首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Okadaic acid, a protein phosphatase inhibitor, and phorbol myristate acetate, an activator of protein kinase C, increased the phosphorylation state of alpha1A-adrenergic receptors. The effects of these agents were of similar magnitude but that of okadaic acid developed more slowly. Wortmannin (inhibitor of phosphoinositide 3-kinase), but not staurosporine (inhibitor of protein kinase C), abolished the effect of okadaic acid on the alpha1A-adrenoceptor phosphorylation state. The effect of phorbol myristate acetate on this parameter was blocked by staurosporine and only partially inhibited by wortmannin. Okadaic acid markedly increased the co-immunoprecipitation of both the catalytic and regulatory subunits of phosphatidylinositol 3-kinase and of Akt/protein kinase B with the adrenoceptor and only marginally increases receptor association with protein kinase C epsilon. Okadaic acid induced desensitization of alpha1A-adrenoceptors as evidenced by a decreased ability of noradrenaline to increase intracellular calcium. Such desensitization was fully reverted by wortmannin. Our data indicate that inhibition of serine/threonine protein phosphatases increases the phosphorylation state of alpha1A-adrenergic receptor and alters the adrenoceptor function.  相似文献   

2.
Okadaic acid is a potent tumor promoter and an inhibitor of serine/threonine-specific protein phosphatases. We studied the effect of okadaic acid in human T cell activation and phosphorylation of internal substrates. Okadaic acid at up to 4 nM enhanced phorbol myristate acetate (PMA)-induced proliferation and CD25 (IL-2 receptor, p55) expression, although it showed no activation by itself. Okadaic acid induced hyperphosphorylation of a 60 kDa protein in T cells as well as non-T cells, as reported in fibroblasts and keratinocytes. Preincubation with 4 nM okadaic acid enhanced PMA induced phosphorylation of the 80 kDa protein, an internal substrate of protein kinase C in T cells. These results suggest that okadaic acid inhibited dephosphorylation of protein kinase C specific substrates, and as a result, enhanced T cell activation mediated by protein kinase C pathway.  相似文献   

3.
Okadaic acid is the main toxin responsible for the natural phenomena known as diarrheic shellfish poisoning (DSP). This toxin is a tumor promoter C38 polyether fatty acid that contains acidic and hydrophobic moieties and is cyclic. Okadaic acid is a potent inhibitor of important classes of protein serine/threonine phosphatases such as protein phosphatase 1 and 2A. The toxin binds in a hydrophobic groove adjacent to the active site of the protein phosphatases and interacts with basic residues within the active site. Therefore okadaic acid causes increases in phosphorylation of proteins that affect a diverse array of cellular processes. For instance, this toxin modulates metabolic parameters in intact cells. In this sense it stimulates lipolysis, and inhibits fatty acid synthesis in adipocytes however increases glucose output and gluconeogenesis in hepatocytes. Additionally, okadaic acid reaches cytotoxic concentrations in the intestinal tissues in accordance with the diarrhea. Recent studies suggested that toxic effects of okadaic acid might be related to modification of nutrients, ionic and water absorption across the small intestine presumably by altering the transporter system. The subject of this review is limited to the effect of okadaic acid on glucose regulation and its cellular as well as clinical implications.  相似文献   

4.
Vasodilator responses induced by okadaic acid were investigated in canine basilar artery precontracted with 80 mM KCl. Okadaic acid (1 microM) relaxed the artery and this relaxant effect was partially inhibited by G?6976, a conventional protein kinase C inhibitor, and calphostin C, an inhibitor of conventional and novel PKCs. Rottlerin, a specific inhibitor of PKCdelta, did not influence okadaic acid's effect. KCl increased phosphorylation of 20,000-Dalton myosin light chain (MLC(20)) at Ser-19. Okadaic acid additionally increased MLC(20) phosphorylation at Thr-18 and Thr-9, resulting in triphosphorylation of MLC(20). This phosphorylation was inhibited by G?6976. Okadaic acid stimulated phosphorylation of PKCalpha and 17,000-Dalton PKC-potentiated inhibitory phosphoprotein (CPI-17), and G?6976 inhibited these phosphorylations. These results suggest that okadaic acid's relaxant effect involves MLC(20) triphosphorylation through a direct phosphorylation by PKCalpha and an indirect phosphorylation by inhibition of myosin light chain phosphatase through PKCalpha-mediated CPI-17 phosphorylation.  相似文献   

5.
1. The effect of okadaic acid, a potent inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A), on human platelets has been investigated. 2. Okadaic acid exerts a general increase in phosphorylation of platelet proteins but did not induce aggregation or secretion of 5-hydroxytryptamine (5-HT). Okadaic acid, however, did inhibit thrombin-induced functional responses. 3. Maximally effective concentrations of prostacyclin, to elevate adenosine 3'-5'-cyclic monophosphate (cyclic AMP), or phorbol dibutyrate, to activate protein kinase C, inhibited the formation of inositol phosphates by thrombin by approximately 60%. When used in combination, prostacyclin and phorbol dibutyrate reduced the levels of inositol phosphates induced by thrombin to 11%. 4. Okadaic acid (1 microM) decreased thrombin-induced formation of inositol phosphates by approximately 55% and increased the inhibitory action of prostacyclin or phorbol dibutyrate. Okadaic acid had no further effect when prostacyclin and phorbol dibutyrate were used in combination. 5. These results suggest that protein kinases A and C act to inhibit phospholipase C by distinct mechanisms and that their action is reversed by PP1 and/or PP2A.  相似文献   

6.
1. Effects of okadaic acid, a toxin isolated from marine sponges, on smooth muscle contraction and platelet activation were examined. 2. Contractions in rabbit aorta induced by high concentrations of K+ and noradrenaline were inhibited by 0.1-1 microM okadaic acid in a concentration-dependent manner. Spontaneous rhythmic contractions as well as high K+-induced contraction in guinea-pig taenia caeci were also inhibited by 1 microM okadaic acid. 3. High K+-induced contraction in rabbit aorta was accompanied by increased Ca2+ influx measured with 45Ca2+ and increased cytosolic Ca2+ [( Ca2+]cyt) measured with fura-2-Ca2+ fluorescence. Okadaic acid inhibited the contraction without inhibiting Ca2+ influx and produced only a small decrease in [Ca2+]cyt. 4. In a saponin-skinned taenia, Ca2+-induced contraction was not inhibited but rather potentiated by okadaic acid. 5. Okadaic acid, 1 microM, inhibited aggregation, ATP release and increased in [Ca2+]cyt induced by thrombin in washed rabbit platelets. Okadaic acid itself did not change the platelet activities. 6. Okadaic acid did not change the cyclic AMP content of rabbit aorta although the inhibitory effects of okadaic acid were similar to those of cyclic AMP. 7. Although the mechanism of the inhibitory effect of okadaic acid was not clarified in the present experiments, it is suggested that okadaic acid acts by inhibiting protein phosphatases resulting in an indirect activation of cyclic AMP-dependent protein phosphorylation.  相似文献   

7.
The effect of lysophosphatidic acid on the phosphorylation and function of alpha(1b)-adrenoceptors transfected into rat-1 fibroblasts was studied. This phospholipid mitogen increased in a concentration-dependent fashion (EC(50) approximately 50 nM) the phosphorylation of these adrenoceptors. Lysophosphatidic acid-induced alpha(1b)-adrenoceptor phosphorylation was relatively rapid (t(1/2) approximately 1 min), intense (2.5-fold), and sustained for at least 60 min. The effect of lysophosphatidic acid was blocked by pretreatment with pertussis toxin. The alpha(1b)-adrenoceptor phosphorylation induced by lysophosphatidic acid was not blocked by genistein, a tyrosine kinase inhibitor, but it was inhibited by inhibitors of protein kinase C (bisindolylmaleimide I, staurosporine, and Ro 31-8220) and phosphoinositide 3-kinase (wortmannin and LY 294002). The ability of norepinephrine to increase cytosol calcium concentration was markedly decreased in cells previously challenged with lysophosphatidic acid. Norepinephrine-induced [(35)S]GTPgammaS binding in membrane preparations was used as an index of the functional coupling of the alpha(1b)-adrenoceptors and G proteins. Norepinephrine-stimulated [(35)S]GTPgammaS binding was markedly decreased in membranes from cells pretreated with lysophosphatidic acid. This effect of lysophosphatidic acid was blocked by pretreatment with wortmannin or staurosporine. Our data indicate that: 1) activation of lysophosphatidic acid receptors induce phosphorylation of alpha(1b)-adrenoceptors; 2) this effect is mediated through pertussis toxin-sensitive G proteins, phosphatidylinositol 3-kinase, and protein kinase C; and 3) the phosphorylation of alpha(1b)-adrenoceptors induced by the lipid mitogen is associated to adrenoceptor desensitization.  相似文献   

8.
Okadaic acid as well as other, structurally different, inhibitors of serine/threonine phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells. Incubation with stepwise raised concentrations of okadaic acid resulted in the isolation of cells that were increasingly less sensitive to the cytotoxic effect of this agent. After about 18 months cells were selected that survived at 300 nM okadaic acid, which is about 30 times the initially lethal concentration. This study revealed that a major pharmacokinetic mechanism underlying cell survival was the development of a P-glycoprotein-mediated multidrug resistance (MDR) phenotype. The increase in mRNA levels of the mdr1b P-glycoprotein isoform correlated with the extent of drug resistance. Functional assays revealed that increasing drug resistance was paralleled by a decreased accumulation of rhodamine 123, a fluorescent dye which is a substrate of mdr1-mediated efflux activity. Resistance could be abolished by structurally different chemosensitizers of P-glycoprotein function like verapamil and reserpine but not by the leukotriene receptor antagonist MK571 which is a modulator of the multidrug resistance-associated protein (MRP). Okadaic acid resistance included cross-resistance to other cytotoxic agents that are substrates of mdr1-type P-glycoproteins, like doxorubicin and actinomycin D, but not to non-substrates of mdr1, e.g. cytosine arabinoside. Thus, functional as well as biochemical features support the conclusion that okadaic acid is a substrate of the mdr1-mediated efflux activity in rat pituitary GH3 cells. Maintenance of resistance after withdrawal of okadaic acid as well as metaphase spreads of 100 nM okadaic acid-resistant cells suggested a stable MDR genotype without indications for the occurrence of extrachromosomal amplifications, e.g. double minute chromosomes.  相似文献   

9.
Covalent modification by phosphorylation is a characteristic of the P-glycoproteins expressed in multidrug-resistant cells. This report describes analysis of P-glycoprotein phosphorylation in multidrug-resistant human KB-V1 cells and a study of the relationship of phosphorylation and drug accumulation. In isolated membranes, phosphorylation of P-glycoprotein by purified protein kinase C (PKC) was rapid, and time-dependent dephosphorylation was inhibited by okadaic acid, an inhibitor of type 1 and type 2A protein phosphatases. In 32P-labeled intact KB-V1 cells, P-glycoprotein phosphorylation was stimulated by both 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, and okadaic acid. Two-dimensional thin layer tryptic phosphopeptide maps indicated that the sites of phosphorylation were similar in control, TPA-treated, and okadaic acid-treated cells and that they corresponded to those phosphorylated by PKC in vitro. The protein kinase inhibitor staurosporine, and the PKC-selective inhibitors calphostin C and the alkyl-lysophospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, inhibited P-glycoprotein phosphorylation in vitro and in intact cells. Drug accumulation assays demonstrated that in KB-V1 cells TPA caused a decrease, whereas staurosporine and calphostin C caused an increase, in accumulation of [3H]vinblastine. These compounds did not significantly alter [3H]vinblastine levels in drug-sensitive KB-3 cells. These results suggest that PKC is chiefly responsible for P-glycoprotein phosphorylation in KB-V1 cells, that membrane-associated protein phosphatases 1 and 2A are active in dephosphorylation of P-glycoprotein, and that phosphorylation of P-glycoprotein may be an important mechanism for modulation of drug-pumping activity.  相似文献   

10.
Human alpha(1b)-adrenoceptors stably expressed (B(max) approximately 800 fmol/mg membrane protein) in mouse fibroblasts were able to increase intracellular Ca(2+) and inositol phosphate production in response to noradrenaline. Activation of protein kinase C desensitized the alpha(1b)-adrenergic-mediated actions but did not block the ability of the cells to respond to lysophosphatidic acid. Inhibition or downregulation of protein kinase C also blocked the action of the tumor promoter on the adrenergic effects. Photolabeling experiments indicated that the receptor has an apparent molecular weight of approximately 80 kDa. The receptors were phosphorylated in the basal state and such phosphorylation was increased when the cells were incubated with phorbol myristate acetate or noradrenaline. Incubation of the cells with phorbol myristate acetate or noradrenaline blocked noradrenaline-promoted [35S]GTP-gamma-S binding to membranes, suggesting receptor-G protein uncoupling. The results indicate that activation of protein kinase C blocked/desensitized human alpha(1b)-adrenoceptors and that such effect was associated to receptor phosphorylation.  相似文献   

11.
The involvement of serine/threonine protein-phosphatases in the production of superoxide (respiratory burst) by human neutrophils was investigated using calyculin A, a potent inhibitor of both protein phosphatases type 1 and 2A, and okadaic acid, which preferentially inhibits protein phosphatase type 2A. Treatment of neutrophils with calyculin A (25–75 nM) or okadaic acid (1–4 μM) had no stimulatory effect but potently enhanced total superoxide production induced by an optimal fMLP (N-formyl-methionyl-leucoyl-phenylalanine) concentration (0.1 μM). The maximal increase platacuaed with 50–75 nM calyculin A and 2–4 μM okadaic acid, reaching approximately 120 and 200% of control values, respectively. Unlike calyculin A, okadaic acid also primed the initial rate of superoxide production, suggesting that protein phosphatases may down-regulate both initiation and termination of respiratory burst. Optimal stimulation of the respiratory burst by PMA (160 nM) was inhibited by calyculin A and okadaic acid, with an IC50 of 60 nM and 2 μM, respectively, although both drugs caused protein hyperphosphorylation. The inhibition was partially prevented by a nonstimulatory concentration of A23187, indicating a role of calcium in the inhibitory effects of the drugs. Unlike the optimal respiratory burst, suoptimal respiratory burst induced by PMA (1–7 nM) was enhanced by calyculin A and okadaic acid. Unprimed and primed respiratory burst were depressed by a selective antagonist of protein kinase C (GF 109203X), indicating positive regulation of these responses by protein kinase C. Thus, the use of calyculin A and okadaic acid distinguishes two regulatory processes of superoxide production. The respiratory burst induced by low PMA concentrations of fMLP was up-regulated by both calyculin A and okadaic acid, in keeping with a down-regulatory role of protein phosphatases in these responses. By contrast, intense protein kinase C activation by PMA triggered a respiratory burst which was depressed by both drugs, pointing to positive regulation of the respiratory burst by protein phosphatases.  相似文献   

12.
The effect of insulin-like growth factor-I (IGF-I) on human alpha(1B)-adrenoceptor function, phosphorylation state and cellular location was studied. Rat-1 fibroblasts were transfected with a plasmid construction containing enhanced green fluorescent protein joined to the carboxyl terminus of the human alpha(1B)-adrenoceptor. Receptors were identified by radioligand binding and photoaffinity labeling, and were immunoprecipitated with an antiserum generated against the enhanced green fluorescent protein. The receptor was functional, as evidenced by noradrenaline action on intracellular calcium and inositol phosphate production. IGF-I had no significant effect by itself on these parameters but markedly reduced the effects of noradrenaline. IGF-I induced alpha(1B)-adrenoceptor phosphorylation, which was markedly reduced by the following agents: pertussis toxin, a metalloproteinase inhibitor, diphtheria toxin mutant CRM 197, an epidermal growth factor (EGF) receptor intrinsic kinase activity inhibitor, and by phosphoinositide 3-kinase and protein kinase C inhibitors. IGF-I action appears to involve activation of a pertussis toxin-sensitive G protein, shedding of heparin-binding EGF and autocrine activation of EGF receptors. G protein subunits and phosphotyrosine residues stimulate phosphoinositide 3-kinase activity leading to activation of protein kinase C, which in turn phosphorylates alpha(1B)-adrenoceptors. Confocal fluorescent microscopy showed that alpha(1B)-adrenoceptors fussed to the green fluorescent protein were located in plasma membrane and intracellular vesicles in the basal state. IGF-I induced receptor redistribution favoring the intracellular location; this effect was blocked by hypertonic sucrose and concanavalin A. Our data show that IGF-I induces alpha(1B)-adrenoceptor desensitization associated to receptor phosphorylation and internalization.  相似文献   

13.
In pituitary cells, electrical activity generates characteristic oscillations of the cytosolic free Ca2+ concentration, [Ca2+]i. These oscillations are controlled by activators as well as by inhibitors of secretion. We studied, in single fura-2-loaded cells, the role of protein phosphorylation in modulating [Ca2+]i oscillations, using either okadaic acid, an inhibitor of protein phosphatases, or activators of protein kinases A and C. Okadaic acid always increased rapidly both the frequency and amplitude of [Ca2+]i oscillations. In contrast, activation of protein kinases A or C generated more complex kinetic [Ca2+]i patterns: phosphorylation due to both kinases resulted in a sustained activation of [Ca2+]i oscillations in about one-third of the cells, whereas two-thirds of the cells responded by an arrest of [Ca2+]i oscillations. This transient phase of arrest was followed, after a few minutes, by a recovery of [Ca2+]i oscillations, often with enhanced frequency. During the arrest, depolarizing the cells with an external microelectrode could not trigger an increase in [Ca2+]i. We conclude that: (i) the fine regulation between phosphorylation/dephosphorylation events is crucial for the modulation of [Ca2+]i oscillations, and (ii) protein kinases A and C can control Ca2+ influx bidirectionally.  相似文献   

14.
目的通过研究冈田酸对大鼠三叉神经元电压门控性钾、钙电流的影响,探讨磷酸酯酶在细胞信号转导中的调节作用。方法采用全细胞膜片钳方法。结果冈田酸1μmol.L-1对瞬时外向钾电流(IA)的抑制率为28.6%,对延迟整流钾电流(IK)和钙电流(ICa)的增加率分别为22.7%和20.0%。冈田酸1μmol.L-1使IA和IK的激活曲线以及IA的失活曲线发生超级化位移,对ICa激活和失活曲线的影响没有统计学意义。结论①蛋白丝/苏氨酸磷酸酯酶1和2A可能参与了大鼠三叉神经节神经元电压门控性钾和钙通道的调节。②电压门控性钾和钙通道对蛋白丝/苏氨酸磷酸酯酶1和2A的去磷酸化反应表现出不同的依赖性。  相似文献   

15.
Peroxovanadate induced a marked increase in the phosphorylation state of alpha(1B)-adrenoceptors. The effect was dose-dependent (EC(50) approximately 2 microM) and rapid, reaching its maximum in 5 min and remaining at this level for 30 min. Hydrogen peroxide also increased alpha(1B)-adrenoceptor phosphorylation but to a lesser extent, in an ephemeral fashion, and only at high (millimolar) concentrations. The effect of peroxovanadate was blocked by inhibitors of protein kinase C such as staurosporine and rottlerin and only partially reduced by genistein and inhibitors of phosphoinositide 3-kinase. Protein kinase C alpha, delta and epsilon are associated with the alpha(1B)-adrenoceptor under basal conditions, as reflected by coimmunoprecipitation. Such association was increased by peroxovanadate for all isoforms. In contrast, hydrogen peroxide increased only the association of the epsilon isoform to the adrenoceptor. Peroxovanadate decreased the ability of noradrenaline to increase intracellular calcium, indicating that the receptor phosphorylation induced has functional consequences.  相似文献   

16.
We have shown earlier that activation of metabotropic glutamate (mGlu) receptors using a group I-specific mGlu receptor agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG), can induce long-term depression (LTD) in the CA1 region of the hippocampus. In an attempt to determine the signal transduction mechanisms involved in this form of synaptic plasticity, we have tested the effects of a range of inhibitors on DHPG-induced LTD. In vitro grease-gap electrophysiological recordings were performed in the rat hippocampal CA1 region. We have found that DHPG-induced LTD is resistant to the two potent protein kinase C (PKC) inhibitors, G? 6976 (10 microM) and G? 6983 (10 microM), the potent and selective protein kinase A (PKA) inhibitor, KT 5720 (10 microM), and the potent broad spectrum kinase inhibitor, staurosporine (10 microM). In contrast, non-selective inhibitors of protein phosphatases (PP1 and PP2A), okadaic acid (1 microM) or calyculin A (1 microM), facilitated DHPG-induced LTD. However, an inhibitor of protein phosphatase 2B, FK 506 (1 microM), did not influence this process. The PP1/PP2A protein phosphatase inhibitors, but none of the other agents tested, also inhibited (S)-alpha-methyl-4-carboxyphenylglycine (MCPG)-induced reversal of DHPG-induced LTD. These data suggest that activation of neither PKC nor PKA is involved in DHPG-induced LTD. They do, however, suggest that the process is under regulation by protein phosphorylation and dephosphorylation.  相似文献   

17.
In this study, we examined whether the production of hepatocyte growth factor (HGF) in fibroblasts is regulated by protein phosphatase(s). Inhibitors of the enzymes okadaic acid and calyculin A were used for this purpose. Both inhibitors markedly stimulated HGF production in human skin fibroblasts in a dose-dependent manner. The effects of okadaic acid and calyculin A were maximal at 25-37.5 and 1.25 nM, respectively. Highly active HGF production in MRC-5 human embryonic lung fibroblasts was also promoted by both inhibitors. The effect of okadaic acid was accompanied by an up-regulation of HGF gene expression. The stimulating effect of okadaic acid on HGF production was synergistic with that of phorbol 12-myristate 13-acetate (PMA) and epidermal growth factor (EGF), whereas it was additive to the effect of cholera toxin. The protein kinase C (PKC) inhibitor GF 109203X inhibited the effect of PMA, but not of okadaic acid and EGF. The effect of okadaic acid as well as EGF was not inhibited, but rather enhanced in human skin fibroblasts pretreated for 24 hr with a high dose of PMA to deplete PKC, as compared with its effect in untreated cells. PD 98059, an inhibitor of mitogen-activated protein (MAP) kinase kinase, suppressed the effects of okadaic acid and EGF, but not those of cholera toxin and 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP). These results suggest that HGF production in human skin fibroblasts is down-regulated by protein phosphatase(s) and that HGF production stimulated by okadaic acid is, at least in part, dependent on the activation of the MAP kinase cascade.  相似文献   

18.
This review focuses on alpha(1)-adrenoceptor phosphorylation and function. Most of what is currently known is based on studies on the hamster alpha(1B)-adrenoceptor. It is known that agonist stimulation leads to homologous desensitization of these receptors and current evidence indicates that such decrease in receptor activity is associated with receptor phosphorylation. Such receptor phosphorylation seems to involve G protein-receptor kinases and the receptor phosphorylation sites have been located in the carboxyl tail (Ser(404), Ser(408), and Ser(410)). There is also evidence showing that in addition to desensitization, receptor phosphorylation is associated with internalization and roles of beta-arrestins have been observed. Direct activation of protein kinase C leads to receptor desensitization/internalization associated with phosphorylation; the protein-kinase-C-catalyzed receptor phosphorylation sites have been also located in the carboxyl tail (Ser(394) and Ser(400)). Activation of G(q)-coupled receptors, such as the endothelin ET(A) receptor induces alpha(1B)-adrenoceptor phosphorylation and desensitization. Such effect involves protein kinase C and a yet unidentified tyrosine kinase. Activation of G(i)-coupled receptors, such as the lysophosphatidic acid receptor, also induces alpha(1B)-adrenoceptor phosphorylation and desensitization. These effects involve protein kinase C and phosphatidyl inositol 3-kinase. Interestingly, activation of epidermal growth factor receptors also induces alpha(1B)-adrenoceptor phosphorylation and desensitization involving protein kinase C and phosphatidyl inositol 3-kinase. A pivotal role of these kinases in heterologous desensitization is evidenced.  相似文献   

19.
Phorbol dibutyrate induced a nitroblue tetrazolium-reducing reaction in differentiated HL-60 cells, which was inhibited by protein kinase inhibitors such as staurosporine and H-7. ID50 of staurosporine and H-7 were 1.4 ng/ml and 0.19 mM, respectively. When tautomycin, an inhibitor of protein phosphatases, was added with the kinase inhibitors, the nitroblue tetrazolium-reducing reaction again appeared. ID50 of staurosporine was 510 ng/ml in the presence of tautomycin. Tautomycin itself weakly induced the reaction, which was inhibited by kinase inhibitors. Such a competitive effect between tautomycin and staurosporine was not observed in a cell-free system of protein kinase C. Okadaic acid had the same effect as tautomycin. The similar results were obtained when respiratory burst was quantitated by measuring H2O2 produced by canine peripheral neutrophils. The mechanism of competitive effect of tautomycin and staurosporine on respiratory burst is discussed.  相似文献   

20.
Desensitization and phosphorylation of the endogenous angiotensin II AT(1) receptor were studied in clone 9 liver cells. Agonist activation of AT(1) receptors blunted the response to subsequent addition of angiotensin II. Partial inhibition of the angiotensin II-induced calcium response was observed when cells were pretreated with dibutyryl cyclic AMP, tetradecanoyl phorbol acetate (TPA), vasopressin, or lysophosphatidic acid. All of these desensitization processes were associated with receptor phosphorylation. Angiotensin II-induced AT(1) receptor phosphorylation was partially blocked by the protein kinase C inhibitor bisindolylmaleimide I and by phosphoinositide 3-kinase inhibitors (wortmannin and LY294002); the actions of these inhibitors were not additive. Pertussis toxin pretreatment of cells also partially inhibited angiotensin II-induced AT(1) receptor phosphorylation. TPA-induced AT(1) receptor phosphorylation was completely blocked by bisindolylmaleimide I. AT(1) receptor phosphorylation was also induced by vasopressin and lysophosphatidic acid, and these effects were partially inhibited by bisindolylmaleimide I. Angiotensin II increased Akt/PKB (protein kinase B) phosphorylation and protein kinase C membrane association. The effect on Akt/PKB phosphorylation was blocked by phosphoinositide 3-kinase inhibitors. These findings indicate that clone 9 cells exhibit both homologous and heterologous desensitization in association with AT(1) receptor phosphorylation. In these hepatic cells, angiotensin II-induced receptor phosphorylation involves pertussis toxin-sensitive and -insensitive G proteins, and is mediated in part through protein kinase C and phosphoinositide 3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号