首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Experimental measurements of velocity and tracer gas concentration are taken in a straight tube to evaluate the effectiveness of mixing in achieving conditions as required by ANSI N13.1-1999 for single point extractive sampling from stacks and ducts of nuclear facilities. Mixing is evaluated for inlet turbulent intensities of 1.5%, 10%, and 20%, achieved by introducing various bi-plane grids, and for conditions generated by a commercial static gas mixer. The data obtained (at Reynolds number = 15,000) highlight the importance of inlet turbulence intensity in the process of turbulent dispersion of a dilute gas. The gas mixer does not introduce significant pressure losses and unlike bi-plane grids, the turbulence downstream of the mixer is not homogenous. A judicious choice of the release location that uses the large scale eddies and inhomogeneity of the turbulence ensures that the specified ANSI N13.1-1999 criteria are attained within 7 diameters downstream of the duct inlet. This is significantly more effective than a bi-plane grid where even with 20% inlet intensity the criteria are met only at 21 diameters downstream. The predictions of a proposed semi-empirical correlation match favorably with data. For example, at 18 diameters downstream with inlet intensities of 1.5% and 10%, the predicted coefficients of variation (COVs) of 150% and 65% are close to the actual values of 154% and 50%; where the COV of a set of measurements is the ratio of the standard deviation of the set to its mean value. The corresponding results obtained using commercially available software are 141% and 12%. Results from a particle-tracking model show good qualitative trends, but they should not be used to determine compliance with the requirements of the ANSI standard.  相似文献   

2.
The ANSI/HPS-N13.1-1999 standard is based on the concept of obtaining a single point representative sample from a location where the velocity and contaminant profiles are relatively uniform. It is difficult to predict the level of mixing in an arbitrary stack or duct without experimental data to meet the ANSI/HPS N13.1-1999 requirements. The goal of this study was to develop experimental data for a range of conditions in "S" (S-shaped configuration) duct systems with different mixing elements and "S" systems having one or two mixing elements. Results were presented in terms of the coefficients of variation (COVs) for velocity, tracer gas, and 10-mum aerodynamic diameter (AD) aerosol particle profiles at different downstream locations for each mixing element. Five mixing elements were tested, including a 90 degrees elbow, a commercial static mixer, a Small-Horizontal Generic-Tee-Plenum (SH-GTP), a Small-Vertical Generic-Tee-Plenum (SV-GTP), and a Large-Horizontal Generic-Tee-Plenum (LH-GTP) system. The COVs for velocity, gas concentration, and aerosol particles for the three GTP systems were all determined to be less than 8%. Tests with two different sizes of GTPs were conducted, and the results showed the performance of the GTPs was relatively unaffected by either size or velocity as reflected by the Reynolds number. The pressure coefficients were 0.59, 0.57, and 0.65, respectively, for the SH-GTP, SV-GTP, and LH-GTP. The pressure drop for the GTPs was approximately twice that of the round elbow, but a factor of 5 less than a Type IV Air Blender. The GTP was developed to provide a sampling location less than 4-duct diameters downstream of a mixing element with low pressure drop condition. The object of the developmental effort was to provide a system that could be employed in new stack; however, the concept of GTPs could also be retrofitted onto existing system applications as well. Results from these tests show that the system performance is well within the ANSI/HPS N13.1-1999 mixing criteria--the COVs for velocity, tracer gas, and 10-microm AD aerosol particles are less than the 20% criteria levels.  相似文献   

3.
The revised standard for sampling effluent air from stacks and ducts of the nuclear industry places limits on the non-uniformity of velocity and contaminant profiles at the sampling location; namely, the coefficients of variation must not exceed 20% over an area that encompasses at least the center 2/3 of the cross sectional area. Tests were conducted to characterize the degree of mixing at downstream locations as affected by several types of flow disturbances, including 90 degree elbows and commercial static mixing devices. Flow straighteners were incorporated into the ducting upstream of the mixer to be tested to simulate the dampening of flow turbulence that might occur because of upstream HEPA filters. The coefficients of variation of velocity and tracer gas concentration measured in a straight tube at a distance of 3 diameters downstream from a 90 degree elbow were 17% and 69%, respectively. The mixing is impacted by the upstream flow turbulence. Without a flow straightener, the tracer gas concentration coefficient of variation was reduced to 33% at the 3-diameter location. The use of static mixing elements can greatly enhance the mixing process. A ring placed just downstream of a 90 degree elbow, which blocks the outer 56% of the cross sectional area, results in a coefficient of variation of 19% for tracer gas concentration at the 3-diameter location. Pressure loss across the elbow with the ring is about nine times that of the basic elbow. One of the commercially available static mixers provides coefficients of variation that are less than 10% for both velocity and tracer gas concentration at 4 diameters downstream from the mixer with a pressure loss that is only about 3.5 times as large as that of a 90 degree elbow.  相似文献   

4.
目的 研究管道结构对核电厂烟囱气载流出物混合均匀性影响。方法 利用计算流体力学(computational fluid dynamica, CFD)方法,仿真截面分别为方形和圆形的长直管(I型)、90°单弯管(L型)、90°双弯管(S型和U型)内的速度分布及气体混合情况。结果 对于长直管,由于缺乏结构变化产生的流场扰动,无法带来良好的混合效果,当管道截面为圆形,达到相关标准要求的混合均匀性指标,可能需要20倍水力直径的混合距离,当管道截面为方形,所需距离可能更长;对于单弯管,方形管内速度均匀性经弯管后有更大幅度提高,示踪气体也在11倍水力直径处先于圆形管满足了混合均匀性;对于S型双弯管,方形管内的示踪气体在6倍水力直径后呈现均匀混合,圆形管则要到下游7倍水力直径;对于U型双弯管,方形管道内的气体也在下游更短距离内实现了混合均匀,且气流在遇弯管时表现出更大的扰动效果。结论 CFD方法可以对不同管道结构的气体混合均匀性变化规律做出准确的预测,能够取代部分物理实验,来研究核电厂烟囱气载流出物混合均匀性影响因素。  相似文献   

5.
Kim T  O'Neal DL  Ortiz C 《Health physics》2006,91(3):211-220
Air duct systems in nuclear facilities must be monitored with continuous sampling in case of an accidental release of airborne radionuclides. The purpose of this work is to identify the air sampling locations where the velocity and contaminant concentrations fall below the 20% coefficient of variation required by the American National Standards Institute/Health Physics Society N13.1-1999. Experiments of velocity and tracer gas concentration were conducted on a generic "T" mixing system which included combinations of three sub ducts, one main duct, and air velocities from 0.5 to 2 m s (100 to 400 fpm). The experimental results suggest that turbulent mixing provides the accepted velocity coefficients of variation after 6 hydraulic diameters downstream of the T-junction. About 95% of the cases achieved coefficients of variation below 10% by 6 hydraulic diameters. However, above a velocity ratio (velocity in the sub duct/velocity in the main duct) of 2, velocity profiles were uniform in a shorter distance downstream of the T-junction as the velocity ratio went up. For the tracer gas concentration, the distance needed for the coefficients of variation to drop 20% decreased with increasing velocity ratio due to the sub duct airflow momentum. The results may apply to other duct systems with similar geometries and, ultimately, be a basis for selecting a proper sampling location under the requirements of single point representative sampling.  相似文献   

6.
目的 通过试验验证以确保中国自主研发的第三代压水堆核电站"华龙一号"堆型烟囱气态流出物取样系统(采用单嘴取样头设计)充分满足取样代表性要求。方法 本文基于美国国家标准ANSI/HPS N13.1-1999要求,建造了"华龙一号"反应堆烟囱1:5的比例模型,在比例模型上完成了3个不同标高取样截面的平均气旋角、气体流速分布、示踪气体分布、示踪气溶胶分布验证试验,并在福清核电站1、2号机组的烟囱上开展了气旋角、气体流速、示踪气体浓度分布的验证试验。结果 在"华龙一号"比例模型烟囱三个预选取样截面(Q1、Q2、Q3)中心2/3区域内,在两种设计通风工况下,气体流速分布变异系数(COV)≤ 1.1%,所有测点最大气旋角为11.38°,示踪气体分布浓度分布COV ≤ 4.4%,示踪气溶胶浓度分布COV ≤ 4.7%;在实际烟囱预选取样截面中心2/3面积内气体流速分布COV ≤ 8.4%,所有测点气旋角平均绝对值为11.3°(且最大值<20°),并且由DVN碘排风、DVN正常排风系统注入示踪气体时,测量截面上示踪气体浓度分布COV分别为2.2%、1.3%。结论 "华龙一号"模型烟囱和实际烟囱的所有测试指标,全部符合ANSI/HPS N13.1-1999标准对于取样截面上污染物混合均匀性的要求,即可以采用单点取样方式来设计"华龙一号"烟囱气态流出物取样系统。  相似文献   

7.
A tracer gas technique using sulfur hexafluoride (SF6) was developed for the evaluation of industrial exhaust hood efficiency. In addition to other parameters, accuracy of this method depends on proper location of the sampling probe. The sampling probe should be located in the duct at a minimum distance from the investigated hood where the SF6 is dispersed uniformly across the duct cross section. To determine the minimum sampling distance, the SF6 dispersion in the duct in fully developed turbulent flow was studied at four duct configurations frequently found in industry: straight duct, straight duct-side branch, straight duct-one elbow, and straight duct-two elbows combinations. Based on the established SF6 dispersion factor, the minimum sampling distances were determined as follows: for straight duct, at least 50 duct diameters; for straight duct-side branch combination, at least 25 duct diameters; for straight duct-one elbow combination, 7 duct diameters; and for straight duct-two elbow combination, 4 duct diameters. Sampling at (or beyond) these distances minimizes the error caused by the non-homogeneous dispersion of SF6 in the duct and contributes to the accuracy of the tracer gas technique.  相似文献   

8.
A study of particle deposition in industrial duct bends is presented. Particle deposition by size was measured by comparing particle size distributions upstream and downstream of bends that had geometries and flow conditions similar to those used in industrial ventilation. As the interior surface of the duct bend was greased to prevent particle bounce, the results are applicable to liquid drops and solid particles where duct walls are sticky. Factors investigated were: (i) flow Reynolds number (Re = 203 000, 36 000); (ii) particle Reynolds number (10 < Repinfinity < 200); (iii) particle Stokes number (0.08 < Stk < 16); (iv) bend angle (theta = 45 degrees, 90 degrees, 180 degrees ); (v) bend curvature ratio (1.7 < R0 < 12); (vi) orientation (horizontal-to-horizontal and horizontal-to-vertical); and (vii) construction technique (smooth, gored, segmented). Measured deposition was compared with models developed for bends in small diameter sampling lines (Re < 20 000; Repinfinity < 13). Whereas deposition measured in this work generally agreed with that estimated with models for particles <30 microm (Stk < 0.7), it was significantly lower than that estimated for larger particles. As the flow around larger particles became increasingly turbulent, the models progressively under-represented drag forces and over-estimated deposition. For particles >20 microm, deposition was slightly greater in the horizontal-to-horizontal orientation than in the horizontal-to-vertical orientation due to gravitational settling. Penetration was not a multiplicative function of bend angle as theory predicts, due to the developing nature of turbulent flow in bends. Deposition in a smooth bend was similar to that in a gored bend; however, a tight radius segmented bend (R0 = 1.7) exhibited much lower deposition. For more gradual bends (3 < R0 < 12), curvature ratio had negligible effect on deposition.  相似文献   

9.
This study determined the deviations between pitot traverses taken under "ideal" conditions--at least seven duct diameter's lengths (i.e., distance = 7D) from obstructions, elbows, junction fittings, and other disturbances to flows--with those taken downstream from commonplace disturbances. Two perpendicular 10-point, log-linear velocity pressure traverses were taken at various distances downstream of tested upstream conditions. Upstream conditions included a plain duct opening, a junction fitting, a single 90 degrees elbow, and two elbows rotated 90 degrees from each other into two orthogonal planes. Airflows determined from those values were compared with the values measured more than 40D downstream of the same obstructions under ideal conditions. The ideal measurements were taken on three traverse diameters in the same plane separated by 120 degrees in honed drawn-over-mandrel tubing. In all cases the pitot tubes were held in place by devices that effectively eliminated alignment errors and insertion depth errors. Duct velocities ranged from 1500 to 4500 ft/min. Results were surprisingly good if one employed two perpendicular traverses. When the averages of two perpendicular traverses was taken, deviations from ideal value were 6% or less even for traverses taken as close as 2D distance from the upstream disturbances. At 3D distance, deviations seldom exceeded 5%. With single diameter traverses, errors seldom exceeded 5% at 6D or more downstream from the disturbance. Interestingly, percentage deviations were about the same at high and low velocities. This study demonstrated that two perpendicular pitot traverses can be taken as close as 3D from these disturbances with acceptable (< or = 5%) deviations from measurements taken under ideal conditions.  相似文献   

10.
ANSI/ASHRAE Standard 110 provides a quantitative method for testing the performance of laboratory fume hoods. Through release of a known quantity (4.0 Lpm) of a tracer gas, and subsequent monitoring of the tracer gas concentration in the “breathing zone” of a mannequin positioned in front of the hood, this method allows for evaluation of laboratory hood performance. Standard 110 specifies sulfur hexafluoride (SF6) as the tracer gas; however, suitable alternatives are allowed. Through three series of performance tests, this analysis serves to investigate the use of nitrous oxide (N2O) as an alternate tracer gas for hood performance testing. Single gas tests were performed according to ASHRAE Standard 110-1995 with each tracer gas individually. These tests showed identical results using an acceptance criterion of AU 0.1 with the sash half open, nominal 18 inches (0.46m) high, and the face velocity at a nominal 60 fpm (0.3 m/s). Most data collected in these single gas tests, for both tracer gases, were below the minimum detection limit, thus two dual gas tests were developed for simultaneous sampling of both tracer gases. Dual gas dual ejector tests were performed with both tracer gases released simultaneously through two ejectors, and the concentration measured with two detectors using a common sampling probe. Dual gas single ejector tests were performed with both tracer gases released though a single ejector, and the concentration measured in the same manner as the dual gas dual ejector tests. The dual gas dual ejector tests showed excellent correlation, with R typically greater than 0.9. Variance was observed in the resulting regression line for each hood, likely due to non-symmetry between the two challenges caused by variables beyond the control of the investigators. Dual gas single ejector tests resulted in exceptional correlation, with R>0.99 typically for the consolidated data, with a slope of 1.0. These data indicate equivalent results for ASHRAE 110 performance testing using either SF6 or N2O, indicating N2O as an applicable alternate tracer gas.  相似文献   

11.
Tracer gas testing per ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to investigate the role of thermal loading in exceeding laboratory fume hood control levels. Three types of typical laboratory burners (blast, Meeker, and economy) were used to provide a thermal challenge. Heat outputs of between 0 and 61,610 Btu/hr were based on fuel heat capacity (for liquid propane gas) and fuel gas flow rates. Breathing zone concentrations were measured with a MIRAN 1B2 infrared gas analyzer. Also, for each test, the difference between the room and duct temperatures (delta temperature) was measured. Results indicated a linear relationship between heat loads and tracer gas breathing zone concentrations for both Btu/hr and delta temperature. Control levels of 0.1 ppm were exceeded at less than 12,000 Btu/hr. Also, control levels were exceeded at a lower heat load when the tracer gas generation rate was increased. These results indicate that thermal loads in laboratory fume hoods increase the risk of exceeding laboratory fume hood control levels. Some compensatory measures relative to hood configuration and flow rates are recommended for laboratory operations involving heat sources.  相似文献   

12.
A modified version of the ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to evaluate the relationship between thermal loading in a laboratory fume hood and subsequent tracer gas leakage. Three types of laboratory burners were used, alone and in combination, to thermally challenge the hood. Heat output from burners was measured in BTU/hr, which was based on the fuel heat capacity and flow rate. Hood leakage was measured between 2824 and 69,342 BTU/hr. Sulfur hexafluoride (SF6) was released at 23.5 LPM for each level of thermal loading. Duct temperature was also measured during the heating process. Results indicate a linear relationship for both BTU/hr vs. hood leakage and duct temperature vs. hood leakage. Under these test conditions, each increase of 10,000 BTU/hr resulted in an additional 4 ppm SF6 in the manikin's breathing zone (r2 = 0.68). An additional 3.1 ppm SF6 was measured for every 25 degrees F increase in duct temperature (r2 = 0.60). Both BTU/hr and duct temperature models showed p < 0.001. For these tests, BTU/hr was a better predictor of hood leakage than duct temperature. The results of this study indicate that heat output may compromise fume hood performance. This finding is consistent with those of previous studies.  相似文献   

13.
The velocity field downstream of a worker is approximated with a discrete vortex algorithm. This information is used to calculate trajectories of massless tracer ‘particles’ released from a point-source of contaminant. Concentrations in the plane of this source are estimated by averaging over a number of such trajectories. Approximations include: (1) representing the worker by a two-dimensional elliptical cylinder; and (2) representing tracer gas contaminant by massless particles generated without momentum. These particles are transported by both vortex shedding and turbulent diffusion. Computer-predicted mean concentrations in the near-wake region downstream of the worker compare well with results from wind-tunnel tracer gas experiments employing a mannequin. Subsequently, the concept of a computational breathing zone is introduced, and predictions of worker exposure are made. These simulations of time-integrated breathing zone concentration also compare well with measured values.  相似文献   

14.
A local exhaust hood is one of the most commonly used controls for harmful contaminants in the working environment. In Japan, the performance of a hood is evaluated by hood velocity measurements, and administrative performance requirements for hoods are provided as control velocities by the Japanese Industrial Safety and Health Law. However, it is doubtful whether the control velocity would be the most suitable velocity for any industrial hood since the control velocity is not substantiated by actual measurements of the containment ability of each hood. In order to examine the suitability of the control velocity as a performance requirement, a hood performance test by the tracer gas method, using carbon dioxide (CO(2)), was conducted with an exterior type hood in a laboratory. In this study, as an index of the hood performance, capture efficiency defined as the ratio of contaminant quantity captured by the hood to the total generated contaminant quantity, was determined by measuring the CO(2) concentrations. When the assumptive capture point of the contaminant was located at a point 30 cm from the hood opening, a capture efficiency of >90% could be achieved with a suction velocity of less than the current control velocity. Without cross draft, a capture efficiency of >90% could be achieved with a suction velocity of 0.2 m/s (corresponding to 40% of the control velocity) at the capture point. Reduction of the suction velocity to 0.2 m/s caused an 80% decrease in exhaust flow rate. The effect of cross draft, set at 0.3 m/s, on the capture efficiency differed according to its direction. When the direction of the cross draft was normal to the hood centerline, the effect was not recognized and a capture efficiency of >90% could be achieved with a suction velocity of 0.2 m/s. A cross draft from a worker's back (at an angle of 45 degrees to the hood centerline) did not affect the capture efficiency, either. When the cross draft blew at an angle of 135 degrees to the hood centerline, a capture efficiency of >90% could be achieved with a suction velocity of 0.4 m/s. The reduction of suction velocity would beneficially reduce running costs of local exhaust hoods and air conditioning. Effective and economical exhaustion would be achieved if the minimum velocity obtained by the tracer gas method were to be substituted for the excessive control velocity.  相似文献   

15.
Road bends are known to cause traffic crashes, but the hypothesis in this study was that small geographical areas with many road bends have less, not more, road casualties than comparable areas with fewer bends. Data on road crashes involving fatal, serious and slight casualties in 571 wards in Eastern England were examined against four measures of average road curvature (mean angle per bend, cumulative angle per km, number of bends per km and ratio of road distance to straight distance) using regression analysis. Taking account of other risk factors, measures of average road curvature in wards were negatively associated with crash numbers, especially for fatal crashes. The strongest associations were with the cumulative angle turned per km. The results add to evidence suggesting that road casualty risk effects vary with geographical scale. Although individual road bends might be hazardous, frequent bends have a protective effect over a few kilometres of road.  相似文献   

16.
Active noise control (ANC) is particularly useful in hard-walled ducts where plane waves propagate. Higher order mode waves are much more difficult to control. Basic acoustic principles dictate that the cut-on frequency at which higher order modes will first begin to eclipse simple plane waves in a duct will be determined by the cross-sectional diameter of the duct. The lowest frequency for higher order modes will increase as duct diameter decreases. Therefore, the range of frequencies where plane waves dominate will be greater, and effective control using ANC will be better as duct diameter decreases. The result is that somewhat higher frequencies can be controlled with ANC for smaller diameters. If smaller diameters have broader frequency ranges that can be controlled with ANC, perhaps one could extend the frequency range for a large cross section by partitioning it into smaller cross sections using axial vane splitters. This hypothesis was tested by two methods of cross-sectional partitioning. Partitioning was achieved in one design by inserting a smaller duct inside a large duct. In a second design, a cross-shaped splitter was inserted inside the large duct. Summed ANC insertion loss (IL) at low frequencies (< or =250 Hz) was at least 16 dB and at least 14 dB at middle frequencies (> or =315 Hz). ANC IL results were 1.7 to 2 dB better for the large duct partitioned by a smaller inner duct than the large duct alone (p = 0.0146 for low frequency and p = 0.0333 for middle frequency). ANC insertion loss was 5.6 dB better for the large duct partitioned by a cross-shaped splitter at high frequencies than the large duct alone (p = 0.0003). However, the cross-shaped partition system was 5.8 dB less effective at low frequencies than the large duct ANC IL alone (p < 0.0001).  相似文献   

17.
A traditional method for assessing the flow rate in ventilation systems is based on multiple readings of velocity or velocity pressure (VP) (usually 10 or 20 points) taken in ductwork sections located away from fittings (> seven × diameters of straight duct). This study seeks to eliminate the need for a multiple-point evaluation and replace it with a simplified method that requires only a single measurement of hood static pressure (SP(h)) taken at a more accessible location (< three × diameters of straight duct from the hood entry). The SP(h) method is widely used for the assessment of flow rate in simple hoods. However, industrial applications quite often use compound hoods that are regularly of the slot/plenum type. For these hoods, a "compound coefficient of entry" has not been published, which makes the use of the hood static pressure method unfeasible. This study proposes a model for the computation of a "compound coefficient of entry" and validates the use of this model to assess flow rate in two systems of well-defined geometry (multi-slotted/plenum and single-slotted/tapered or "fish-tail" types). When using a conservative value of the slot loss factor (1.78), the proposed model yielded an estimate of the volumetric flow rate within 10% of that provided by a more comprehensive method of assessment. The simplicity of the hood static pressure method makes it very desirable, even in the upper range of experimental error found in this study.  相似文献   

18.
An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002–0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.  相似文献   

19.
Predicting the space-time evolution of a gaseous or particulate pollutant concentration in a ventilated room where a process operation is performed is imperative in hazardous activities, such as chemical or nuclear ones. This study presents a prediction of the space-time evolution of airborne pollutant dispersion following the accidental rupture of a containment enclosure (fume cupboard, glove box, pressurized gas duct, etc.). The final model is written as correlations inspired by the free turbulent jet theory, giving the space-time evolution of a pollutant concentration c (x,y,z,t) that has been formulated as a correlated function of various parameters: leak geometry (slot or round opening), emission type (continuous or transient), emission duration and initial emission velocity. These correlations are based on gas tracing experiments and on multidimensional simulations using computational fluid dynamics (CFD) tools. An instrumented experimental facility was used to simulate pressurized gas industrial failure, and the measurements performed gave the real-time evolution of a tracer gas concentration. Transient leak simulations were run in parallel with a CFD code. Comparisons between experimental and numerical results largely agree. A semiempirical model was built using a methodical parametric study of all the simulation results. This model is easy to use in safety evaluations of radioactive material containment and radiological protection inside nuclear facilities and for evaluating toxic gaseous compounds in the chemical industry.  相似文献   

20.
To evaluate the efficacy of engineering controls in reducing worker exposure to metalworking fluids, an evaluation of an enclosure for a machining center during face milling was performed. The enclosure was built around a vertical metal machining center with an attached ventilation system consisting of a 25-cm diameter duct, a fan, and an air-cleaning filter. The evaluation method included using sulfur hexafluoride (SF6) tracer gas to determine the ventilation system's flow rate and capture efficiency, a respirable aerosol monitor (RAM) to identify aerosol leak locations around the enclosure, and smoke tubes and a velometer to evaluate air movement around the outside of the enclosure. Results of the tracer gas evaluation indicated that the control system was approximately 98% efficient at capturing tracer gas released near the spindle of the machining center. This result was not significantly different from 100% efficiency (p = 0.2). The measured SF6 concentration when released directly into the duct had a relative standard deviation of 2.2%; whereas, when releasing SF6 at the spindle, the concentration had a significantly higher relative standard deviation of 7.8% (p = 0.016). This increased variability could be due to a cyclic leakage at a small gap between the upper and lower portion of the enclosure or due to cyclic stagnation. Leakage also was observed with smoke tubes, a velometer, and an aerosol photometer. The tool and fluid motion combined to induce a periodic airflow in and out of the enclosure. These results suggest that tracer gas methods could be used to evaluate enclosure efficiency. However, smoke tubes and aerosol instrumentation such as optical particle counters or aerosol photometers also need to be used to locate leakage from enclosures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号