may have pathogenic significance. This case emphasizes the importance of pursuing more extensive mutational analysis of mtDNA in the absence of common mtDNA point mutations or large deletions, when there is a high suspicion of a mitochondrial disorder.  相似文献   

9.
Mitochondrial transfer RNA (mt-tRNA) mutations are the commonest mitochondrial (mtDNA) mutations to cause human disease. The majority of mt-tRNA mutations are heteroplasmic and while some exhibit maternal transmission within families, many others are only seen as sporadic mutations. Using the available clinical, biochemical and genetic data from published pathogenic mt-tRNA mutations, we have explored several different factors thought to influence the transmission of mt-tRNA mutations. Our data show that the most important factor in predicting whether a mutation is transmitted to offspring is whether the mt-tRNA mutation is selected against in a rapidly replicating tissue such as blood. This suggests that those mt-tRNA mutations which exert a major phenotype in dividing cells are unlikely to be inherited. This is entirely compatible with recent observations on the mitochondrial genetic bottleneck in early development and has important implications for families with mt-tRNA disease. © 2009 Wiley-Liss, Inc.  相似文献   

10.
SIGNIFICANCE: Mitochondria are currently believed to play an important role in the neurodysfunction and neurodegeneration that underlie Parkinson's disease (PD). RECENT ADVANCES: While it increasingly appears that mitochondrial dysfunction in PD can have different causes, it has been proposed that mitochondrial DNA (mtDNA) may account for or drive mitochondrial dysfunction in the majority of the cases. If correct, the responsible mtDNA signatures could represent acquired mutations, inherited mutations, or population-distributed polymorphisms. CRITICAL ISSUES AND FUTURE DIRECTIONS: This review discusses the case for mtDNA as a key mediator of PD, and especially focuses on data from studies of PD cytoplasmic hybrid (cybrid) cell lines.  相似文献   

11.
It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria''s central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.  相似文献   

12.
The first molecular defect for nonsyndromic hearing loss was identified in 1993, and was a mitochondrial mutation. Since then a number of inherited mitochondrial DNA (mtDNA) mutations have been implicated in hearing loss, and acquired mtDNA mutations have been proposed as one of the causes of the hearing loss associated with aging, presbyacusis. These molecular findings have raised as many questions as they have answered, however, since the pathophysiology between the mutations and the clinical phenotype remains poorly understood. This mini-review will, after a short background review of mitochondrial genetics, (1) outline the different mtDNA mutations associated with inherited syndromic, nonsyndromic, and ototoxic hearing loss, (2) summarize the data on acquired mtDNA mutations and their possible association with presbyacusis, (3) describe the biochemical consequences of the inherited mtDNA mutations, (4) suggest the clinical implications of the identification of these mutations, and (5) discuss the penetrance and tissue specificity of the hearing associated mtDNA mutations.  相似文献   

13.
Defects in oxidative phosphorylation (OXPHOS) are genetically unique because the different components involved in this process, respiratory chain enzyme complexes (I, III, and IV) and complex V, are encoded by nuclear and mitochondrial genome. The objective of the study was to assess whether there are clinical differences in patients suffering from OXPHOS defects caused by nuclear or mitochondrial DNA (mtDNA) mutations. We studied 16 families with > or = two siblings with a genetically established OXPHOS deficiency, four due to a nuclear gene mutation and 12 due to a mtDNA mutation. Siblings with a nuclear gene mutation showed very similar clinical pictures that became manifest in the first years (ranging from first months to early childhood). There was a severe progressive course. Seven of the eight children died in their first decade. Conversely, siblings with a mtDNA mutation had clinical pictures that varied from almost alike to very distinct. They became symptomatic at an older age (ranging from childhood to adulthood), with the exception of defects associated with Leigh or Leigh-like phenotype. The clinical course was more gradual and relatively less severe; four of the 26 patients died, one in his second year, another in her second decade and two in their sixth decade. There are differences in age at onset, severity of clinical course, outcome, and intrafamilial variability in patients affected of an OXPHOS defect due to nuclear or mtDNA mutations. Patients with nuclear mutations become symptomatic at a young age, and have a severe clinical course. Patients with mtDNA mutations show a wider clinical spectrum of age at onset and severity. These differences may be of importance regarding the choice of which genome to study in affected patients as well as with respect to genetic counseling.  相似文献   

14.

Background  

Mitochondrial function is impaired in Parkinson's disease (PD) and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA) from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD.  相似文献   

15.
Diseases caused by nuclear genes affecting mtDNA stability   总被引:10,自引:0,他引:10  
Diseases caused by nuclear genes that affect mitochondrial DNA (mtDNA) stability are an interesting group of mitochondrial disorders, involving both cellular genomes. In these disorders, a primary nuclear gene defect causes secondary mtDNA loss or deletion formation, which leads to tissue dysfunction. Therefore, the diseases clinically resemble those caused by mtDNA mutations, but follow a Mendelian inheritance pattern. Several clinical entities associated with multiple mtDNA deletions have been characterized, the most frequently described being autosomal dominant progressive external ophthalmoplegia (adPEO). MtDNA depletion syndrome (MDS) is a severe disease of childhood, in which tissue-specific loss of mtDNA is seen. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients may have multiple mtDNA deletions and/or mtDNA depletion. Recent reports of thymidine phosphorylase mutations in MNGIE and adenine nucleotide translocator mutations in adPEO have given new insights into the mechanisms of mtDNA maintenance in mammals. The common mechanism underlying both of these gene defects could be disturbed mitochondrial nucleoside pools, the building blocks of mtDNA. Future studies on MNGIE and adPEO pathogenesis, and identification of additional gene defects in adPEO and MDS will provide further understanding about the mammalian mtDNA maintenance and the crosstalk between the nuclear and mitochondrial genomes.  相似文献   

16.
Mitochondrial deafness   总被引:14,自引:2,他引:12  
Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. More than 50 nuclear genes have been shown to be involved in non-syndromic hearing loss, but mutations in mitochondrial DNA (mtDNA) might also cause hearing impairment. As mitochondria are responsible for oxidative phosphorylation, the primary energy-producing system in all eukaryotic cells, mitochondrial dysfunction has pleiotropic effects. Many mutations in mtDNA can lead to multisystem disorders, such as Kearns-Sayre syndrome, NARP, MELAS, or MERRF syndromes, the presentation of which may include hearing loss. A more specific association of mitochondrially inherited deafness and diabetes known as MIDD syndrome can be caused by a limited number of specific mitochondrial mutations. In addition, several rare mutations in the mitochondrial MTTS1 and MTRNR1 genes have been found to be responsible for non-syndromic hearing loss. The most frequent form of non-syndromic deafness is presbyacusis, affecting more than 50% of the elderly. This age-related hearing loss is a paradigm for multifactorial inheritance, involving a multitude of inherited and acquired mutations in the nuclear and mitochondrial genomes, each with a low penetrance, in complex interplay with environmental factors, such as ototoxic medication, that accumulate with age. This study reviews the different mitochondrial mutations, leading to syndromic and especially non-syndromic deafness.  相似文献   

17.
Diseases owing to defects of oxidative phosphorylation (OXPHOS) affect approximately 1 in 8,000 individuals. Clinical manifestations can be extremely variable and range from single-affected tissues to multisystemic syndromes. In general, tissues with a high energy demand, like brain, heart and muscle, are affected. The OXPHOS system is under dual genetic control, and mutations in both nuclear and mitochondrial genes can cause OXPHOS diseases. The expression and segregation of mitochondrial DNA (mtDNA) mutations is different from nuclear gene defects. The mtDNA mutations can be either homoplasmic or heteroplasmic and in the latter case disease becomes manifest when the mutation exceeds a tissue-specific threshold. This mutation load can vary between tissues and often an exact correlation between mutation load and phenotypic expression is lacking. The transmission of mtDNA mutations is exclusively maternal, but the mutation load between embryos can vary tremendously because of a segregational bottleneck. Diseases by nuclear gene mutations show a normal Mendelian inheritance pattern and often have a more constant clinical manifestation. Given the prevalence and severity of OXPHOS disorders and the lack of adequate therapy, existing and new methods for the prevention of transmission of OXPHOS disorders, like prenatal diagnosis (PND), preimplantation genetic diagnosis (PGD), cytoplasmic transfer (CT) and nuclear transfer (NT), are technically and ethically evaluated.  相似文献   

18.
Stem cells accumulate mitochondrial DNA (mtDNA) mutations resulting in an observable respiratory chain defect in their progeny, allowing the mapping of stem cell fate. There is considerable uncertainty in prostate epithelial biology where both basal and luminal stem cells have been described, and in this study the clonal relationships within the human prostate epithelial cell layers were explored by tracing stem cell fate. Fresh-frozen and formalin-fixed histologically-benign prostate samples from 35 patients were studied using sequential cytochrome c oxidase (COX)/succinate dehydrogenase (SDH) enzyme histochemistry and COX subunit I immunofluorescence to identify areas of respiratory chain deficiency; mtDNA mutations were identified by whole mitochondrial genome sequencing of laser-captured areas. We demonstrated that cells with respiratory chain defects due to somatic mtDNA point mutations were present in prostate epithelia and clonally expand in acini. Lineage tracing revealed distinct patterning of stem cell fate with mtDNA mutations spreading throughout the whole acinus or, more commonly, present as mosaic acinar defects. This suggests that individual acini are typically generated from multiple stem cells, and the presence of whole COX-deficient acini suggests that a single stem cell can also generate an entire branching acinar subunit of the gland. Significantly, a common clonal origin for basal, luminal and neuroendocrine cells is demonstrated, helping to resolve a key area of debate in human prostate stem cell biology.  相似文献   

19.
Mitochondrial diseases affect >1 in 7500 live births and may be due to mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). Genetic counselling for families with mitochondrial diseases, especially those due to mtDNA mutations, provides unique and difficult challenges particularly in relation to disease transmission and prevention. We have experienced an increasing demand for prenatal diagnostic testing from families affected by mitochondrial disease since we first offered this service in 2007. We review the diagnostic records of the 62 prenatal samples (17 mtDNA and 45 nDNA) analysed since 2007, the reasons for testing, mutation investigated and the clinical outcome. Our findings indicate that prenatal testing for mitochondrial disease is reliable and informative for the nuclear and selected mtDNA mutations we have tested. Where available, the results of mtDNA heteroplasmy analyses from other family members are helpful in interpreting the prenatal mtDNA test result. This is particularly important when the mutation is rare or the mtDNA heteroplasmy is observed at intermediate levels. At least 11 cases of mitochondrial disease were prevented following prenatal testing, 3 of which were mtDNA disease. On the basis of our results, we believe that prenatal testing for mitochondrial disease is an important option for couples where appropriate genetic analyses and pre/post-test counselling can be provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号