首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate quantitatively and qualitatively the effect of image subtraction on the image quality of three-dimensional (3D) gadolinium-enhanced MR angiograms of the renal arteries. Breath-hold 3D gadolinium MR angiography (MRA) as well as conventional contrast angiography of the renal arteries was performed on 20 patients with suspected renovascular hypertension. MR angiograms were acquired before and during dynamic infusion of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). Contrast-enhanced images were compared with images that had undergone voxel-by-voxel signal intensity subtraction of contrast-enhanced data from precontrast data. One false positive finding for significant renal artery stenosis was recorded with MRA using conventional angiography as the gold standard. Image subtraction did not alter the diagnosis at MRA in any case. The mean contrast-to-noise ratio (CNR) was significantly higher (P < .05) on the subtraction MR angiograms compared to the nonsubtracted MR angiograms. There was no significant difference in the signal-to-noise ratio (SNR). Qualitative analysis revealed a significant improvement in image quality after image subtraction with respect to visualization of the distal renal arteries. In conclusion, image subtraction improves the quality of renal MRA in terms of both CNR and visualization of the distal renal arteries.  相似文献   

2.
Moving-table three-dimensional (3D) MR angiography provides images of long segments of arteries. However, deep veins are sometimes superimposed on the arteries below the knee, and peripheral arteries sometimes fail to be visualized. We have developed an imaging method with three-phase gadolinium infusion according to the mean blood flow velocity of the leg. Nineteen patients with various blood flow velocities were studied. Eighteen of the patients had no venous superimposition. All 19 patients showed good configuration of peripheral arteries with 16-18 ml of gadolinium. This method is useful for better visualization of peripheral arteries without venous superimposition.  相似文献   

3.
A method for acquiring pulmonary vascular magnetic resonance (MR) images with either venous or arterial flow suppression is described. The proposed method only marginally increases the overall imaging time compared with conventional flow-suppression techniques. This enables an acquisition to be completed within a single breath hold with some selectivity as to flow direction. Instead of applying a spatially selective presaturation pulse before each radio-frequency (RF) excitation pulse, the flow presaturation pulse is applied once every 16-20 RF excitation pulses. To avoid image artifacts and to maintain a steady state, each presaturation pulse interval is followed by a normal imaging segment but with data acquisition turned off. Overall imaging time is increased by two TR intervals for each presaturation segment. For a 256 × 128 matrix acquisition, venous flow presaturation increases overall imaging time by approximately 14 TR intervals, while arterial flow suppression increases imaging time by 10 TR intervals.  相似文献   

4.
PURPOSE: To evaluate the usefulness of half-dose contrast-enhanced magnetic resonance (MR) angiography for depicting the abdominal aorta and its major branches. MATERIALS AND METHODS: A total of 72 consecutive patients were randomly assigned to one of four groups that underwent MR angiography after receiving different concentrations (original or diluted to 50%) and total amounts (single or half-dose) of gadolinium chelate injected at different rates (1 or 0.5 mL/second). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the abdominal aorta and of the common and external iliac arteries were calculated, and two blinded readers rated the respective image qualities. RESULTS: The SNR and CNR of the abdominal aorta and the common iliac artery in the 0.5 mL/second groups were statistically significantly lower than those in the 1 mL/second groups. The differences in overall image quality across the four groups were not statistically significant. CONCLUSION: Half-dose MR angiography using diluted contrast medium injected at a rate of 1 mL/second depicted the abdominal aorta and its branches as clearly as using a full single dose.  相似文献   

5.
Arterial-phase three-dimensional (3D) contrast-enhanced MR angiograms of the carotid and vertebral arteries from their origins through the carotid bifurcations were obtained in 20 patients using acquisition times over 30 sec by using an MR fluoroscopy-triggered pulse sequence with elliptical centric view order. The typical pixel size was 0.8 mm (x) × 1.6 mm (y) × 1.5 mm (z), and 32–48 coronal slices were acquired. The fluoroscopic monitoring of bolus arrival was effective in 18 of the 20 cases; two failures were attributed directly to a poor choice of RF coil. To exploit peak arterial-to-venous contrast, the central 3D views were acquired first in the most compact time period possible for the given TR. For the 18 successfully triggered cases, arterial-phase 3D images were obtained with excellent venous suppression as demonstrated by an average internal jugular vein to common carotid signal enhancement ratio of only 0.05 ± 0.04.  相似文献   

6.
RATIONALE AND OBJECTIVES: Factor analysis of medical image sequences (FAMIS) applied to gadolinium chelate-enhanced subsecond magnetic resonance (MR) imaging was evaluated as a postprocessing method for assessing myocardial perfusion in coronary artery disease (CAD). MATERIALS AND METHODS: To assess the accuracy of motion correction, five normal volunteers underwent MR imaging at rest. Thirteen patients with well-documented CAD and no myocardial infarction underwent MR imaging at rest and after dipyridamole administration. After motion correction, a single myocardial tissue factor (FAMISt) image was obtained with FAMIS for each raw MR imaging series acquisition. To evaluate how FAMIS could improve the analysis of these acquisitions, five readers visually assessed myocardial perfusion with FAMISt and raw MR images, and a multicase, multireader receiver operating characteristic analysis was performed. RESULTS: FAMISt images significantly improved detection of the perfusion defects when compared with raw MR images (P = .002). Areas under the receiver operating characteristic curves ranged from 0.84 to 0.93 with FAMISt images and from 0.48 to 0.85 with raw MR images. CONCLUSION: FAMIS applied to first-pass MR imaging series provided myocardial perfusion images that improve the objective assessment of myocardial perfusion in patients with CAD.  相似文献   

7.
Time‐of‐flight (TOF) MR angiography allows for noninvasive vessel imaging. To overcome the limited volumetric coverage of standard TOF techniques, the aim of this study was to investigate the combination of TOF and continuously moving table (CMT) acquisitions for peripheral vein imaging based on image subtraction. Two acquisition strategies are presented: a simple two‐step method based on 2‐fold CMT acquisition and an advanced one‐step method requiring only one continuous scan. Image quality of both CMT TOF techniques was evaluated by semiquantitative image grading and by signal‐to‐noise ratio and contrast‐to‐noise ratio analysis for veins of the upper and lower leg in 10 healthy volunteers. Results were compared to a standard stationary two‐dimensional (2D) TOF multistation acquisition. Image grading revealed good image quality for both CMT TOF methods, thereby confirming the feasibility of axial 2D CMT TOF to assess the veins of the lower extremities during a single scan. Quantitative evaluation showed no significant difference in signal‐to‐noise ratio and contrast‐to‐noise ratio compared to the stationary experiment. Additional measurements in three patients with postthrombotic changes and varicosities demonstrated the clinical applicability of the presented methods. CMT TOF provides promising results and permits the detection of various pathologic changes of the venous system. Magn Reson Med 63:1219–1229, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
RATIONALE AND OBJECTIVES: Dynamic contrast material-enhanced magnetic resonance (MR) imaging may be used to quantify fractional blood volume (fBV) and microvascular permeability in human brain tumors. Hypothesis is that these measurements correlate with tumor histologic grade and immunohistologically assessed mitotic activity. MATERIALS AND METHODS: Thirty-eight patients with newly diagnosed gliomas underwent MR imaging consisting of dynamic three-dimensional spoiled gradient-recalled acquisition in the steady state image sets following bolus injections of a single dose of gadodiamide. Signal intensity changes in blood and tissue were kinetically analyzed, yielding estimates of fBV and microvascular permeability (k). Tumor specimens were graded with the World Health Organization-II four-point grading score. MIB-1 immunohistochemical labeling (anti-Ki-67 monoclonal antibody) was performed in 22 patients to evaluate mitotic activity. RESULTS: Histologic study revealed nine grade 2, 14 grade 3, and 15 grade 4 tumors. fBV ranged from 0.4% to 24%, k from -0.4 to 31.4 mL/100 cm3 x min, and MIB-1 labeling indexes from 1.7% to 42.8%. Correlation to the tumor grade was highest for permeability (r = 0.73), followed by the MIB-1 index (r = 0.63), and fBV (r = 0.48). Correlation between k and MIB-1 index was strong (r = 0.84). There was no statistically significant difference between the fBV of any of the groups. Despite some overlap between the permeability values of specific tumors from different grades, differences were statistically significant. The MIB-1 index was significantly different between grades 3 and 4 but not between grades 2 and 3. CONCLUSION: Dynamic contrast-enhanced MR imaging allows noninvasive determination of tumor fBV and microvascular permeability k. k is more reliable than the MIB-1 labeling index for differentiating grade 2 from grade 3 tumors.  相似文献   

9.
PURPOSE: To evaluate the feasibility of a scoutless method, termed EZ-STEP, for stepping-table peripheral contrast-enhanced magnetic resonance angiography (CE-MRA). MATERIALS AND METHODS: This scoutless method involves the use of a stepping-table, fast 3D MRA acquisition that incorporates spatially nonselective radiofrequency (RF) pulses for excitation to reduce the repetition time (TR). The sequence was tested in a phantom. The EZ-STEP protocol was optimized in four healthy volunteers and used in 15 subjects. The image quality was scored in a blinded fashion and compared with conventional MRA in eight patients. RESULTS: The acquisition speed of the EZ-STEP sequence was approximately 30% faster in the phantom study compared to the conventional MRA sequence. The total examination time for EZ-STEP was 6 minutes, compared to an average of 23 minutes for conventional MRA. The average image quality scores for EZ-STEP and conventional MRA for stations 1-3 were 3.50 vs. 3.06 (P = 0.087), 3.53 vs. 3.00 (P = 0.033), and 2.97 vs. 2.50 (P = 0.090), respectively. CONCLUSION: EZ-STEP is a more efficient method than the conventional approach for stepping-table peripheral CE-MRA, and provides comparable or better image quality. This method shortens the examination time substantially and eliminates the risk of failing to image a vessel because of improper positioning of the scan volume.  相似文献   

10.
OBJECTIVE: The purpose of this study was to assess the image quality of gadolinium-enhanced time-resolved three-dimensional (3D) MR angiography and to evaluate its accuracy in revealing renal artery stenosis. SUBJECTS AND METHODS: Thirty-nine patients underwent MR angiography using an ultrafast 3D Fourier transform spoiled gradient-recalled acquisition in the steady state (TR/TE range, 2.6/0.7--0.8). Five seconds after administration of 15--20 mL gadodiamide hydrate, four or five consecutive data sets with imaging times of 7.0--7.6 sec were acquired during a single breath-hold. A timing examination was not performed. Image quality was assessed using quantitative analysis (signal-to-noise, contrast-to-noise, and venous-to-arterial enhancement ratios) and qualitative analysis (presence of venous overlap, presence of artifacts, and degree of renal arterial enhancement). MR angiography depiction of the renal artery stenosis was evaluated using conventional angiography as the standard of reference. RESULTS: On the best arterial phase, average aortic signal-to-noise ratio (+/-SD) was 74.5 +/- 24.4, aorta-to--inferior vena cava contrast-to-noise ratio was 70.8 +/- 23.4, and inferior vena cava--to-aorta venous-to-arterial enhancement ratio was 0.03 +/- 0.04. No venous overlap was seen in 38 of 39 patients. Substantial enhancement of renal arteries was seen in all patients without any noticeable artifacts. MR angiography correctly depicted the degree of stenosis in 44 of 47 normal arteries, 13 of 16 mildly stenotic arteries, five of five moderately stenotic arteries, three of four severely stenotic arteries, and one of one occluded artery. Sensitivity and specificity for revealing greater than 50% stenosis was 100%. CONCLUSION: Time-resolved 3D MR angiography can provide high-quality arteriograms. Its performance in revealing renal artery stenosis is comparable with that of conventional angiography.  相似文献   

11.
RATIONALE AND OBJECTIVES: The authors tested whether noninvasive magnetic resonance (MR) oximetry is accurate in the in vivo measurement of oxygen saturation in a stroma-free, hemoglobin-based oxygen carrier (HBOC). MATERIALS AND METHODS: A central venous catheter was placed in the inferior vena cava (IVC) of 10 New Zealand white rabbits (weight range, 2.5-3.2 kg). Each rabbit underwent removal of 20% of blood volume followed by resuscitation with 10 mL/kg of bovine HBOC-200. Oxygen saturation of the blood mixture was measured in vivo at the IVC with MR oximetry, with separate in vitro calibration for each animal. Blood drawn from the IVC was measured with ex vivo oximetry, which was used as the standard of reference. The in vivo and ex vivo measurements were compared. RESULTS: There was no significant difference (P > .1) between measurements obtained with MR oximetry and ex vivo oximetry. The results with in vivo MR oximetry demonstrated excellent correlation with those from ex vivo oximetry (r = 0.99) over a wide range of physiologic oxygen saturation values (16.7%-74.9%) in venous blood. CONCLUSION: Noninvasive in vivo MR measurement of oxygen saturation is valid for whole blood mixed with stroma-free hemoglobin. Therefore, MR oximetry may be clinically useful for assessing the oxygenation status in patients resuscitated with a HBOC.  相似文献   

12.
PURPOSE: To prospectively evaluate the technical feasibility of a highly accelerated pulmonary MR perfusion protocol at 3.0T using a blood pool contrast agent in a swine model. MATERIALS AND METHODS: Twelve pigs underwent time-resolved pulmonary MR angiography (MRA) on a 3.0T MR system under anesthesia and controlled mechanical ventilation. After intravenous injection of 0.05 mmol/kg of Gadomer-17 at 4 mL/second, a fast time-resolved MRA sequence with temporal echo-sharing (three segmented k-space) and highly accelerated parallel acquisition was used to acquire 3D data sets with an in-plane resolution of 1 x 1 mm(2) (slice thickness = 6 mm) and temporal resolution of one second. Image quality was evaluated independently by two radiologists, and quantitative analysis of perfusion parameters was performed using pre-released perfusion software. RESULTS: All studies were identified by both readers as having diagnostic image quality (range = 2-3, median = 3) and there was excellent interobserver agreement (kappa = 0.89; 95% CI = 0.83, 0.95). A quantitative analysis of perfusion indices was performed, with excellent overall goodness-of-fit (chi(2) value = 1.4, degree of freedom (DF) = 1). Successfully derived perfusion parameters included the time to peak (TTP, 5.1 +/- 0.7 second), mean transit time (MTT, 6.6 +/- 0.9 second), maximal signal intensity (MSI, 1051.2 +/- 718.9 arbitrary units [A.U.]), and maximal upslope of the curve (MUS, 375.9 +/- 263.4 A.U./second). CONCLUSION: 3.0T pulmonary MR perfusion using a blood pool contrast agent in a swine model is feasible. The higher available signal-to-noise ratio (SNR) at 3.0T and the high T1 relaxivity of Gadomer-17 effectively support highly accelerated parallel acquisition, and improve the performance of time-resolved pulmonary MRA.  相似文献   

13.
目的:采用多个薄层扫描块重迭采集(MOTSA)与移行饱和组合序列(TSC)对颈部动脉行MRA前瞻性研究,选择颅外段脑动脉MRA的优化序列组合。材料与方法:正常人组40例,疾病组4例。均同时行MOTSA、TSCMRA。疾病组1例同时行DSA。结果:MOTSA技术MRA空间分辨率高。血管、背景对比好,病变显示清晰,但检查时间长,块间连接较繁琐;TSC血流信号强度高,块间连续简便,无明显饱和伪影,缺点是对涡流敏感,血管迂曲处信号丢失。结论:以2DTSC观察血管全长,3DTOF-TONE观察血管局部是颅外段脑动脉TOF法MRA较好的序列组合。  相似文献   

14.
To determine if magnetic resonance (MR) imaging techniques can be used to examine sites of embryo implantation in intact rats, pregnant animals were imaged with gadopentetate dimeglumine-enhanced MR imaging approximately 10 hours after initiation of implantation on day 5 of pregnancy. T1-weighted, three-dimensional SPGR (spoiled gradient-recalled acquisition in the steady state) sequences were used to image the volume of abdomen containing the uterine horns before and after injection of gadopentetate dimeglumine into a femoral venous catheter. While unenhanced images provided little detail in uterine tissue, analysis of the gadolinium-enhanced abdominal images with interactive vascular imaging allowed easy identification of sites of embryo implantation along both uterine horns in four of four pregnant rats. These punctate patterns of enhancement match those of macroscopic bluing after injection of Evans blue dye. Similar gadolinium-enhanced MR imaging of nonpregnant rats produced only a slight, generalized enhancement of entire uterine horns. The authors conclude that local increases in extracellular fluid volume, vascular permeability, and blood flow in the uterus may all contribute to the gadolinium enhancement of the implantation sites. They propose that this approach can be used in experimental settings to provide information regarding embryo implantation unaccessible with traditional approaches. In clinical settings, gadolinium-enhanced MR imaging may be used to examine potential causes of infertility, including luteal phase defects.  相似文献   

15.
Arterial and venous blood flow: noninvasive quantitation with MR imaging.   总被引:7,自引:0,他引:7  
Quantitative measurements of arterial and venous blood flow were obtained with phase-contrast cine magnetic resonance (MR) imaging and compared with such measurements obtained by means of implanted ultrasound (US) blood flow probes in anesthetized dogs. The US flowmeter was enabled during a portion of each MR imaging sequence to allow virtually simultaneous data acquisition with the two techniques. MR imaging data were gated by means of electrocardiography and divided into 16 phases per cardiac cycle. The rates of portal venous blood flow measured with MR imaging and averaged across the cardiac cycle (710 mL/min +/- 230 [standard deviation]) correlated well with those measured with the flowmeter and averaged in like fashion (751 mL/min +/- 238) (r = .995, slope = 1.053). The correspondence in arterial blood flow was almost as good. No statistically significant difference existed between the paired measurements of blood flow obtained with MR imaging and the implanted probe. It is concluded that, as a noninvasive means of accurate quantification of blood flow, phase-contrast MR imaging may be especially useful in deep blood vessels in humans.  相似文献   

16.
PURPOSE: To determine whether 3.0-T elliptical-centric contrast-enhanced (CE) magnetic resonance (MR) angiography is superior to 3.0-T elliptical-centric time-of-flight (TOF) MR angiography in the detection and characterization of intracranial aneurysms, and to determine whether increasing the acquisition matrix size in 3.0-T CE MR angiography improves image quality. MATERIALS AND METHODS: A total of 50 consecutive patients referred for MR angiographic evaluation of a known or suspected intracranial aneurysm underwent MR angiography, including three-dimensional TOF and elliptical-centric CE techniques at 3.0 T. The 3.0-T three-dimensional TOF and 3.0-T CE examinations were graded for image quality. A blind review identified the presence and location of aneurysms. RESULTS: A total of 28 aneurysms were identified in 23 of the 50 patients. The 3.0-T TOF MR angiography had a higher mean score for image quality than the 3.0-T elliptical-centric CE MR angiography (P < 0.0001). A total of 14 patients with aneurysms had conventional angiography for comparison. The 3.0-T TOF showed all the aneurysms, whereas 3.0-T CE MR angiography did not show 1 of 19 aneurysms when conventional angiography was the reference standard. CONCLUSION: For imaging intracranial aneurysms, 3.0-T TOF MR angiography offers better image quality than 3.0-T CE MR angiography using the elliptical-centric technique.  相似文献   

17.
The aim of the study was to apply time-of-flight MR angiography to renal transplant arteries with comparison of two- and three-dimensional (2D and 3D) sequences and to correlate the findings with colour flow sonography (CFS) and digital subtraction angiography (DSA). A total of 102 MR studies were performed in 101 patients: 87 with the 2D-FLASH sequence (18 repeated after Gd-DOTA administration), 49 with the 3D-FISP (both in 34). All patients were also studied with CFS and 15 with intra-arterial DSA. The 3D sequence produced good-quality MR angiograms in 94% of cases (82% in 2D). Gd-DOTA infusion improved the quality of the 2D angiograms in 7 of 18 cases. Only these patients were included in the remainder of the evaluation (90 patients with 103 arteries). CFS showed 72 normal and 10 abnormal arteries. In this group, the 2D sequence led to 7 (12%) false positives of stenosis and the 3D sequence yielded 1 (3%). Correlation between MR angiography and DSA was obtained for 21 arteries (15 patients) with suspicion of arterial complications. The 2D-FLASH (n = 13) and the 3D-FISP (n = 12) MR sequences allowed the correct diagnosis of all main artery complications (14 stenoses and 4 thromboses) without any false negatives and without discordance when both sequences were performed (n = 4). In the 3 other cases with a normal main artery, 2 segmental thromboses were correctly identified by both sequences and 1 stenosis of a segmental branch was correctly identified by the 2D sequence only but misdiagnosed as a thrombosis with the 3D sequence. Grading of the severity of stenoses was inaccurate with both sequences. It is concluded that the 3D time-of-flight MR sequence provides better MR angiograms than the 2D, with fewer false positives for stenosis. No false-negative arterial complications were noted. Correspondence to: N. Grenier  相似文献   

18.
Dynamic 3D MR angiography of the pulmonary arteries in under four seconds   总被引:8,自引:0,他引:8  
Although 3D MRA has been shown to provide excellent depiction of the pulmonary arterial tree, its clinical use has been limited due to lengthy breath-holding requirements. Employing the newest gradient generation (1.5 T MR system, amplitude of 40 mT/m and a slew rate of 200 mT/m/msec), we evaluated a technique permitting the dynamic acquisition of 3D data sets of the entire pulmonary tree in under 4 seconds. Coronal image sets were collected using a repetition time of 1.64 msec and an echo time of 0.6 msec, resulting in an acquisition time of 3.74 seconds. Three volunteers and eight dyspneic patients with known or suspected pulmonary embolism underwent MRI of the pulmonary arteries. The pulmonary arterial tree was visible to a subsegmental level in all examined subjects. Regarding the presence of pulmonary emboli in four patients, there was complete concordance between MR angiographic findings and those of corroborative studies. We conclude that diagnostic MRA of the pulmonary vasculature can be obtained even in patients with severe respiratory distress.  相似文献   

19.
Noncontrast techniques for peripheral MR angiography are receiving renewed interest because of safety concerns about the use of gadolinium in patients with renal insufficiency. One class of techniques involves subtraction of dark-blood images acquired during fast systolic flow from bright-blood images obtained during slow diastolic flow. The goal of this work was to determine whether the inherent sparsity of the difference images could be exploited to achieve greater acceleration without loss of image quality in the context of generalized autocalibrating partially parallel acquisition (GRAPPA). It is shown that noise amplification at high acceleration factors can be reduced by performing subtraction on the raw data, before calculation of the GRAPPA weights, rather than on the final magnitude images. Use of the difference data to calculate the GRAPPA weights decreases the geometry factor (g-factor), because the difference data represent a sparse image set. This demonstrates an inherent property of GRAPPA and does not require the use of compressed sensing. Application of this approach to highly accelerated data from healthy volunteers resulted in similar depiction of large arteries to that obtained with low acceleration and standard reconstruction. However, visualization of very small vessels and arterial branches was compromised.  相似文献   

20.
PURPOSE: To assess the feasibility of contrast-enhanced fat-saturated three-dimensional steady-state free precession (FIESTA) imaging for contrast-enhanced magnetic resonance (MR) portography. MATERIALS AND METHODS: Contrast-enhanced fat-saturated three-dimensional fast spoiled gradient-echo (SPGR) and FIESTA were performed as MR portography. In 10 cases, fat-saturated three-dimensional FIESTA was first performed and followed by fast SPGR, and the order of post-contrast imaging was reversed in the other 10 cases. Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were estimated for portal and visceral veins on the source images. The visualization of portal vein was scored on three-dimensional MR portography. Portal venous system disorders were assessed using three-dimensional MR portography. RESULTS: The SNRs, CNRs, and visual assessment of portal and visceral veins were significantly higher in contrast-enhanced fat-saturated three-dimensional FIESTA than contrast-enhanced fat-saturated three-dimensional fast SPGR (P < 0.05). The contrast-enhanced fat-saturated three-dimensional FIESTA provided high venous signals even at 8 minutes after gadolinium injection. The abnormalities of portal venous system were well visualized with MR portography using contrast-enhanced fat-saturated three-dimensional FIESTA. CONCLUSION: Contrast-enhanced fat-saturated three-dimensional FIESTA was valuable for MR portography, with flexible time window and high vascular signals. This imaging may allow for other post-contrast imaging options before portography and release patients from consecutive breath-holds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号