首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Connections of the retrosplenial dysgranular cortex in the rat.   总被引:6,自引:0,他引:6  
Although the retrosplenial dysgranular cortex (Rdg) is situated both physically and connectionally between the hippocampal formation and the neocortex, few studies have focused on the connections of Rdg. The present study employs retrograde and anterograde anatomical tracing methods to delineate the connections of Rdg. Each projection to Rdg terminates in distinct layers of the cortex. The thalamic projections to Rdg originate in the anterior (primarily the anteromedial), lateral (primarily the laterodorsal), and reuniens nuclei. Those from the anteromedial nucleus terminate predominantely in layers I and IV-VI, whereas the axons arising from the laterodorsal nucleus have a dense terminal plexus in layers I and III-IV. The cortical projections to Rdg originate primarily in the infraradiata, retrosplenial, postsubicular, and areas 17 and 18b cortices. The projections arising from visual areas 18b and 17 predominantly terminate in layer I of Rdg, axons from contralateral Rdg form a dense terminal plexus in layers I-IV, with a smaller number of terminals in layers V and VI, afferents from postsubiculum terminate in layers I and III-V, and the projection from infraradiata cortex terminates in layers I and V-VI. The efferent projections from Rdg are widespread. The major cortical projections from Rdg are to infraradiata, retrosplenial granular, area 18b, and postsubicular cortices. Subcortical projections from Rdg terminate primarily in the ipsilateral caudate and lateral thalamic nuclei and bilaterally in the anterior thalamic nuclei. The efferent projections from Rdg are topographically organized. Rostral Rdg projects to the dorsal infraradiata cortex and the rostral postsubiculum, while caudal Rdg axons terminate predominantely in the ventral infraradiata and the caudal postsubicular cortices. Caudal but not rostral Rdg projects to areas 17 and 18b of the cortex. The Rdg projections to the lateral and anterior nuclei also are organized along the rostral-caudal axis. Together, these data suggest that Rdg integrates thalamic, hippocampal, and neocortical information.  相似文献   

2.
The retrosplenial cortex is situated at the crossroads between the hippocampal formation and many areas of the neocortex, but few studies have examined the connections between the hippocampal formation and the retrosplenial cortex in detail. Each subdivision of the retrosplenial cortex projects to a discrete terminal field in the hippocampal formation. The retrosplenial dysgranular cortex (Rdg) projects to the postsubiculum, caudal parts of parasubiculum, caudal and lateral parts of the entorhinal cortex, and the perirhinal cortex. The retrosplenial granular b cortex (Rgb) projects only to the postsubiculum, but the retrosplenial granular a cortex (Rga) projects to the postsubiculu, rostral presubiculum, parasubiculum, and caudal medial entorhinal cortex. Reciprocating projections from the hippocampal formation to Rdg originate in septal parts of CA1, postsubiculum, and caudal parts of the entorhinal cortex, but these are only sparse projections. In contrast, Rgb and Rga receive dense projections from the hippocampal formation. The hippocampal projection to Rgb originates in area CA1, dorsal (septal) subiculum, and post-subiculum. Conversely, Rga is innervated by ventral (temporal) subiculum and postsubiculum. Further, the connections between the retrosplenial cortex and the hippocampal formation are topographically organized. Rostral retrosplenial cortex is connected primarily to the septal (rostrodorsal) hippocampal formation, while caudal parts of the retrosplenial cortex are connected with temporal (caudoventral) areas of the hippocampal formation. Together, the elaborate connections between the retrosplenial cortex and the hippocampal formation suggest that this projection provides an important pathway by which the hippocampus affects learning, memory, and emotional behavior.  相似文献   

3.
Connections of the retrosplenial granular a cortex in the rat   总被引:4,自引:0,他引:4  
Although the retrosplenial granular a cortex (Rga) is situated in a critical position between the hippocampal formation and the neocortex, few studies have examined its connections. The present experiments use both retrograde and anterograde tracing techniques to characterize the afferent and efferent connections of Rga. Cortical projections to Rga originate in the ipsilateral area infraradiata, the retrosplenial agranular and granular b cortices, the ventral subiculum, and the contralateral Rga. Subcortical projections originate in the claustrum, the diagonal band of Broca, the thalamus, the midbrain raphe nuclei, and the locus coeruleus. The thalamic projections to Rga originate mainly in the anterodorsal (AD) and laterodorsal (LD) nuclei with sparse projections arising in the anteroventral (AV) and reuniens nuclei. Each projection to Rga terminates in distinct layers of the cortex. The thalamic projection from AD terminates primarily in layers I, III, and IV of Rga, whereas the axons arising from the LD nucleus have a dense terminal plexus only in layer 1. The projections arising from the subiculum end predominantly in layer II, whereas the postsubiculum projects to layers I and III-V. Axons from the contralateral Rga form a dense terminal plexus in layers IV and V, with a smaller number of terminals in layers I and VI. Rga projects ipsilaterally to the AV and LD nuclei of the thalamus and to the anterior cingulate, retrosplenial agranular,a and postsubicular cortices. Contralaterally it projects to the retrosplenial agranular and Rga cortices. Rga projections to the thalamus terminate ipsilaterally in the dorsal part of LD and bilaterally in AV. Together, these data suggest that Rga integrates thalamic with limbic information.  相似文献   

4.
Thalamic projections to retrosplenial cortex in the rat   总被引:2,自引:0,他引:2  
The topographic relationships between anterior thalamic neurons and their terminal projection fields in the retrosplenial cortex of the rat were characterized by experiments with the fluorescent dye retrograde labeling technique. The results demonstrate that the anterodorsal (DAD) and anteroventral (AV) nuclei project heavily to retrosplenial granular cortex (Rg) and to a lesser extent to retrosplenial agranular cortex (Rag). In contrast, the anteromedial (AM) and lateral dorsal (LD) nuclei project heavily to Rag and more lightly to Rg. Irrespective of terminal field in Rg or Rag, the neuronal cell bodies in AD and AV are organized topographically so that the neurons in the caudal part of each nucleus project to rostral retrosplenial cortex and the neurons in the rostral portion of each nucleus project to the caudal retrosplenial cortex. Further, the ventromedial AD and AV neurons project to rostral retrosplenial cortex, whereas dorsolateral neurons in both nuclei project to caudal retrosplenial cortex. LD neurons display a different topographic organization. The neurons in the medioventral part of LD project primarily to the rostral retrosplenial cortex, and the neurons in lateral LD project to the caudal retrosplenial cortex. This latter projection to the caudal retrosplenial cortex is also contributed to by neurons residing in the mediodorsal part of caudal LD. The neurons in AM that project to the retrosplenial cortex display less segregation than the AV, AD, or LD neurons. In all experiments, a number of neurons in the dorsal ventro-anterolateral nucleus were labeled by retrosplenial injections. The largest number of cells in this nucleus were labeled after Rag injections, and these were topographically organized such that the neurons projecting to the rostral Rag were located immediately deep to the internal medullary lamina, and the neurons projecting to the caudal Rag were more ventrally located. Very few thalamic neurons have axon collaterals to different areas of the retrosplenial cortex as shown by double labeling experiments. Together, these results demonstrate a highly organized thalamic projection to the retrosplenial cortex.  相似文献   

5.
The extrinsic projections to and from the retrosplenial cortex have been studied in detail, but the intrinsic circuitry within this region has been characterized less completely. To further define the internal connections, small injections of the retrograde, fluorescent tracer Fluorogold were made into the retrosplenial cortex of the rat. These injections label neurons in layers II-V of the contralateral homotopic cortex. In layers III-V, the labeled neurons are present over an area much larger than the injection site, but in layer II neurons are labeled in a very precise homotopic pattern. Following these injections, only the neurons in layer II display heavily labeled apical dendrites, and these labeled dendrites form tight bundles in layer Ic and Ib of the cortex and spread out in layer Ia. An examination of Golgi-stained material demonstrates that most of the neurons in layer II are small pyramidal cells with 2-3 small basal dendrites and a single, large apical dendrite that arborizes extensively in layer Ia. To verify the structure of the layer II neurons, they were intracellularly filled with Lucifer yellow. Examination of these labeled cells confirms the observations from the Golgi-stained material and demonstrates that many apical dendrites of the layer II cells angle acutely, apparently to join a bundle and/or avoid an interbundle space. Tract tracing experiments demonstrate that the anteroventral nucleus of the thalamus appears to project selectively to the region containing the dendritic bundles, whereas intracortical projections appear to terminate in layers Ib and Ic in the 30-200 microns spaces between the bundles. Furthermore, the areas containing the bundles display dense AChE staining, but the interbundle spaces are almost free of AChE staining. These findings demonstrate a form of dendritic bundling that is input and output specific and may play an important role in the regulation of thalamic inputs to the cingulate cortex.  相似文献   

6.
Cingulate cortex (CC) unit responses to hippocampal volleys and afterdischarges were studied in 4 awake unsedated squirrel monkeys using extracellular microelectrodes. Stimuli were delivered via bipolar electrodes chronically implanted bilaterally in anterior and posterior hippocampus. A total of 412 units in 21 tracks were studied and tested to single and multiple shock stimulation. Spontaneous firing rates were approximately equally distributed among slow (0.25 spikes/s), medium (2.5-10), and fast (10-25). Only 2% of cingulate units (9/412) responded orthodromically to hippocampal stimulation: 5 with initial excitation; 4 with initial inhibition. Eight responses had initial latencies from 100-200 ms; one unit a latency of 25 ms. Three units displayed periodic, almost cyclical, excitation. All unit response thresholds were 1 shock, 0.25 mA or less. Hippocampal afterdischarge activity influenced the firing pattern of 17 units: 16 showed intraictal excitation and 1 inhibition. In comparison with the preceding studies in the same model these results indicate that the influence of hippocampal stimulation on cingulate cortex is not nearly as prominent as either the fornix or non-fornix hippocampal influence on hypothalamic, preoptic, and basal forebrain structures. It is proposed that the cingulate cortex is not a prominent link in the Papez circuit.  相似文献   

7.
The organization of projections from the anterior thalamic nuclei to the cingulate cortex was analyzed in the rat by the anterograde transport of Phaseolus vulgaris-leucoagglutinin. The rostral part of the anteromedial nucleus projects to layers I, V and VI of the anterior cingulate areas 1 and 2, layers I and III of the ventral orbital area, layers I, V and VI of area 29D of the retrosplenial area, and layers I and V of the caudal part of the retrosplenial granular and agranular areas. In contrast, the caudal part of the anteromedial nucleus projects to layer V of the frontal area 2, and layers I and V of the rostral part of the retrosplenial granular and agranular areas. The interanteromedial nucleus projects to layers I, III and V of the frontal area 2, layer V of the agranular insular area, and layers I, V and VI of area 29D. The anteroventral nucleus projects to layers I and IV of the retrosplenial granular area, whereas the anterodorsal nucleus projects to layers I, III and IV of the same area. Projections from the anteroventral and anterodorsal nuclei were, furthermore, organized such that their ventral parts project to the rostral part of the retrosplenial granular area, whereas their dorsal parts project to the more caudal part. The results suggest that the anterior thalamic nuclei project to more widespread areas and laminae of the cingulate cortex than was previously assumed. The projections are organized such that the anteromedial and interanteromedial nuclei project to layer I and the deep layers of the anterior cingulate and retrosplenial cortex, whereas the anteroventral and anterodorsal nuclei project to the superficial layers of the retrosplenial cortex. These thalamocortical projections may play important roles in behavioral learning such as discriminative avoidance behavior.  相似文献   

8.
The projections to the retrosplenial cortex (areas 29 and 30) from the hippocampal formation, the entorhinal cortex, perirhinal cortex, and amygdala were examined in two species of macaque monkey by tracking the anterograde transport of amino acids. Hippocampal projections arose from the subiculum and presubiculum to terminate principally in area 29. Label was found in layer I and layer III(IV), the former seemingly reflecting both fibers of passage and termination. While the rostral subiculum mainly projects to the ventral retrosplenial cortex, mid and caudal levels of the subiculum have denser projections to both the caudal and dorsal retrosplenial cortex. Appreciable projections to dorsal area 30 [layer III(IV)] were only seen following an extensive injection involving both the caudal subiculum and presubiculum. This same case provided the only example of a light projection from the hippocampal formation to posterior cingulate area 23 (layer III). Anterograde label from the entorhinal cortex injections was typically concentrated in layer I of 29a–c, though the very caudal entorhinal cortex appeared to provide more widespread retrosplenial projections. In this study, neither the amygdala nor the perirhinal cortex were found to have appreciable projections to the retrosplenial cortex, although injections in either medial temporal region revealed efferent fibers that pass very close or even within this cortical area. Finally, light projections to area 30V, which is adjacent to the calcarine sulcus, were seen in those cases with rostral subiculum and entorhinal injections. The results reveal a particular affinity between the hippocampal formation and the retrosplenial cortex, and so distinguish areas 29 and 30 from area 23 within the posterior cingulate region. The findings also suggest further functional differences within retrosplenial subregions as area 29 received the large majority of efferents from the subiculum. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Reciprocal anatomical connections between posterior limbic (i.e. cingulate-retrosplenial) cortex and anterior thalamus in the rabbit were investigated using horseradish peroxidase histochemistry. Results showed that the cells of origin for corticofugal fibers are contained only within deep cortical layers, while thalamofugal projections terminate only within superficial laminae. That is, only layer VI neurons of cingulate-retrosplenial cortex project to thalamic regions, while cortical layers I and IV are the primary targets of thalamic afferents.  相似文献   

10.
The organization of the projections from the retrosplenial cortex (Brodmann's area 29) to the anterior thalamic nuclei was examined in the rat with retrograde transport of the cholera toxin B subunit and anterograde transport of biotinylated dextran amine. Areas 29a and 29b project mainly ipsilaterally to the rostral two‐thirds of the anteroventral nucleus, with area 29a projecting more rostrodorsally than area 29b. Area 29c projects bilaterally to the ventromedial part of the anteroventral nucleus. The projections from area 29c are organized in a topographic pattern such that the rostral area 29c projects to the caudoventral part of the anteroventral nucleus, whereas the caudal area 29c projects to the more rostrodorsal parts. Caudal area 29d projects mainly ipsilaterally to the rostrodorsal part of the anteromedial nucleus, and the rostral and dorsal parts of the anteroventral nucleus, whereas rostral area 29d projects bilaterally to the caudodorsal part of the anteromedial nucleus and the caudolateral part of the anteroventral nucleus. All the areas of the retrosplenial cortex provide sparse projections, mainly ipsilateral, to the anterodorsal nucleus, with a crude topographic pattern such that the rostrocaudal axis of the retrosplenial cortex corresponds to the caudorostral axis of the anterodorsal nucleus. The results indicate that each area of the retrosplenial cortex has a distinct projection field within the anterior thalamic nuclei. This suggests that each of these projections transmits distinct information that is important for complex memory and learning functions, e.g. discriminative avoidance learning and spatial memory.  相似文献   

11.
Quantitative in situ hybridization revealed that the expression of the plasticity-associated gene zif268 was increased in specific regions of the rat frontal cortex and nucleus accumbens following fear memory retrieval. Increased expression of zif268 was observed in neurons in the core of the nucleus accumbens during the retrieval of contextual and discrete cued fear associations. In contrast, zif268 expression was additionally induced in neurons of the nucleus accumbens shell and the anterior cingulate cortex during the retrieval of contextual but not cued fear memories. No changes in the expression of this gene were seen in the ventral medial prefrontal cortex or ventral and lateral regions of the orbitofrontal cortex that were correlated specifically with the retrieval of fear memory. These experiments demonstrate the specific and dissociable activation of limbic cortical-ventral striatal regions that accompanies cued and contextual fear. These data, together with those previously published by our laboratory (Hall, J., Thomas, K.L. & Everitt, B.J. (2001) J. Neurosci., 21, 2186-2193), suggest that retrieval of contextual fear memories activates a wider limbic cortical-ventral striatal neural circuitry than does retrieval of cued fear memories. Moreover, the expression of zif268 may contribute to plasticity and reconsolidation of fear memory in these dissociable pathways.  相似文献   

12.
The present study characterized the projections of the anterodorsal (AD) and the anteroventral (AV) thalamic nuclei to the limbic cortex. Both AD and AV project to the full extent of the retrosplenial granular cortex in a topographic pattern. Neurons in caudal parts of both nuclei project to rostral retrosplenial cortex, and neurons in rostral parts of both nuclei project to caudal retrosplenial cortpx. Within AV, the magnocellular neurons project primarily to the retrosplenial granular a cortex, whereas the parvicellular neurons project mainly to the retrosplenial granular b cortex. AD projections to retrosplenial cortex terminate in very different patternsthan do AV projections: The AD projection terminates with equal density in layers I, III, and IV of the retrosplenial granular cortex, whereas, in contrast, the AV projections terminate very densely in layer Ia and less densely in layer IV. Further, both AD and AV project densely to the postsubicular, presubicular, and parasubicular cortices and lightly to the entorhinal (only the most caudal part) cortex and to the subiculum proper (only the most septal part). Rostral parts of AD project equally to all three subicular cortices, whereas neurons in caudal AD project primarily to the postsubicular cortex. Compared to AD, neurons in AV have a less extensive projection to the subicular cortex, and this projection terminates primarily in the postsubicular and presubicular cortices. Further, the AD projection terminates in layers I, II/III, and V of postsubiculum, whereas the AV projection terminates only in layers I and V. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Retinal projections in rats were studied using anterograde horseradish peroxidase (HRP) tracing and electron microscopic (EM) degeneration. HRP-labeled axons were observed to leave the optic tract in the vicinity of the lateral geniculate nucleus and enter the stria terminalis where they coursed anteriorly to the bed nucleus of the stria terminalis (BNST), and the anterodorsal (TAD) and anteroventral (TAV) thalamic nuclei. After enucleation, selected areas studied with EM confirmed that retinal presynaptic terminals are located in the BNST and TAV. These results support the finding of Conrad and Stumpf that the retina has a direct link to the limbic system2.  相似文献   

14.
Many symptoms of PTSD represent conditioned responses to stimuli associated with a traumatic experiences. In this review, we propose that the anterior cingulate—a brain region that appears to be involved in fear-conditioning—is dysfunctional in PTSD, thus facilitating exaggerated emotional and behavioral responses (hyperarousal) to conditioned stimuli. Preclinical studies suggest that the anterior cingulate may serve a critical gating function in modulating conditioned fear responses. As such, this region would be a key component of a neural circuit involved in the pathophysiology of PTSD. An amygdala-locus coeruleus-anterior cingulate circuit may be consistent with evidence for chronic noradrenergic activation documented in PTSD patients. According to this model, efferent noradrenergic projections from the locus coeruleus may dampen anterior cingulate function. This in turn would allow myriad external or internally driven stimuli to produce the exaggerated emotional and behavioral responses characteristic of PTSD. If confirmed in future research, cingulate dysfunction would have important theoretical and treatment implications. Depression and Anxiety 9:1–14, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

15.
Homologizing between human and nonhuman area 32 has been impaired since Brodmann said he could not homologize with certainty human area 32 to a specific cortical domain in other species. Human area 32 has four divisions, however, and two can be structurally homologized to nonhuman species with cytoarchitecture and receptor architecture: pregenual (p32) and subgenual (s32) in human and macaque monkey and areas d32 and v32 in rat and mouse. Cytoarchitecture showed that areas d32/p32 have a dysgranular layer IV in all species and that areas v32/s32 have large and dense neurons in layer V, whereas a layer IV is not present in area v32. Areas v32/s32 have the largest neurons in layer Va. Features unique to humans include large layer IIIc pyramids in both divisions, sparse layer Vb in area p32, and elongated neurons in layer VI, with area s32 having the largest layer Va neurons. Receptor fingerprints of both subdivisions of area 32 differed between species in size and shape, although AMPA/GABAA and NMDA/GABAA ratios were comparable among humans, monkeys, and rats and were significantly lower than in mice. Layers I–III of primate and rodent area 32 subdivisions share more similarities in their receptor densities than layers IV–VI. Monkey and human subdivisions of area 32 are more similar to each other than to rat and mouse subdivisions. In combination with intracingulate connections, the location, cytoarchitecture, and ligand binding studies demonstrate critical homologies among the four species. J. Comp. Neurol. 521:4189–4204, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Many brain structures project to both the anteroventral thalamic nucleus and the anteromedial thalamic nucleus. In the present study, pairs of different tracers were placed into these two thalamic sites in the same rats to determine the extent to which these nuclei receive segregated inputs. Only inputs from the laterodorsal tegmental nucleus, the principal extrinsic cholinergic source for these thalamic nuclei, showed a marked degree of collateralization, with approximately 13% of all cells labeled in this tegmental area projecting to both nuclei. Elsewhere, double‐labeled cells were very scarce, making up ~1% of all labeled cells. Three general patterns of anterior thalamic innervation were detected in these other areas. In some sites, e.g., prelimbic cortex, anterior cingulate cortex, and secondary motor area, cells projecting to the anteromedial and anteroventral thalamic nuclei were closely intermingled, with often only subtle distribution differences. These same projections were also often intermingled with inputs to the mediodorsal thalamic nucleus, but again there was little or no collateralization. In other sites, e.g., the subiculum and retrosplenial cortex, there was often less overlap of cells projecting to the two anterior thalamic nuclei. A third pattern related to the dense inputs from the medial mammillary nucleus, where well‐defined topographies ensured little intermingling of the neurons that innervate the two thalamic nuclei. The finding that a very small minority of cortical and limbic inputs bifurcates to innervate both anterior thalamic nuclei highlights the potential for parallel information streams to control their functions, despite arising from common regions. J. Comp. Neurol. 521: 2966–2986, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The cytoarchitecture and thalamic afferents of cingulate cortex were evaluated in the rhesus monkey (Macaca mulatta). Area 24 has three divisions of which area 24a is adjacent to the callosal sulcus and has the least laminar differentiation. Area 24b has more clearly defined layers II, III, and Va, and area 24c, which forms the lower bank of the anterior cingulate sulcus, has a particularly dense layer III. Area 23 also has three divisions, each of which has a distinct layer IV. Area 23a is adjacent to the callosal sulcus and has the thinnest layers II-IV, which have the same cell density as layers V and VI. Area 23b has the largest pyramids in layers IIIc and Va, and area 23c, in the depths of the posterior cingulate sulcus, has the broadest external and thinnest internal pyramidal layers. Finally, areas 29 and 30 are located in the posterior depths of the callosal sulcus. Two divisions of area 29 are apparent: one with a granular layer directly adjacent to layer I (area 29a-c) and another with differentiation of layers III and IV (area 29d). Area 30 has a dysgranular layer IV. Injections of the retrograde tracer horseradish peroxidase (HRP) were made into subdivisions of cingulate cortex in the monkey. Area 25 received thalamic input mainly from the midline parataenial (Pt), central densocellular (Cdc), and reuniens nuclei as well as from the dorsal parvicellular division of the mediodorsal nucleus (MDpc). A less dense projection also originated in the intralaminar parafascicular (Pf), central superior, and limitans (Li) nuclei as well as the medial division of the anterior nuclei (AM). Areas 24a and 24b received most thalamic afferents from fusiform and multipolar cells in the Cdc and Pf nuclei with fewer from the ventral anterior (VA) and MDpc and MD densocellular (MDdc) nuclei and only minor input from AM. Most input to premotor cingulate area 24c appeared to originate in VA, MDdc, and Li. Area 29 received the most dense input from nuclei traditionally associated with limbic cortex including the anteroventral (AV), anterodorsal (AD), and laterodorsal (LD) nuclei. Areas 23a and 23b, in contrast, did not receive AV, AD, or LD input, but the greatest proportion of their thalamic afferents arose in AM. Less-pronounced input also came from the lateroposterior (LP), medial pulvinar, and MDdc nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Cerebellar influences on the various substructures in the Papez Circuit are indicated by the following.
  • 1 Anatomical studies indicate that the major midbrain areas to which this circuit projects are : (1) ventral tegmental area; (2) interpeduncular area; and (3) periaquenductal gray areas; and these same areas project back to the limbic system. There are projections to these regions from the cerebellar nuclei, as indicated by terminal degeneration studies which show that cerebellar nuclei connect, mostly by fine fibers, with a continuum of cells located on either side of the midline in the ventral tegmentum of the midbrain. Observations that the cerebellum also projects to the locus ceruleus (NA system) and VTA (DA system) indicate that cerebellar influences can also reach the limbic areas via the catecholamine fiber bundles.
  • 2 Electrophysiological studies indicate that vermian and fastigial stimulation induce evoked responses in the basolateral amygdala, the hippocampus, and the septum, with laterncies to the peak of first wave ranging from 4 to 8 msec and to the second wave of 16–29 msec. Citations from the physiological literature indicate that electrical stimulation of the cerebellum, especially the vermis, can modify a wide range of responses which involve fuctional activities of either the sympathetic or parasympathetic nervous systems.
  • 3 Studies on electrically induced afterdischarges in the septum, Hippocampus, and amygdala indicated that cerebellar stimulation can shorten the duration of or terminate that afterdischarges, and the site of lowest threshold is the midline cortex. Focal cooling of the vermis promotes prolongation of the afterdischarges as does preteatment of animals with 6-OH dopamine. Chemical lesions in the catecholamine system induced by 6-OH dopamine reduce the effectiveness of the cerebellar stimulation, as do lesions of nucleus fastigii, These data are interpreted to indicate that the cerebellum can exert a tonic suppressor (inhibitory?) influence on substructures within the Papez Cricuit.
  • 4 Citations from animal behavioral studies indicate that electrical stimulation of the anterior cerebellum can induce responses such as arousal, predatory attack, and feeding which mimic those obtained by amygdaloid stimulation. Fastigial stimulation can produce drowsiness and EEG changes which resemble the sleep patterns resulting from stimulation of the ventral amygdala.
  相似文献   

19.
The infralimbic cortex (ILc) in cat is the ventralmost part of the anterior cingulate gyrus. The ILc, together with the amygdala, bed nucleus of the stria terminalis and lateral hypothalamus, is involved in the regulation of fear behavior. The latter three structures are thought to take part in triggering the fear response by means of their projections to the pontine and medullary lateral tegmental field (LTF). The LTF is a large region extending from the parabrachial nuclei rostrally to the spinal cord caudally. It contains almost all the premotor interneurons for the brainstem and for some upper spinal cord motoneurons innervating the muscles of face, head and throat. The question is whether ILc also projects to the LTF. Such a pathway would allow the ILc to influence the fear response by acting directly on these premotor interneurons. Anterograde tracer injections were made in the medial surface of the cortex in four cats. Only when the injection sites involved ILc were anterogradely labeled fibers observed throughout the rostrocaudal extent of the LTF. To verify whether these projections indeed originated from ILc, in two other cases retrograde tracer injections were made in the pontomedullary LTF. The results showed many retrogradely labeled neurons in ILc, but none in adjacent cortical regions. These results show that the ILc projects to the LTF in cat and can possibly modulate the fear response not only via indirect but also via direct routes to the premotor interneurons in the brainstem.  相似文献   

20.
Reciprocal anatomical connections between anterior and posterior divisions of the cingulate gyrus are described for the rabbit. Cells within the anterior limbic and precentral agranular regions of the rostral cingulate gyrus, predominantly from layer V, send afferebts to layer I of posterior cingulate and retrosplenial cortices. Cells from layers II and III of posterior cingulate and from layer V of retrosplenial cortex project rostrally to the anterior limbic and precentral agranular cortices. These data demonstrate the existence of an associational anatomical system connecting anterior and posterior regions of the cingulate gyrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号