首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacological, physiological, and behavioral studies suggest that inhibitory GABAergic neurons influence the projection from the midbrain periaqueductal gray matter to the medullary nucleus raphe magnus. The present study used electron microscopic immunocytochemical techniques to examine the morphology and synaptic relationships of GABA-immunoreactive terminals in the ventrolateral periaqueductal gray. These putative GABAergic terminals comprise almost 40% of all axon terminals in the periaqueductal gray. GABA-immunoreactive terminals contain small, clear, pleomorphic or round, vesicles, and 46% also contain some dense-cored vesicles. In some experiments we also used a colloidal gold-conjugated retrograde tracer to label periaqueductal gray neurons that project to the nucleus raphe magnus. About half of the synaptic inputs onto the cell bodies and proximal dendrites of retrogradely labeled neurons are GABA-immunoreactive; these putative GABAergic synapses, which directly control activity in neurons projecting from the periaqueductal gray to the nucleus raphe magnus, might mediate the antinociception-related effects of exogenous GABAA receptor ligands.  相似文献   

2.
Recent studies have demonstrated an important contribution of the A5 noradrenergic cell group of the rostral medulla in the regulation of nociceptive messages at the level of the spinal cord. These noradrenergic controls parallel those arising from the serotonin-containing neurons of the nucleus raphe magnus. In the present study, we used postembedding immunogold staining to identify GABA-immunoreactive terminals that synapse upon identified spinally projecting noradrenergic neurons of the A5 cell group in the rat. A5 projection neurons were identified by Fluoro-Gold transport from the spinal cord; sections containing retrogradely labelled cells were then immunoreacted for tyrosine hydroxylase (TH) to identify the catecholamine-containing, presumed noradrenergic, neurons. Double-labelled A5 cells were intracellularly filled with Lucifer Yellow (LY) and then the LY was photo-oxidized to an electron-dense product. Seven intracellularly filled TH-immunoreactive projection neurons were studied with postembedding immunocytochemistry. Each A5 neuron received a significant GABA-immunoreactive terminal input. Out of a pooled total of 151 terminal profiles found in apposition to intracellularly labelled somatic and dendritic profiles, 31 (20.5%) were GABA-immunoreactive. The proportion of GABA-immunoreactive terminals that contacted somatic profiles (12/72; 17%) was similar to the proportion that contacted TH-labelled dendritic profiles (19/79; 24%). There was a discernible synaptic specialization in about 50% of the labelled terminals that contacted the TH projection neuron. Both symmetric and asymmetric synaptic specializations were found. Labelled terminals contained round or pleimorphic vesicles, but not flat vesicles; many also contained dense-core vesicles. Our results indicate that noradrenergic neurons of the A5 cell group, which contribute to both antinociceptive and cardiovascular controls through their projection to the spinal cord, are regulated by local GABAergic, presumably inhibitory, mechanisms. Whether the initiation of A5 neuron activity results from a lifting of tonic GABAergic inhibitory control, as has been proposed for the neurons of the nucleus raphe magnus, remains to be determined.  相似文献   

3.
The fact that GABA receptor agonists and antagonists influence nociceptive thresholds when microinjected into the rostroventral medulla or in the spinal cord may reflect the involvement of GABAergic neuronal elements in endogenous antinociceptive pathways. In the present study we used immunocytochemistry and retrograde tract tracing to investigate the contribution of GABAergic projection neurons to the antinociceptive network linking the midbrain periaqueductal gray matter (PAG), the nucleus raphe magnus (NRM), and the spinal cord dorsal horn. The tracer, WGAapoHRP-Au was injected into either the NRM or the spinal cord and the distribution of labeled neurons in sections of the PAG and medulla, respectively, was studied. The same sections were immunostained to demonstrate GABA-immunoreactive neurons. Although GABA-immunoreactive neurons were abundant in the PAG, only 1.5% were retrogradely labeled from the NRM. Similarly, very few GABA-immunoreactive neurons within the cytoarchitectural boundaries of the NRM were retrogradely labeled from the spinal cord. A much higher proportion of GABA-immunoreactive neurons in the region lateral to the NRM, however, were retrogradely labeled from the spinal cord. Eighteen percent of GABA-immunoreactive neurons were retrogradely labeled in the nucleus reticularis paragigantocellularis; conversely, 15% of the retrogradely labeled neurons in this region were GABA-immunoreactive. These results indicate that GABAergic projections constitute a very minor component of the PAG-NRM-spinal cord pathway; however, there is a significant contribution of GABAergic neurons to the spinal projections that originate lateral to the NRM. The majority of GABAergic neurons in the PAG and NRM are presumed to be inhibitory interneurons that directly or indirectly regulate activity in efferent pathways from these regions.  相似文献   

4.
In this triple-label, electron microscopic study in the rat, a lesion of the midbrain periaqueductal gray (PAG) was made so that the distribution and targets of degenerating PAG terminals could be identified in the medullary nucleus raphe magnus (NRM). Spinally projecting NRM neurons were identified by the retrograde transport of wheat germ agglutinin-horseradish peroxidase from the cervical cord. We also used immunocytochemistry to define the subpopulation of NRM neurons which were serotonin-immunoreactive. We report that both serotonergic and non-serotonergic neurons of the medulla, which project to the spinal cord, receive monosynaptic inputs from the PAG.  相似文献   

5.
An antiserum against the inhibitory transmitter substance gamma-aminobutyric acid (GABA) was used to investigate the distribution of GABAergic nerve terminals and cell bodies in the lateral cervical nucleus (LCN) of the cynomolgus monkey. Light microscopic immunohistochemistry demonstrated GABA-immunoreactive puncta, suggestive of nerve terminals, scattered throughout the LCN. The terminal-like profiles are often present along the somata of unlabeled neurons, but most are located in the neuropil. GABA-immunoreactive neurons are present in the LCN, but constitute a very small number of the LCN neurons. Electron microscopy showed that the GABA-positive neurons are small with a relatively large nucleus. They are contacted by few somatic boutons. Numerous GABA-immunoreactive terminals containing densely packed round to oval synaptic vesicles were also found. Most GABA-positive terminals make synaptic contact with dendrites, but synapses with cell bodies are also present. Synaptic contacts between labeled and unlabeled terminals were not observed. Some GABA-positive terminals make contact with GABA-positive neurons. The present findings suggest that GABA is a major inhibitory transmitter substance in the LCN of the monkey. However, in comparison with other somatosensory relay nuclei, there are few GABA-immunoreactive neurons in the LCN. This may imply that the GABA-positive neurons branch extensively in the LCN or that an extrinsic source of GABAergic input exists.  相似文献   

6.
The ventrolateral portion of the periaqueductal gray (PAG) is one brain region in which ligands of the mu-opioid receptor (MOR) produce analgesia. In the PAG, MOR ligands are thought to act primarily on inhibitory [e.g., gamma-aminobutyric acidergic (GABAergic)] neurons to disinhibit PAG output rather than directly on medullary-projecting PAG neurons. In this study, the ultrastructural localization of MOR immunolabeling was examined with respect to either GABAergic PAG neurons or PAG projection neurons that were labeled retrogradely from the rostral ventromedial medulla. Immunoreactivity for MOR and GABA often coexisted within dendrites. Dual-labeled profiles accounted for subpopulations of dendrites containing immunoreactivity for either MOR (65 of 145 dendrites; 45%) or GABA (65 of 183 dendrites; 35%). In addition, nearly half of PAG neuronal profiles (148 of 344 profiles) that were labeled retrogradely from the ventromedial medulla contained MOR immunoreactivity. MOR was distributed equally among retrogradely labeled neuronal profiles in the lateral and ventrolateral columns of the caudal PAG. With respect to the presynaptic distribution of MOR, approximately half of MOR-immunolabeled axon terminals (35 of 69 terminals) also contained GABA. Some MOR and GABA dual-immunolabeled axon terminals contacted unlabeled dendrites (11 of 35 terminals), whereas others contacted GABA-immunoreactive dendrites (15 of 35 terminals). Furthermore, axon terminals synapsing on medullary-projecting PAG neurons sometimes contained immunoreactivity for MOR. These data support the model that MOR ligands can act by inhibiting GABAergic neurons, but they also provide evidence that MOR ligands may act directly on PAG output neurons. In addition, MOR at presynaptic sites could affect both GABAergic neurons and output neurons. Thus, the disinhibitory model represents only partially the potential mechanisms by which MOR ligands can modulate output of the PAG.  相似文献   

7.
Using a preembedding double immunoreactive technique by immunostaining with antirat beta-endorphin and antisynthetic glutamic acid decarboxylase antisera sequentially, the synaptic relationships between beta-endorphinergic neuronal fibers and GABAergic neurons in the dorsal raphe nucleus of the rat were examined at the ultrastructural level. Although both beta-endorphin-like immunoreactive fibers and glutamic acid decarboxylase-like immunoreactive neurons can be found in the mediodorsal and medioventral parts of the dorsal raphe nucleus, the synapses between them were found only in the mediodorsal part. Most of the beta-endorphin-like immunoreactive neuronal fibers contained many dense-cored vesicles. The synapses made by beta-endorphin-like immunoreactive neuronal axon terminals on glutamic acid decarboxylase-like immunoreactive neurons were both symmetrical and asymmetrical, with the latter predominant, especially in the axo-dendritic synapses. Perikarya with beta-endorphin-like immunoreactivity were found only in the ventrobasal hypothalamus. These findings suggest the possibility that the beta-endorphin-producing neurons in the ventrobasal hypothalamus could influence GABAergic neurons in the dorsal raphe nucleus directly by synaptic relationships.  相似文献   

8.
In order to study the organization of the rostral medulla of the cat and its contribution to pain control mechanisms, we have examined the afferent connections of the midline nucleus raphe magnus (NRM), the laterally located nucleus reticularis magnocellularis (Rmc), and the nucleus reticularis gigantocellularis (Rgc) located dorsal to Rmc. Iontophoretic injections of HRP were made into the three regions; the distribution of retrogradely labeled neurons in brainstem and spinal cord was then mapped. While significant differences characterize the source of afferents to Rgc and NRM/Rmc, there is little to distinguish that between NRM and Rmc. The predominant spinal projection is to Rgc; fewer labeled neurons were recorded after injections into Rmc. In contrast, no significant direct spinal projection to NRM was found. All three regions receive input from widespread areas within the medullary and pontine reticular formation. The most pronounced differences in the distribution of retrogradely labeled neurons were found in the midbrain. The major projection to both NRM and Rmc derives from the periaqueductal gray (PAG) and from the adjacent nucleus cuneiformis. Labeled cells are concentrated in the dorsal and lateral PAG; few are found in the ventrolateral PAG. In contrast, Rgc receives few afferents from the PAG; however, after Rgc injections, many cells were recorded in the deep layers of the contralateral tectum. None of the injection sites produced significant labeling of the catecholamine-rich dorsolateral pontine tegmentum or of the nucleus raphe dorsalis. The demonstration of significant PAG projections to NRM/Rmc provides anatomical evidence for the hypothesis that opiate and stimulation-produced analgesia involves connections from PAG to neurons of NRM and Rmc which, in turn, inhibit spinal nociceptors.  相似文献   

9.
Experiments were performed in cats anesthetized with α-chloralose to examine the effects of stimulating in the periaqueductal gray (PAG) and nucleus raphe magnus (NRM) on the responses of spinocervical cells and unidentified ascending projection neurons to non-noxious peripheral stimuli. Peripheral stimuli consisted of low amplitude sinusoidal displacements applied to either the glabrous skin or the hairy skin of the neuron's receptive field. Stimulating in either the periaqueductal gray or nucleus raphe magnus reduced the impulse activity of most neurons in both groups. By applying brainstem stimuli at various phases of the sinusoidal peripheral stimulus, it was demonstrated that the effects of stimulating either the PAG or NRM on the responses of both types of neurons was dependent on the timing of the electrical stimuli relative to the peripheral input. The effects of stimulating in the PAG and NRM on the responses of these cells to non-noxious stimuli were reversibly blocked by naloxone. It was concluded that stimulating in the nucleus raphe magnus and in the periaqueductal gray can produce dramatic modifications in the responses of spinocervical cells and unidentified ascending projection neurons to non-noxious peripheral stimuli, suggesting a role for these descending systems in non-noxious information processing.  相似文献   

10.
Although the basolateral nucleus (BL) of the amygdala is known to contain an abundance of gamma-aminobutyric acid (GABA)ergic neurons that regulate the amygdaloid projection neurons and influence storage and consolidation of memory, it remains to be determined what type of neuronal input controls GABAergic neurons in the BL. We examined the synapses that GABAergic neurons form with GABAergic and noradrenergic neurons and terminals with unknown transmitters by double-labeling immunoelectron microscopy using anti-GABA and dopamine-beta-hydroxylase (DBH) antisera. The medium and small dendrites of the GABAergic neurons were shown to receive symmetric, inhibitory-type synapses from GABAergic axon terminals and asymmetric, excitatory-type synapses from noradrenergic axon terminals. Each segment of the GABAergic neurons from perikarya to dendritic spines received both symmetric and asymmetric synapses from unlabeled axon terminals of various forms and sizes. The incidence rates of the two types of synapses were almost identical. Our results suggest that GABAergic neurons in the BL of the rat amygdala might be affected by the excitatory influence of the noradrenergic system and the inhibitory influence of the GABAergic system. Furthermore, these neurons are also strongly influenced by both excitatory and inhibitory-type synapses from neuronal systems other than the GABAergic and noradrenergic systems.  相似文献   

11.
Although the reciprocal interconnections between the prefrontal cortex and the mediodorsal nucleus of the thalamus (MD) are well known, the involvement of inhibitory cortical interneurons in the neural circuit has not been fully defined. To address this issue, we conducted three combined neuroanatomical studies on the rat brain. First, the frequency and the spatial distribution of synapses made by reconstructed dendrites of nonpyramidal neurons were identified by impregnation of cortical cells with the Golgi method and identification of thalamocortical terminals by degeneration following thalamic lesions. Terminals from MD were found to make synaptic contacts with small dendritic shafts or spines of Golgi-impregnated nonpyramidal cells with very sparse dendritic spines. Second, a combined study that used anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L) and postembedding gamma-aminobutyric acid (GABA) immunocytochemistry indicated that PHA-L-labeled terminals from MD made synaptic junctions with GABA-immunoreactive dendritic shafts and spines. Nonlabeled dendritic spines were found to receive both axonal inputs from MD with PHA-L labelings and from GABAergic cells. In addition, synapses were found between dendritic shafts and axon terminals that were both immunoreactive for GABA. Third, synaptic connections between corticothalamic neurons that project to MD and GABAergic terminals were investigated by using wheat germ agglutinin conjugated to horseradish peroxidase and postembedding GABA immunocytochemistry. GABAergic terminals in the prelimbic cortex made symmetrical synaptic contacts with retrogradely labeled corticothalamic neurons to MD. All of the synapses were found on cell somata and thick dendritic trunks. These results provide the first demonstration of synaptic contacts in the prelimbic cortex not only between thalamocortical terminals from MD and GABAergic interneurons but also between GABAergic terminals and corticothalamic neurons that project to MD. The anatomical findings indicate that GABAergic interneurons have a modulatory influence on excitatory reverberation between MD and the prefrontal cortex.  相似文献   

12.
By means of immunohistochemistry for gamma-aminobutyric acid receptor B subtype (GABA(B)R), the origins of GABA(B)R-like immunoreactive (GABA(B)R-LI) terminals in the rat spinal dorsal horn were investigated. After dorsal root rhizotomy and/or spinal cord hemisection, the densities of GABA(B)R-LI terminals were remarkably depleted in the ipsilateral superficial dorsal horn of relevant segments, whereas GABA(B)R-LI neurons and sparsely distributed GABA(B)R-LI terminals remained. After injection of Fluoro-Gold (FG) into the left side of superficial lumbar dorsal horn, FG retrograde-labeled neurons were mainly observed in the ipsilateral rostral ventromedial medulla (RVM) and brainstem raphe nuclei. Some of the FG-labeled neurons, especially in the RVM, exhibited GABA(B)R-like immunoreactivity. Additionally, immunofluorescence histochemical double-staining revealed that the majority of GABA(B)R-LI neurons in the periaqueductal gray (PAG), RVM and brainstem raphe nuclei showed 5-hydroxytryptamine (5-HT)-like immunoreactivity. The present study morphologically proves that GABA(B)R-LI terminals in the spinal dorsal horn originate from peripheral afferents, intrinsic neurons and supraspinal structures; GABA(B)R and 5-HT co-exist in many neurons in the PAG, RVM and brainstem raphe nuclei. Considering that PAG, RVM, brainstem raphe nuclei and spinal dorsal horn are important structures involved in the pain modulation, we suggest that the descending pain modulation system might be mediated, at least in part, by GABA(B)R.  相似文献   

13.
A double immunocytochemical method combining the preembedding PAP technique and the postembedding immunogold technique was used to examine interactions between GABAergic and serotonergic neurons in the same tissue sections of the dorsal raphe nucleus of the rat. A large number of immunogold stained GABAergic axon terminals were found to be presynaptic to strongly PAP immunostained serotonergic perikarya and dendrites. The types of synapses were mostly symmetrical although a few asymmetrical ones were also found. No axo-axonic synapse between the GABAergic axon terminals and the serotonergic neuronal profiles was found. These results suggest that GABAergic neurons could modulate serotonergic neurons in the dorsal raphe nucleus through synaptic relations.  相似文献   

14.
A double immunocytochemical method combining the preembedding avidin-biotin-peroxidase-complex technique and the postembedding immunogold technique was used to examine synaptic interactions between GABAergic and neurotensin-containing neurons in the same tissue sections of the dorsal raphe nucleus of the rat. Whereas the neurotensin-like immunoreactive perikarya rarely received synapses from GABA-like immunostaining axon terminals, the neurotensin-like immunoreactive dendrites frequently received synapses from GABA-like immunoreactive neurons. These results suggest that GABAergic neurons could modulate neurotensinergic neurons in the dorsal raphe nucleus through synaptic relations. The immunocytochemically identified local synaptic circuit in the dorsal raphe was discussed.  相似文献   

15.
Capsaicin augments synaptic transmission in the rat medial preoptic nucleus   总被引:2,自引:0,他引:2  
Functional imaging studies and clinical evidence suggest that structures in the brainstem contribute to migraine pathophysiology with a strong association between the brainstem areas, such as periaqueductal gray (PAG), and the headache phase of migraine. Stimulation of the superior sagittal sinus (SSS) in humans evokes head pain. Second-order neurons in the trigeminal nucleus that are activated by SSS stimulation can be inhibited by PAG stimulation. The present study was undertaken to identify pontine and medullary structures that respond to noxious stimulation of the superior sagittal sinus or to ventrolateral PAG stimulation. The distribution of neurons expressing the protein product (fos) of the c-fos immediate early gene were examined in the rostral medulla and caudal pons of the cat after (i) sham, (ii) stimulation of the superior sagittal sinus, (iii) stimulation of the superior sagittal sinus with PAG stimulation, or (iv) stimulation of the PAG alone. The structures examined for fos were the trigeminal nucleus, infratrigeminal nucleus, reticular nuclei, nucleus raphe magnus, pontine blink premotor area, and superior salivatory nucleus. Compared with all other interventions, fos expression was significantly greater in the trigeminal nucleus and superior salivatory nucleus after SSS stimulation. After PAG with SSS stimulation, on the side ipsilateral to the site of PAG stimulation, fos was significantly greater in the nucleus raphe magnus. These structures are likely to be involved in the neurobiology of migraine.  相似文献   

16.
A combination of three different labels was used to demonstrate synapses between three types of neurons within the glomeruli: 1) antennal receptor cells, 2) γ-aminobutyric acid (GABA)-immunoreactive neurons, and 3) uniglomerular projection neurons. Receptor cell axons were experimentally severed and caused to degenerate; uniglomerular projection neurons, a subgroup of glomerular output neurons, were labeled by intracellular horseradish peroxidase (HRP) injection and GABA-containing neurons by postembedding immunogold staining. The following synaptic connections were identified: 1) Receptor cell axons form monosynaptic contacts in a dyadic fashion onto a dendritic process of a uniglomerular projection neuron and in addition onto a GABA-immunoreactive neuron. 2) Receptor cell axons form polysynaptic connections with dendrites of uniglomerular projection neurons via GABA-immunoreactive neurons. 3) GABA-immunoreactive neurons form dyadic output synapses onto receptor cell axons and in addition onto projection neuron dendrites. These findings provide further evidence that signal transfer from receptor cells onto uniglomerular projection neurons is mediated by two different paths: first, a monosynaptic and presumably excitatory route and, second, an inhibitory polysynaptic route via GABAergic, most likely multiglomerular interneurons. The output synapses of GABA-immunoreactive neurons onto both receptor cells and uniglomerular projection neurons are assumed to exert control functions in regulating the neuronal activity within the glomeruli. J. Comp. Neurol. 378:307–319, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Pre-embedding immunoperoxidase (for serotonin) and postembedding immunogold (for γ-aminobutyric acid; GABA) labelling were combined at light and electron microscopic levels to demonstrate the neuronal targets of serotonin (5-HT) afferents in the ventral posterior lateral nucleus (VPL) of the cat thalamus. 5-HT-immunoreactive fibres and terminal varicosities were found in close proximity to GABA-immunoreactive interneurons and non-GABAergic relay neurons. Ultrastructurally, the vast majority of 5-HT terminals made close membrane contacts without overt membrane specializations with GABAergic axon terminals, GABAergic presynaptic dendrites and GABAergic somata. A very small number of 5-HT terminals formed typical asymmetrical synapses with GABAergic presynaptic dendrites and with dendritic shafts of relay cells. Some 5-HT terminals participated with the presynaptic dendrites in triadic synaptic arrangements. These findings suggest a dual innervation pattern by 5-HT afferents in VPL and the release of 5-HT in large part at sites not associated with morphologically detectable synapses.  相似文献   

18.
The posterior lateral hypothalamus (PLH) has long been considered crucial to normal wakefulness while the ventral part of the oral pontine reticular nucleus (vRPO) is involved in the generation and maintenance of rapid eye movement (REM) sleep. However, to date, there is no information on the ultrastructure or neurotransmitter content of the hypothalamo-reticular projection. In the present study, we examined the morphology and synaptic organization of PLH terminals in the vRPO using PLH injections of biotinylated dextran amine (BDA) as well as of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Since some PLH neurons are GABAergic, we used a post-embedding immunogold technique to determine whether any anterogradely labeled terminals were GABA-immunopositive. Electron microscope analyses revealed a variety of ultrastructural features in the vRPO anterogradely labeled terminals. Although most labeled terminals (over 63%) formed symmetric synapses on vRPO somata and dendrites, others made asymmetric synapses on vRPO dendrites. The relative percentages of labeled terminals observed on large, medium and small diameter dendrites were 44.3 +/- 5.5%, 35.3 +/- 3.0% and 20.4 +/- 3.1%, respectively. Finally, post-embedding immunogold technique revealed that there are GABA-immunopositive and immunonegative components to this projection, indicating that GABA is one of the transmitters used by the PLH cells that project to the vRPO. Furthermore, most, if not all, of the GABA-labeled axon terminals formed symmetric synapsis. In conclusion, our results suggest that the PLH could modulate the physiological responses of vRPO neurons through a GABAergic pathway as well as by other inhibitory and/or excitatory pathways. Activation of the descending PLH GABAergic projection may inhibit the REM sleep-inducing neurons within the vRPO and thus contribute to the suppression of REM sleep activation during wakefulness.  相似文献   

19.
The preembedding double immunoreaction method was used to study interrelations of enkephalinergic and GABAergic neuronal elements in the dorsal raphe nucleus of the Wistar albino rat. The enkephalin-like neuronal elements were immunoreacted by the peroxidase-antiperoxidase method and silver-gold intensified, which showed strongly and was specific. The GABA-like immunoreactive neurons were immunoreacted by the peroxidase-antiperoxidase method only. GABA-like neural somata were postsynaptic to both the enkephalin-like immunoreactive and the non-immunoreactive axon terminals. The enkephalin-like immunoreactive axon terminals were also found to synapse GABA-like immunoreactive dendrites. The GABA-like immunoreactive neuronal elements were also found to receive synapses from other non-immunoreactive as well as GABA-like immunoreactive axon terminals. Almost all of the synapses appeared to be asymmetrical. Possible functional activity of interactions among the enkephalinergic, GABAergic, and serotonergic neuronal elements in the dorsal raphe nucleus are discussed.  相似文献   

20.
Synapses within deutocerebral glomeruli between GABA-immunoreactive, putatively inhibitory local interneurons and uniglomerular projection (output) neurons were demonstrated by means of a combination of GABA-immunogold labeling and intracellular HRP injection. The following connections were identified. 1) GABA-immunoreactive (GABAir) neurons form output synapses in a dyadic fashion onto a uniglomerular projection neuron and, in addition, a second GABAir neuron. A uniglomerular projection neuron in turn forms dyadic output synapses onto two GABAir neurons. Several examples of reciprocal connections have been identified between, first, GABAir neurons and uniglomerular projection neurons, and, second, GABAir neurons themselves. 2) GABAir neurons are serially connected with uniglomerular projection neurons via interposed GABAir processes. In some cases, also the first GABAir process of such a polysynaptic connection formed an output synapse onto the projection neuron. Such serial connections may form the structural basis for both, the feedforward inhibition as well as the feedforward disinhibition of uniglomerular projection neurons by GABAergic neurons. The reciprocal contacts may serve as control devices that modulate the output activity of the projection neurons. Synapse 29:1–13, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号