首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Methylprednisolone, dexamethasone, and other glucocorticoids have been found effective against nausea and vomiting induced by chemotherapy and surgery. Although the specific 5-hydroxytriptamine3 (5-HT3) receptor antagonists such as ondansetron and ramosetron are used as antiemetics, reports show that the use of 5-HT3 receptor antagonists with some glucocorticoids brings additional effects. Glucocorticoids are reported to be antiemetic. The effect of glucocorticoids on 5-HT3 receptor, however, has not been well characterized. This study was designed to examine whether dexamethasone and methylprednisolone had direct effects on human-cloned 5-HT3A receptor expressed in Xenopus oocytes.

Methods: Homomeric human-cloned 5-HT3A receptor was expressed in Xenopus oocytes. The authors used the two-electrode voltage-clamping technique to study the effect of methylprednisolone and dexamethasone on 5-HT-induced current.

Results: Both dexamethasone and methylprednisolone concentration-dependently attenuated 5-HT-induced current. Dexamethasone inhibited 2 [mu]m 5-HT-induced current, which was equivalent to EC30 concentration for 5-HT3A receptor, with an inhibitory concentration 50% of 5.29 +/- 1.02 [mu]m. Methylprednisolone inhibited 2 [mu]m 5-HT-induced current with an inhibitory concentration 50% of 1.07 +/- 0.15 mm. The mode of inhibition with either dexamethasone or methylprednisolone was noncompetitive and voltage-independent. When administered together with the 5-HT3 receptor antagonists, ramosetron or metoclopramide, both glucocorticoids showed an additive effect on 5-HT3 receptor.  相似文献   


2.
Background: A3 adenosine receptor (AR) activation worsens or protects against renal and cardiac ischemia-reperfusion (IR) injury, respectively. The aims of the current study were to examine in an in vivo model the effect of A3AR activation on IR lung injury and investigate the mechanism by which it exerts its effect.

Methods: The arterial branch of the left lower lung lobe in intact-chest, spontaneously breathing cats was occluded for 2 h and reperfused for 3 h (IR group). Animals were treated with the selective A3 receptor agonist IB-MECA (300 [mu]g/kg intravenously) given 15 min before ischemia or with IB-MECA as described, with pretreatment 15 min earlier with the selective A3AR antagonist MRS-1191, the nonsulfonylurea adenosine triphosphate-sensitive potassium channel-blocking agent U-37883A, or the nitric oxide synthase inhibitor Nw-nitro-l-arginine benzyl ester.

Results: IB-MECA markedly (P < 0.01) reduced the percentage of injured alveoli (IR, 48 +/- 4%; IB-MECA, 18 +/- 2%), wet:dry weight ratio (IR, 8.2 +/- 0.4; IB-MECA, 4 +/- 2), and myeloperoxidase activity (IR, 0.52 +/- 0.06 U/g; IB-MECA, 0.17 +/- 0.04 U/g). This protective effect was completely blocked by pretreatment with the selective A3AR antagonist MRS-1191 and the adenosine triphosphate-sensitive potassium channel blocking agent U-37883A but not the nitric oxide synthase inhibitor Nw-nitro-l-arginine benzyl ester.  相似文献   


3.
Background: Volatile anesthetics induce pharmacological preconditioning in cardiac tissue. The purpose of this study was to test whether volatile anesthetics mediate this effect by activation of the mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) or sarcolemmal KATP (sarcKATP) channel in rat ventricular myocytes and to evaluate the signaling pathways involved.

Methods: A cellular model of ischemia with subsequent hypoosmolar trypan blue staining served to determine the effects of 5-hydroxydecanoate, a selective mitoKATP channel blocker, HMR-1098, a selective sarcKATP channel blocker, diazoxide, a preconditioning mimicking agent, and various modulators of putative signaling pathways on cardioprotection elicited by sevoflurane and isoflurane. Microscopy was used to visualize and measure autofluorescence of flavoproteins, a direct index of mitoKATP channel activity.

Results: Volatile anesthetics significantly enhanced diazoxide-mediated activation of mitoKATP channels as assessed by autofluorescence of myocytes. Conversely, volatile anesthetics alone did not alter mitoKATP channel activity, implying a priming effect of volatile anesthetics on mitoKATP channels. Administration of the protein kinase C inhibitor chelerythrine completely blocked this effect. Also, pretreatment with volatile anesthetics potentiated diazoxide-mediated protection against ischemia, as indicated by a reduction in trypan blue-positive myocytes. Importantly, cardioprotection afforded by volatile anesthetics was unaffected by the sarcKATP channel blocker HMR-1098 but sensitive to modulations of nitric oxide and adenosine-Gi signaling pathways.  相似文献   


4.
Background: Potentiation of the activity of the [small gamma, Greek]-aminobutyric acid type A (GABAA) receptor channel by volatile anesthetic agents is usually studied in vitro at room temperature. Systematic variation of temperature can be used to assess the relevance of this receptor to general anesthesia and to characterize the modulation of its behavior by volatile agents at normal body temperature.

Methods: Potentiation of the GABAA receptor by halothane, sevoflurane, isoflurane, and methoxyflurane was studied at six temperatures in the range 10-37 [degree sign]C using the whole-cell patch-clamp technique and mouse fibroblast cells stably transfected with defined GABAA receptor subunits.

Results: Control GABA concentration-response plots showed small and physically reasonable changes in the GABA concentration required for a half-maximal effect, the Hill coefficient, and maximal response over the range 10-30 [degree sign]C. Potentiations of GABA (1 [micro sign]M) responses by aqueous minimum alveolar concentrations of the volatile anesthetic agents decreased with increasing temperature from 10-37 [degree sign]C in an agent-specific manner (methoxyflurane > isoflurane > sevoflurane > halothane) but tended to equalize at normal body temperature (37 [degree sign]C). These findings are in line with published results on the temperature dependence of anesthetic potencies in animals.  相似文献   


5.
Background: It has been reported that edrophonium can antagonize the negative chronotropic effect of carbachol. This study was undertaken to evaluate in detail the interaction of edrophonium with muscarinic M2 and M3 receptors.

Methods: A functional study was conducted to evaluate the effects of edrophonium on the concentration-response curves for the negative chronotropic effect and the bronchoconstricting effect of carbachol in spontaneously beating right atria and tracheas of guinea pigs. An electrophysiologic study was conducted to compare the effects of edrophonium on carbachol-, guanosine triphosphate (GTP)[gamma] S-, and adenosine-induced outward K+ currents in guinea pig atrial cells by whole cell voltage clamp technique. A radioligand binding study was conducted to examine the effects of edrophonium on specific [3H]N-methyl-scopolamine (NMS) binding to guinea pig atrial (M2) and submandibular gland (M3) membrane preparations, and on atropine-induced dissociation of [3H]NMS.

Results: Edrophonium shifted rightward the concentration-response curves for the negative chronotropic and bronchoconstricting effects of carbachol in a competitive manner. The pA2 values for cardiac and tracheal muscarinic receptors were 4.61 and 4.03, respectively. Edrophonium abolished the carbachol-induced outward current without affecting the GTP[gamma] S- and adenosine-induced currents in the atrial cells. Edrophonium inhibited [3H]NMS binding to M2 and M3 receptors in a concentration-dependent manner. The pseudo-Hill coefficient values and apparent dissociation constants of edrophonium for M2 and M3 receptors were 1.02 and 1.07 and 21 and 34 [mu]m, respectively. Edrophonium also changed dissociation constant values of [3H]NMS without affecting its maximum binding capacities.  相似文献   


6.
7.
Background: Volatile anesthetics protect against cardiac ischemia-reperfusion injury via adenosine triphosphate-dependent potassium channel activation. The authors questioned whether volatile anesthetics can also protect against renal ischemia-reperfusion injury and, if so, whether cellular adenosine triphosphate-dependent potassium channels, antiinflammatory effects of volatile anesthetics, or both are involved.

Methods: Rats were anesthetized with equipotent doses of volatile anesthetics (desflurane, halothane, isoflurane, or sevoflurane) or injectable anesthetics (pentobarbital or ketamine) and subjected to 45 min of renal ischemia and 3 h of reperfusion during anesthesia.

Results: Rats treated with volatile anesthetics had lower plasma creatinine and reduced renal necrosis 24-72 h after injury compared with rats anesthetized with pentobarbital or ketamine. Twenty-four hours after injury, sevoflurane-, isoflurane-, or halothane-treated rats had creatinine (+/- SD) of 2.3 +/- 0.7 mg/dl (n = 12), 1.8 +/- 0.5 mg/dl (n = 6), and 2.4 +/- 1.2 mg/dl (n = 6), respectively, compared with rats treated with pentobarbital (5.8 +/- 1.2 mg/dl, n = 9) or ketamine (4.6 +/- 1.2 mg/dl, n = 8). Among the volatile anesthetics, desflurane demonstrated the least reduction in plasma creatinine after 24 h (4.1 +/- 0.8 mg/dl, n = 12). Renal cortices from volatile anesthetic-treated rats demonstrated reduced expression of intercellular adhesion molecule 1 protein and messenger RNA as well as messenger RNAs encoding proinflammatory cytokines and chemokines. Volatile anesthetic treatment reduced renal cortex myeloperoxidase activity and reduced nuclear translocation of proinflammatory nuclear factor [kappa]B. Adenosine triphosphate-dependent potassium channels are not involved in sevoflurane-mediated renal protection because glibenclamide did not block renal protection (creatinine: 2.4 +/- 0.4 mg/dl, n = 3).  相似文献   


8.
Background: Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used.

Methods: Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3+ T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays.

Results: Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis.  相似文献   


9.
Background: Magnesium ion (Mg2+) is involved in important processes as modulation of ion channels, receptors, neurotransmitter release, and cell excitability in the central nervous system. Although extracellular Mg2+ concentration ([Mg2+]o) can be altered during general anesthesia, there has been no evidence for [Mg2+]o-dependent modification of anesthetic actions on neural excitability in central nervous system preparations. The purpose of current study was to determine whether the effects of volatile anesthetics are [Mg2+]o-dependent in mammalian central nervous system.

Methods: Extracellular electrophysiologic recordings from CA1 neurons in rat hippocampal slices were used to investigate the effects of [Mg2+]o and anesthetics on population spike amplitude and excitatory postsynaptic potential slope.

Results: The depression of population spike amplitudes and excitatory postsynaptic potential slopes by volatile anesthetics were significantly dependent on [Mg2+]o. The effects were attenuated in the presence of a constant [Mg2+]o/extracellular Ca2+ concentration ratio. However, neither N-methyl-d-aspartate receptor antagonists nor a non-N-methyl-d-aspartate receptor antagonist altered the [Mg2+]o-dependent anesthetic-induced depression of population spikes. Volatile anesthetics produced minimal effects on input-output (excitatory postsynaptic potential-population spike) relations or the threshold for population spike generation. The effects were not modified by changes in [Mg2+]o. In addition, the population spike amplitudes, elicited via antidromic (nonsynaptic) stimulation, were not influenced by [Mg2+]o in the presence of volatile anesthetics.  相似文献   


10.
Background: Occupational exposure of healthcare workers to natural rubber latex has led to sensitization and potentially life-threatening anaphylaxis. Although environmental exposure to natural rubber latex products is necessary for sensitization, it is not sufficient. A number of genetic factors also seem to contribute to the latex sensitization; however, the multigenic nature of the allergic phenotype has made the identification of susceptibility genes difficult. The current study tests the hypothesis that known functional polymorphisms in genes encoding interleukin 4, interleukin 13, and interleukin 18 occur in a higher frequency in healthcare workers with natural rubber latex allergy.

Methods: Four hundred thirty-two healthcare workers with occupational exposure to natural rubber latex were screened using a clinical history questionnaire and latex-specific immunoglobulin E serology. Genomic DNA was extracted from peripheral blood lymphocytes and analyzed for single-nucleotide polymorphisms in candidate genes of interest. Data from cases and controls were analyzed by nominal logistic regression, with P < 0.05 considered significant.

Results: The latex allergy phenotype was significantly associated with promoter polymorphisms in IL13 -1055 (P = 0.02), IL18 -607 (P = 0.02), and IL18 -656 (P = 0.02) compared with nonatopic controls.  相似文献   


11.
Background: Bulleyaconitine A (BLA) is an active ingredient of Aconitum bulleyanum plants. BLA has been approved for the treatment of chronic pain and rheumatoid arthritis in China, but its underlying mechanism remains unclear.

Methods: The authors examined (1) the effects of BLA on neuronal voltage-gated Na+ channels in vitro under the whole cell patch clamp configuration and (2) the sensory and motor functions of rat sciatic nerve after single BLA injections in vivo.

Results: BLA at 10 [mu]m did not affect neuronal Na+ currents in clonal GH3 cells when stimulated infrequently to +50 mV. When stimulated at 2 Hz for 1,000 pulses (+50 mV for 4 ms), BLA reduced the peak Na+ currents by more than 90%. This use-dependent reduction of Na+ currents by BLA reversed little after washing. Single injections of BLA (0.2 ml at 0.375 mm) into the rat sciatic notch not only blocked sensory and motor functions of the sciatic nerve but also induced hyperexcitability, followed by sedation, arrhythmia, and respiratory distress. When BLA at 0.375 mm was coinjected with 2% lidocaine (approximately 80 mm) or epinephrine (1:100,000) to reduce drug absorption by the bloodstream, the sensory and motor functions of the sciatic nerve remained fully blocked for approximately 4 h and regressed completely after approximately 7 h, with minimal systemic effects.  相似文献   


12.
Background: A new pulmonary drug delivery system produces aerosols from disposable packets of medication. This study compared the pharmacokinetics and pharmacodynamics of morphine delivered by an AERx prototype with intravenous morphine.

Methods: Fifteen healthy volunteers were enrolled. Two subjects were administered four inhalations of 2.2 mg morphine each at 1-min intervals or 4.4 mg over 3 min by intravenous infusion. Thirteen subjects were given twice the above doses, i.e., eight inhalations or 8.8 mg intravenously over 7 min. Arterial blood sampling was performed every minute during administration and at 2, 5, 7, 10, 15, 20, 45, 60, 90, 120, 150, 180, and 240 min after administration. The effect of morphine was assessed by measuring pupil diameter and ventilatory response to a hypercapnic challenge. Pharmacokinetic and pharmacodynamic analyses were performed simultaneously using mixed-effect models.

Results: The pharmacokinetic data after intravenous administration were described by a three-exponent decay model preceded by a lag time. The pharmacokinetic model for administration by inhalation consisted of the three-exponent intravenous pharmacokinetic model preceded by a two-exponent absorption model. The authors found that, with administration by inhalation, the total bioavailability was 59%, of which 43% was absorbed almost instantaneously and 57% was absorbed with a half-life of 18 min. The median times to the half-maximal miotic effects of morphine were 10 and 5.5 min after inhalation and intravenous administration, respectively (P < 0.01). The pharmacodynamic parameter ke0 was approximately 0.003 min-1.  相似文献   


13.
14.
15.
16.
Background: Halothane inhibits airway smooth muscle contraction in part by inhibiting the functional coupling between muscarinic receptors and one of its cognate heterotrimeric G proteins, G[alpha]q. Based on previous studies indicating a more potent effect of halothane and sevoflurane on airway smooth muscle contraction compared with isoflurane, the current study hypothesized that at anesthetic concentrations of 2 minimum alveolar concentration (MAC) or less, halothane and sevoflurane but not isoflurane inhibit acetylcholine-promoted G[alpha]q guanosine nucleotide exchange.

Methods: G[alpha]q guanosine nucleotide exchange was measured in crude membranes prepared from COS-7 cells transiently coexpressing the human M3 muscarinic receptor and human G[alpha]q. A radioactive, nonhydrolyzable analog of guanosine-5'-triphosphate, [35S]GTP[gamma]S, was used as a reporter for nucleotide exchange at G[alpha]q.

Results: Acetylcholine caused a concentration-dependent increase in G[alpha]q [35S]GTP[gamma]S-GDP exchange. Neither anesthetic affected constitutive G[alpha]q [35S]GTP[gamma]S-GDP exchange in the absence of acetylcholine. Conversely, each anesthetic caused a concentration-dependent and reversible inhibition of G[alpha]q [35S]GTP[gamma]S-GDP exchange when promoted by acetylcholine. At concentrations of 3 MAC or less, the effect of halothane and sevoflurane were significantly greater than that of isoflurane, with only a minimal inhibition by isoflurane observed at 2 MAC.  相似文献   


17.
Background: Pulmonary surfactant is a complex mixture of proteins and phospholipids synthetized by alveolar type II cells. Volatile anesthetics have been shown to reduce surfactant phospholipid biosynthesis by rat alveolar type II cells. Surfactant-associated protein C (SP-C) is critical for the alveolar surfactant functions. Our goal was to evaluate the effects of halothane and thiopental on SP-C messenger RNA (mRNA) expression in vitro in rat alveolar type II cells and in vivo in mechanically ventilated rats.

Methods: In vitro, freshly isolated alveolar type II cells were exposed to halothane during 4 h (1, 2, 4%) and 8 h (1%), and to thiopental during 4 h (10, 100 [mu]m) and 8 h (100 [mu]m). In vivo, rats were anesthetized with intraperitoneal thiopental or inhaled 1% halothane and mechanically ventilated for 4 or 8 h. SP-C mRNA expression was evaluated by ribonuclease protection assay.

Results: In vitro, 4-h exposure of alveolar type II cells to thiopental 10 and 100 [mu]m increased their SP-C mRNA content to 145 and 197%, respectively, of the control values. In alveolar type II cells exposed for 4 h to halothane 1, 2, and 4%, the SP-C mRNA content increased dose-dependently to 160, 235, and 275%, respectively, of the control values. In vivo, in mechanically ventilated rats, 4 h of halothane anesthesia decreased the lung SP-C mRNA content to 53% of the value obtained in control (nonanesthetized, nonventilated) animals; thiopental anesthesia increased to 150% the lung SP-C mRNA content.  相似文献   


18.
Background : The authors hypothesized that perioperative lymphocytopenia is partially caused by apoptosis of lymphocytes induced by inhalation anesthetics. Therefore, they evaluated whether sevoflurane and isoflurane induce apoptosis of normal peripheral lymphocytes.

Methods : Normal peripheral blood mononuclear cells were exposed to sevoflurane and isoflurane, and the percentages of apoptotic lymphocytes was measured by Annexin V-fluorescein isothiocyanate-7-amino actinomycin D flow cytometry after 24 h of exposure (0.5, 1.0, and 1.5 mm) and after 6, 12, and 24 h of exposure (1.5 mm). The percentages of lymphocytes with caspase 3-like activity were also measured after 24 h of exposure (1.5 mm).

Results : The percentages of apoptotic lymhocytes were increased in a dose-dependent manner (controls: 5.1 +/- 1.4%; sevo-flurane: 7.3 +/- 1.3% [0.5 mm], 9.1 +/- 1.5% [1.0 mm], 12.6 +/- 2.1% [1.5 mm]; isoflurane: 7.5 +/- 1.6% [0.5 mm], 10.5 +/- 1.5% [1.0 mm], 16.3 +/- 2.7% [1.5 mm]) after 24 h of exposure and in a time-dependent manner (controls: 1.2 +/- 0.4% [6 h], 3.4 +/- 0.7% [12 h], 5.6 +/- 1.2% [24 h]; sevoflurane: 1.8 +/- 0.4% [6 h], 6.4 +/- 1.2% [12 h], 11.3 +/- 2.2% [24 h]; isoflurane: 2.6 +/- 0.5% [6 h], 8.8 +/- 1.5% [12 h],16.0 +/- 1.9% [24 h]) at the concentration of 1.5 mm. The percentages of lymphocytes with caspase 3-like activity were increased (controls: 10.0 +/- 1.1%; sevoflurane: 13.8 +/- 1.2%; isoflurane: 17.0 +/- 1.3%).  相似文献   


19.
20.
Background: Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress.

Methods: Primary cortical neuronal-glial cultures were exposed to N-methyl-d-aspartate (NMDA) or glutamate and isoflurane (0.1-3.3 mm), sevoflurane (0.1-2.9 mm), halothane (0.1-2.9 mm), or 10 [mu]m (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801). Lactate dehydrogenase release was measured 24 h later. In other cultures, effects of volatile anesthetics on Ca++ uptake and mitochondrial membrane potential were determined in the presence or absence of NMDA (0-200 [mu]m).

Results: Volatile anesthetics reduced excitotoxin induced lactate dehydrogenase release by up to 52% in a dose-dependent manner. At higher concentrations, this protection was reversed. When corrected for olive oil solubility, the three anesthetics offered equivalent protection. MK-801 provided near-complete protection. Ca++ uptake was proportionally reduced with increasing concentrations of anesthetic but did not account for reversal of protection at higher anesthetic concentrations. Given equivalent NMDA-induced Ca++ loads, cells treated with volatile anesthetic had greater lactate dehydrogenase release than those left untreated. At protective concentrations, volatile anesthetics partially inhibited NMDA-induced mitochondrial membrane depolarization. At higher concentrations, volatile anesthetics alone were sufficient to induce mitochondrial depolarization.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号