首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mesolimbic dopamine system is essential for reward-seeking behavior, and drugs of abuse are thought to usurp the normal functioning of this pathway. A growing body of evidence suggests that glutamatergic synapses on dopamine neurons in the ventral tegmental area (VTA) are modified during exposure to addictive drugs, producing sensitization, a progressive augmentation in the rewarding properties of psychostimulant drugs with repeated exposure. We have tested the hypothesis that psychostimulant exposure interferes with the synaptic plasticity of glutamatergic inputs to the VTA. We find that excitatory synapses onto VTA dopamine neurons exhibit long-term depression (LTD) in response to low-frequency stimulation and modest depolarization. LTD in the VTA is NMDA receptor-independent but is dependent on intracellular Ca(2+) and can be induced by driving Ca(2+) into the dopamine neuron. Brief exposure to amphetamine entirely blocks LTD at glutamatergic synapses in the VTA, by releasing endogenous dopamine that acts at D2 dopamine receptors. The block of LTD is selective, because amphetamine has no effect on hippocampal LTD. The LTD we have discovered in the VTA is likely to be an important component of excitatory control of the reward pathway; amphetamine will inhibit LTD, removing this normal brake on the glutamatergic drive to dopamine neurons. This effect of amphetamine represents an important mechanism by which normal function of the brain reward system may be impaired during substance abuse.  相似文献   

2.
Addictive drugs modulate synaptic transmission in the meso‐corticolimbic system by hijacking normal adaptive forms of experience‐dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long‐term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA‐ergic systems in the shell‐NAc modulates METH‐induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline‐treated animals. Intra‐NAc infusion of muscimol (GABA receptor agonist) decreased METH‐induced enhancement of dentate gyrus (DG)‐LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH‐induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH‐induced hippocampal LTP through a hippocampus‐NAc‐VTA circuit loop. Synapse 70:325–335, 2016 . © 2016 Wiley Periodicals, Inc.  相似文献   

3.
The amygdala plays key roles in several aspects of addiction to drugs of abuse. This brain structure has been implicated in behaviours that reflect drug reward, drug seeking, and the aversive effects of drug withdrawal. Using a model that involves repeated cocaine injections to approximate 'binge' intoxication, we show in rats that during cocaine withdrawal, the impact of rewarding brain stimulation is attenuated, as quantified by alterations in intracranial self-stimulation (ICSS) behaviour. These behavioural signs of withdrawal are accompanied by enhancements of glutamatergic synaptic transmission within the lateral amygdala (LA) that occlude electrically induced long-term potentiation (LTP) in tissue slices. Synaptic enhancements during periods of cocaine withdrawal are mechanistically similar to LTP induced with electrical stimulation in control slices, as both forms of synaptic plasticity involve an increase in glutamate release. These results suggest that mechanisms of LTP within the amygdala are recruited during withdrawal from repeated exposure to cocaine. As such, they raise the possibility that the development and maintenance of addictive behaviours may involve, at least in part, mechanisms of synaptic plasticity within specific amygdala circuits.  相似文献   

4.
Nucleus accumbens (NAc) neurons are excited primarily by AMPA-type glutamate receptors (AMPAR). This is required for cocaine seeking in animal models of cocaine addiction, suggesting AMPAR transmission in the NAc as a key control point for cocaine-related behaviors. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that may be important in two different stages of addiction: learning about drugs and drug-related cues during the period of drug exposure, and persistent vulnerability to craving and relapse after abstinence is achieved. The first example is drawn from studies of cultured NAc neurons. Elevation of dopamine levels (as would occur following cocaine exposure) facilitates activity-dependent strengthening of excitatory synapses onto medium spiny neurons, the main cell type and projection neuron of the NAc. This occurs because activation of D1-class dopamine receptors primes AMPAR for synaptic insertion. This may create a temporal window in which stimuli related to cocaine-taking are more efficacious at eliciting synaptic plasticity and thus being encoded into memory. The second example involves rat models of cocaine addiction. Cell surface and synaptic expression of AMPAR on NAc neurons is persistently increased after withdrawal from repeated cocaine exposure. We hypothesize that this increases the reactivity of NAc neurons to glutamate inputs from cortex and limbic structures, facilitating the ability of these inputs to trigger cocaine seeking and thus contributing to the persistent vulnerability to relapse that characterizes addiction.  相似文献   

5.
LTP in the mouse nucleus accumbens is developmentally regulated   总被引:4,自引:0,他引:4  
Glutamatergic transmission in the nucleus accumbens (NAc) has been shown to be important for behavioral adaptations in response to drugs of abuse. NMDA-receptor dependent long-term potentiation (LTP) of glutamatergic synaptic transmission has been hypothesized to underlie many lasting alterations in behavior. Thus, we examined LTP in NAc core and find that it is developmentally regulated. Specifically, tetanus-evoked, NMDA receptor-dependent LTP is observed in the NAc of "adolescent" (3-week-old) mice more frequently than in adult (6-20-week-old) mice. In contrast, cAMP-dependent enhancement of transmission is not developmentally regulated. Removal of extracellular Mg(2+) restores LTP in adult NAc core, suggesting developmental regulation of induction processes rather than maintenance mechanisms. These findings are discussed in the context of behavioral changes elicited in response to drugs of abuse, which differ in adolescent vs. adult rodents and humans.  相似文献   

6.
Repeated exposure to psychostimulant drugs produces long-lasting changes in dendritic structure, presumably reflecting a reorganization in patterns of synaptic connectivity, in brain regions that mediate the psychomotor activating and incentive motivational effects of these drugs, including the nucleus accumbens and prefrontal cortex. However, repeated exposure to psychostimulant drugs also facilitates a transition in the control of some behaviors from action-outcome associations to behavior controlled by stimulus-response (S-R) habits. This latter effect is thought to be due to increasing engagement and control over behavior by the dorsolateral (but not dorsomedial) striatum. We hypothesized therefore that repeated exposure to methamphetamine would differentially alter the density of dendritic spines on medium spiny neurons (MSNs) in the dorsolateral vs. dorsomedial striatum. Rats were treated with repeated injections of methamphetamine, and 3 months later dendrites were visualized using Sindbis virus-mediated green fluorescent protein (GFP) expression in vivo. We report that prior exposure to methamphetamine produced a significant increase in mushroom and thin spines on MSNs in the dorsolateral striatum, but a significant decrease in mushroom spines in the dorsomedial striatum. This may be due to changes in the glutamatergic innervation of these two subregions of the dorsal striatum. Thus, we speculate that exposure to psychostimulant drugs may facilitate the development of S-R habits because this reorganizes patterns of synaptic connectivity in the dorsal striatum in a way that increases control over behavior by the dorsolateral striatum.  相似文献   

7.
Repeated exposure to drugs of abuse causes persistent behavioral sensitization and associated adaptations of striatal neurotransmission, which is thought to play an important role in certain aspects of drug addiction. Microdialysis and neurochemical studies suggest that intermittent morphine treatment may lead to a long-term increase in both ACh and dopaminergic neurotransmission in the nucleus accumbens (NAc). This implies that both cholinergic modulation of GABA synapses and their sensitivity to dopaminergic transmission might be changed, ultimately leading to a modified NAc output. Here we investigate to what extent cholinergic modulation and sensitivity to amphetamine, causing endogenous dopamine efflux, of GABAergic transmission in the nucleus accumbens are affected 3 weeks after a period of daily morphine injections in adult rats. To this end, we recorded medium spiny neurons using whole cell voltage clamp and monitored the frequency and amplitude of spontaneous GABAergic synaptic currents. We observed that the effect of nicotine on the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was suppressed in rats pretreated with morphine, whereas the effects of mecamylamine and tetrodotoxin (TTX) were increased. These results indicate that the probability of GABA release was increased and that this effect resulted from an upregulation of the endogenous activation of presynaptic nicotinic receptors. In addition, we observed an increased sensitivity to in vitro application of amphetamine. This suggests that the long-term increase in dopaminergic transmission caused by the morphine treatment affects GABA synapses in the NAc. Hence, there may be two parallel synaptic mechanisms by which drugs of abuse may affect processing and integration of NAc inputs.  相似文献   

8.
Neurochemical, electrophysiological and behavioural evidence indicates that certain forms of goal-directed behaviours are mediated by complex and reciprocal interactions between limbic and dopamine (DA) inputs in the nucleus accumbens (NAc). Mesoaccumbens DA transmission appears to be compartmentalized; synaptic DA transmission is mediated by phasic burst firing of DA neurons, whereas extrasynaptic tonic DA levels are regulated by DA neuron population activity and limbic glutamatergic inputs to the NAc. DA release facilitated by limbic inputs and acting on D1 receptors can either potentiate or suppress neural activity driven by separate limbic inputs converging on the same postsynaptic NAc neurons. In turn, D1 receptors in the NAc mediate accuracy of search behaviour regulated by hippocampal-ventral striatal circuitries; D2 receptors appear to mediate motivational aspects of task performance. These findings suggest that dopaminergic modulation of limbic afferents to the NAc may be a cellular mechanism for input selection that governs the smooth coordination of behaviour by permitting information processed by one limbic region to temporarily exert control over the type and intensity of adaptive behavioural responses.  相似文献   

9.
Small fluctuations in striatal glutamate and dopamine are required to establish goal-directed behaviors and motor learning, while large changes appear to underlie many neuropsychological disorders, including drug dependence and Parkinson's disease. A better understanding of how variations in neurotransmitter availability can modify striatal circuitry will lead to new therapeutic targets for these disorders. Here, we examined dopamine-induced plasticity in prefrontal cortical projections to the nucleus accumbens (NAc) core. We combined behavioral measures of male mice, presynaptic optical studies of glutamate release kinetics from prefrontal cortical projections, and postsynaptic electrophysiological recordings of spiny projection neurons within the NAc core. Our data show that repeated amphetamine promotes long-lasting but reversible changes along the corticoaccumbal pathway. In saline-treated mice, coincident cortical stimulation and dopamine release promoted presynaptic filtering by depressing exocytosis from glutamatergic boutons with a low-probability of release. The repeated use of amphetamine caused a frequency-dependent, progressive, and long-lasting depression in corticoaccumbal activity during withdrawal. This chronic presynaptic depression was relieved by a drug challenge which potentiated glutamate release from synapses with a low-probability of release. D1 receptors generated this synaptic potentiation, which corresponded with the degree of locomotor sensitization in individual mice. By reversing the synaptic depression, drug reinstatement may promote allostasis by returning corticoaccumbal activity to a more stable and normalized state. Therefore, dopamine-induced synaptic filtering of excitatory signals entering the NAc core in novice mice and paradoxical excitation of the corticoaccumbal pathway during drug reinstatement may encode motor learning, habit formation, and dependence.  相似文献   

10.
Repetitive exposure to addictive drugs causes synaptic modification in the mesocorticolimbic dopamine (DA) system. Dopamine D1 receptors (D1R) or D2 receptors (D2R) expressed in the medium spiny neurons (MSNs) of the nucleus accumbens (NAc) play critical roles in the control of addictive behaviors. Optogenetic activation of D2R‐expressing MSNs (D2R‐MSNs) in the NAc previously demonstrated that these neurons play a key role in withdrawal‐induced plasticity. Here, we examined the effect of optogenetic inhibition of D2R‐MSNs in the NAc on cocaine‐induced behavioral sensitization. Adeno‐associated viral vectors encoding archaerhodopsin (ArchT) were delivered into the NAc of D2‐Cre transgenic mice. Activation of ArchT produced photoinhibition of D2R‐MSNs and caused disinhibition of neighboring MSNs in the NAc. However, such optogenetic silencing of D2R‐MSNs in the NAc in vivo affected neither the initiation nor the expression of cocaine‐induced behavioral sensitization. Similarly, photoinhibition of NAc D2R‐MSNs in the NAc during the drug withdrawal period did not affect the expression of cocaine‐induced behavioral sensitization. More detailed analysis of the effects of optogenetic activation of D2R‐MSNs suggests that D2R‐MSNs in the NAc exert important modulatory effects on neighboring MSN neurons, which may control the balanced output of NAc MSNs to control addictive behaviors.  相似文献   

11.
A robust increase in dopaminergic transmission in the nucleus accumbens (NAc) shell has been reported to be consistently associated with the long-term expression of behavioural sensitization to drugs of abuse. However, little is known about how this affects the neuronal network of the NAc. We made cellular recordings in NAc slices of saline- and amphetamine-pretreated adult rats and found that expression of behavioural sensitization was associated with long-lasting changes in the basal firing pattern of cholinergic interneurons up to 3 weeks after the last drug injection. Consequently, upon amphetamine sensitization, an inhibiting effect of the nicotinic receptor blocker mecamylamine on the amplitudes of spontaneous GABAergic synaptic currents as well as on the failure rate of electrically evoked GABAergic currents was found that was not present under control conditions. Thus, behavioural sensitization to amphetamine is associated with an up-regulation of the endogenous activation of nicotinic receptors that, in turn, stimulate the GABAergic synaptic transmission within the NAc shell. This is a new mechanism by which drugs of abuse may induce alterations in the processing and integration of NAc inputs involved in psychomotor sensitization.  相似文献   

12.
Interaction between glucocorticoid hormones,stress and psychostimulant drugs   总被引:22,自引:0,他引:22  
In this review we summarize data obtained from animal studies showing that glucocorticoid hormones have a facilitatory role on behavioural responses to psychostimulant drugs such as locomotor activity, self-administration and relapse. These behavioural effects of glucocorticoids involve an action on the meso-accumbens dopamine system, one of the major systems mediating the addictive properties of drugs of abuse. The effects of glucocorticoids in the nucleus accumbens are site-specific; these hormones modify dopamine transmission in only the shell of this nucleus without modifying it in the core. Studies with corticosteroid receptor antagonists suggest that the dopaminergic effects of these hormones depend mostly on glucocorticoid, not on mineralocorticoid receptors. These data suggest that an increase in glucocorticoid hormones, through an action on mesolimbic dopamine neurons, could increase vulnerability to drug abuse. We also discuss the implications of this finding with respect to the physiological role of glucocorticoids. It is proposed that an increase in glucocorticoids, by activating the reward pathway, could counteract the aversive effects of stress. During chronic stress, repeated increases in glucocorticoids and dopamine would result in sensitization of the reward system. This sensitized state, which can persist after the end of the stress, would render the subject more responsive to drugs of abuse and consequently more vulnerable to the development of addiction.  相似文献   

13.
Dopaminergic control of synaptic plasticity in the dorsal striatum   总被引:9,自引:0,他引:9  
Cortical glutamatergic and nigral dopaminergic afferents impinge on projection spiny neurons of the striatum, providing the most significant inputs to this structure. Isolated activation of glutamate or dopamine (DA) receptors produces short-term effects on striatal neurons, whereas the combined stimulation of both glutamate and DA receptors is able to induce long-lasting modifications of synaptic excitability. Repetitive stimulation of corticostriatal fibres causes a massive release of both glutamate and DA in the striatum and, depending on the glutamate receptor subtype preferentially activated, produces either long-term depression (LTD) or long-term potentiation (LTP) of excitatory synaptic transmission. D1-like and D2-like DA receptors interact synergistically to allow LTD formation, while they operate in opposition during the induction phase of LTP. Corticostriatal synaptic plasticity is severely impaired after chronic DA denervation and requires the stimulation of DARPP-32, a small protein expressed in dopaminoceptive spiny neurons which acts as a potent inhibitor of protein phosphatase-1. In addition, the formation of LTD and LTP requires the activation of PKG and PKA, respectively, in striatal projection neurons. These kinases appear to be stimulated by the activation of D1-like receptors in distinct neuronal populations.  相似文献   

14.
Repeated treatment with psychostimulant drugs produces changes in brain and behaviour that far outlast their initial neuropharmacological actions. The nature of persistent drug-induced neurobehavioural adaptations is of interest because they are thought to contribute to the development of dependence and addiction, and other forms of psychopathology, e.g. amphetamine psychosis. There are many reports that psychostimulants produce biochemical adaptations in brain monoamine systems, especially dopamine systems. The purpose of the present study was to determine if they might also alter the morphology of neurons in brain regions that receive monoaminergic innervation. Rats were given repeated injections of either amphetamine or cocaine, or, to control for general motor activity, allowed access to a running wheel. They were then left undisturbed for 24-25 days before their brains were processed for Golgi-Cox staining. Treatment with either amphetamine or cocaine (but not wheel running experience) increased the number of dendritic branches and the density of dendritic spines on medium spiny neurons in the shell of the nucleus accumbens, and on apical dendrites of layer V pyramidal cells in the prefrontal cortex. Cocaine also increased dendritic branching and spine density on the basilar dendrites of pyramidal cells. In addition, both drugs doubled the incidence of branched spines on medium spiny neurons. It is suggested that some of the persistent neurobehavioural consequences of repeated exposure to psychostimulant drugs may be due to their ability to reorganize patterns of synaptic connectivity in the nucleus accumbens and prefrontal cortex.  相似文献   

15.
Repeated exposure to drugs of abuse causes persistent behavioural sensitization and associated adaptations in striatal neurotransmission, which is thought to play an important role in certain aspects of drug addiction. Remarkably, even a single exposure to psychostimulant drugs such as amphetamine or cocaine can be sufficient to elicit long-lasting sensitization. The present study was designed to evaluate whether long-lasting behavioural and neurochemical sensitization can also be evoked by a single exposure to morphine, an opiate drug of abuse. Rats were pretreated once with morphine (2, 10 or 30 mg/kg). Three weeks later, the locomotor effects of morphine and amphetamine, as well as the electrically evoked release of [3H]dopamine and [14C]acetylcholine from slices of nucleus accumbens and caudate-putamen, was assessed. In morphine-pretreated rats, the psychomotor effects of morphine and amphetamine were sensitized. In addition, the electrically evoked release of [3H]dopamine and [14C]acetylcholine was augmented in slices of nucleus accumbens and caudate-putamen from morphine-pretreated animals. Although the sensitization of the locomotor effect of morphine was less profound than previously observed after repeated intermittent morphine treatment, the enduring behavioural and neurochemical consequences of a single and repeated intermittent morphine treatment appear to be highly comparable. We therefore conclude that a single exposure to morphine induces long-lasting behavioural sensitization and associated neuroadaptations.  相似文献   

16.
Brief ischemia causes long-term depression in midbrain dopamine neurons   总被引:1,自引:0,他引:1  
Degeneration of dopamine neurons in the substantia nigra pars compacta (SNc) plays an important role in the pathophysiology of neurodegenerative diseases like Parkinsonism and vascular dementia. SNc dopamine neurons both in vitro and in vivo show sensitivity to hypoxic/ischemic conditions and undergo degeneration. In acute brain slices, these dopamine neurons undergo hyperpolarization during hypoxia and hypoglycemia, which results in silencing of the neurons. However, the role that SNc excitatory synapses play in this process is poorly understood. Here we examined the effect of oxygen/glucose deprivation (OGD) on glutamatergic synaptic transmission in the SNc in a rat midbrain slice preparation. OGD for 5 min caused pre-synaptic ischemic long-term depression (iLTD) of glutamate transmission, as both alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid- and N-methyl-D-aspartate receptor-mediated synaptic currents in SNc dopamine neurons were depressed to a similar extent. This depression began immediately after exposure to OGD and was not recovered upon washout of OGD. Pharmacological studies revealed that the iLTD was triggered by a rise in post-synaptic intracellular calcium and mediated by activation of pre-synaptic adenosine A(1) receptors, which reduced glutamate-dependent synaptic transmission by activating ATP-dependent potassium channels. Furthermore, we observed that iLTD did not occlude tetanic long-term depression (LTD) at the SNc excitatory synapses, suggesting that these two forms of LTD involve different pathways. Taken together, our results showed that brief exposure to hypoxia and hypoglycemia results in LTD of synaptic activity at glutamatergic synapses onto SNc neurons and this phenomenon could represent a protective mechanism by reducing ischemia-induced excitotoxic injury to dopamine neurons.  相似文献   

17.
Excitatory glutamatergic synapses on dopamine (DA) neurons of the ventral tegmental area (VTA) undergo long-lasting changes during conditioning of natural rewards and in response to drug exposure. It has been suggested that the ensuing context-dependent behavioural changes are associated with an increased efficacy of synaptic afferents determined by the balance of long-term potentiation (LTP) and long-term depression (LTD). However, the molecular nature of the forms of LTP/LTD involved remains elusive. Here, using acute rat brain slices, we describe a form of long-term depression (LTD) that was engaged by synaptic activity or exogenous agonists activating group I metabotropic glutamate receptors (mGluR) and was sensitive to mGluR1 antagonists. Prior to mGluR-LTD, AMPAR mediated excitatory postsynaptic currents (EPSCs) showed strong rectification at positive potentials and were sensitive to Joro spider toxin (JST), a selective blocker of GluR2-lacking AMPARs. After mGluR-LTD, AMPAR EPSCs had linear current-voltage relations and became insensitive to JST. We conclude that activation of mGluR1s triggers a redistribution exchanging native receptors for GluR2 containing AMPARs, ultimately causing LTD that may oppose pathological neuroadaptation.  相似文献   

18.
The nucleus accumbens shell (NAcSh) receives extensive monoaminergic input from multiple midbrain structures. However, little is known how norepinephrine (NE) modulates NAc circuit dynamics. Using a dynamic electrophysiological approach with optogenetics, pharmacology, and drugs acutely restricted by tethering (DART), we explored microcircuit-specific neuromodulatory mechanisms recruited by NE signaling in the NAcSh of parvalbumin (PV)-specific reporter mice. Surprisingly, NE had little direct effect on modulation of synaptic input at medium spiny projection neurons (MSNs). In contrast, we report that NE transmission selectively modulates glutamatergic synapses onto PV-expressing fast-spiking interneurons (PV-INs) by recruiting postsynaptically-localized α2-adrenergic receptors (ARs). The synaptic effects of α2-AR activity decrease PV-IN-dependent feedforward inhibition onto MSNs evoked via optogenetic stimulation of cortical afferents to the NAcSh. These findings provide insight into a new circuit motif in which NE has a privileged line of communication to tune feedforward inhibition in the NAcSh.SIGNIFICANCE STATEMENT The nucleus accumbens (NAc) directs reward-related motivational output by integrating glutamatergic input with diverse neuromodulatory input from monoamine centers. The present study reveals a synapse-specific regulatory mechanism recruited by norepinephrine (NE) signaling within parvalbumin-expressing interneuron (PV-IN) feedforward inhibitory microcircuits. PV-IN-mediated feedforward inhibition in the NAc is instrumental in coordinating NAc output by synchronizing the activity of medium spiny projection neurons (MSNs). By negatively regulating glutamatergic transmission onto PV-INs via α2-adrenergic receptors (ARs), NE diminishes feedforward inhibition onto MSNs to promote NAc output. These findings elucidate previously unknown microcircuit mechanisms recruited by the historically overlooked NE system in the NAc.  相似文献   

19.
Neuroadaptations in the nucleus accumbens (NAc) are associated with the development of drug addiction. Plasticity in synaptic strength and intrinsic excitability of NAc medium spiny neurons (MSNs) play critical roles in addiction induced by different classes of abused drugs. However, it is unknown whether morphine exposure influences synaptic strength, intrinsic excitability or both in NAc. Here we show that chronic withdrawal (10 days after the last injection) from repeated morphine exposure elicited potentiation in both glutamatergic synaptic strength and intrinsic excitability of MSNs in NAc shell (NAcSh). The potentiation of synaptic strength was demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), a decrease in the paired-pulse ratio (PPR), and an increase in the ratio of α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR)- to N-methyl-D-aspartate receptors (NMDAR)-mediated currents. The potentiation of intrinsic excitability was mediated by inhibition of the sustained potassium currents via extrasynaptic NMDAR activation. The function of the presynaptic group II metabotropic glutamate receptors (mGluR2/3) was downregulated, enhancing the probability of glutamate release on synaptic terminals during chronic morphine withdrawal. Pretreatment with the mGluR2/3 agonist LY379268 completely blocked potentiation of both synaptic strength and intrinsic excitability. These results suggest that chronic morphine withdrawal downregulates mGluR2/3 to induce potentiation of MSN glutamatergic synapse via increased glutamate release, leading to potentiation of intrinsic excitability. Such potentiation of both synaptic strength and intrinsic excitability might contribute to neuroadaptations induced by morphine application.  相似文献   

20.
Addictive drugs share the ability to increase dopamine (DA) levels and trigger synaptic adaptations in the mesocorticolimbic system, two cellular processes engaged in the early stages of drug seeking. Neurons located in the lateral habenula (LHb) modulate the activity of DA neurons and DA release, and adaptively tune goal-directed behaviors. Whether synaptic modifications in LHb neurons occur upon drug exposure remains, however, unknown. Here, we assessed the influence of cocaine experience on excitatory transmission onto subsets of LHb neurons using a combination of retrograde tracing and ex vivo patch-clamp recordings in mice. Recent evidence demonstrates that AMPA receptors lacking the GluA2 subunit mediate glutamatergic transmission in LHb neurons. We find that cocaine selectively potentiates AMPA receptor-mediated EPSCs in LHb neurons that send axons to the rostromedial tegmental nucleus, a GABAergic structure that modulates the activity of midbrain DA neurons. Cocaine induces a postsynaptic accumulation of AMPA receptors without modifying their subunit composition or single-channel conductance. As a consequence, a protocol pairing presynaptic glutamate release with somatic hyperpolarization, to increase the efficiency of GluA2-lacking AMPA receptors, elicited a long-term potentiation in neurons only from cocaine-treated mice. This suggests that cocaine resets the rules for the induction of synaptic long-term plasticity in the LHb. Our study unravels an early, projection-specific, cocaine-evoked synaptic potentiation in the LHb that may represent a permissive step for the functional reorganization of the mesolimbic system after drug exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号