首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brucellae are gram-negative, facultative intracellular bacteria which are one of the most common causes of abortion in animals. In addition, they are the source of a severe zoonosis. In this trial, we evaluated the effect of oral inoculation of Brucella abortus RB51 in mice against a challenge infection with B. abortus 2308. First, we showed that a gastric acid neutralization prior to the oral inoculation contributed to a more homogeneous and consistent infection with both vaccine strain B. abortus RB51 and virulent strain B. abortus 2308. Successively, we assessed the clearance and the immune response following an oral infection with B. abortus RB51. Oral inoculation gave a mild infection which was cleared 42 days after infection, and it induced a delayed humoral and cell-mediated immune response. Finally, we immunized mice by oral inoculation with B. abortus RB51, and we challenged them with the virulent strain B. abortus 2308 by an oral or intraperitoneal route 42 days after vaccination. Oral inoculation of B. abortus RB51 was able to give protection to mice infected with the virulent strain B. abortus 2308 by the oral route but not to mice infected intraperitoneally. Our results indicate that oral inoculation of mice with B. abortus RB51 is able to give a protective immunity against an oral infection with virulent strains, and this protection seems to rely on an immune response at the mucosal level.  相似文献   

2.
Killing of Brucella abortus by bovine serum   总被引:1,自引:5,他引:1       下载免费PDF全文
Studies of the serum bactericidal system in bovine brucellosis were undertaken to investigate the role of the humoral immune response in protection of cattle against the facultative intracellular parasite Brucella abortus. Fresh sera from normal control cattle, infected cattle, and cattle immunized with B. abortus cell envelopes were collected before treatment and during the course of immunization or infection. Normal fresh bovine serum or fresh agammaglobulinemic serum from colostrum-deprived calves was effective in killing smooth virulent B. abortus 2308, but rough strains RB51 (a rough mutant of strain 2308) and 45/20 were much more sensitive to serum. The difference in susceptibility to serum was shown to be correlated with differences in lipopolysaccharide chemotype, with the more resistant strain 2308 having O polysaccharide and the more susceptible strains 45/20 and RB51 lacking O side chains. By treatment of fresh serum with MgCl2 and EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] killing was shown to occur via the classical pathway of complement activation. When antibody to B. abortus was present, killing of strain RB51 increased but killing of smooth strain 2308 decreased. The earliest antibody response in serum from infected animals did not interfere with killing. When affinity-purified bovine immunoglobulins specific for B. abortus smooth lipopolysaccharide were added to fresh normal bovine serum, immunoglobulin G1 (IgG1) and IgG2 isotypes blocked killing but IgM and IgA isotypes did not. Thus, it appears that serum from previously unexposed animals or animals early during infection can kill smooth B. abortus, an appropriate defense mechanism before the organism becomes intracellular. At later stages of infection, blocking antibodies predominate.  相似文献   

3.
In BALB/c mice antibodies specific for the O polysaccharide (OPS) as well as T lymphocytes mediate protective immunity to Brucella abortus. We performed quantitative analyses of isotypes of OPS antibodies generated during primary infections, and tested the protective qualities of antisera at successive stages of infection against B. abortus strain 2308, representative of the wild type, and attenuated vaccine strain 19. IgM antibodies predominated during the first 3-4 weeks of infection. IgG3 antibodies increased slowly for the first 3 weeks but then rose rapidly and persisted at high levels (> 300 micrograms/ml). IgG1, IgG2a and IgG2b antibodies had increased slightly by week 4 and then remained at low to moderate levels (< 70 micrograms/ml). Week 2 serum pools (IgM high, IgG3 low or undetectable) transferred substantial protection against 2308 (> or = 1 log unit) which increased relatively little (to 1.2-1.5 log units) with later sera that were high in IgG antibodies. In contrast, week 2 sera conferred low levels of protection against 19 (< 0.6 log units), but protection was dramatically increased (to > or = 2.3 log units) with sera obtained 1 week later that had slightly increased IgG antibodies. Monoclonal IgM antibodies also provided better protection against 2308 than 19, while monoclonal IgG3 antibodies protected much better against 19. Strain 19 opsonized with antibodies taken at any stage of infection was killed within normal macrophages, whereas comparably opsonized 2308 underwent intracellular replication. Phagocytosis of 2308 was better than of 19 when brucellae were opsonized with either polyclonal IgM or IgG3 antibodies, and the difference between strains was more extreme following IgM opsonization. The data suggest an explanation for differences in the growth curves of 2308 and 19 in spleens of BALB/c mice. Higher numbers achieved by 19 at week 2 could result from extracellular replication owing to ineffectual opsonization by IgM antibodies, while the precipitous decline of 19 beginning at week 3 could be caused by the increase in more effective IgG3 opsonins that facilitate its rapid intracellular destruction.  相似文献   

4.
The BALB/c mouse was selected as a model for infection with Brucella abortus on the basis of protracted nonclinical infection produced by strain 2308, virulent for cattle, and relatively rapid clearance of strain 19, an attenuated strain used to vaccinate cattle. Protection in mice vaccinated with strain 19 was compared with that obtained with nonliving vaccines at early (1 week) and later (4 weeks) intervals after challenge with strain 2308 and assessed by enumeration of B. abortus organisms in the spleen. Mice challenged 4 weeks after vaccination with strain 19 exhibited significant protection at 1 and 4 weeks postinfection (p.i.), with an increased magnitude of protection at the later time. When challenged 6 weeks after vaccination with strain 19, the level of protection diminished between 1 and 4 weeks p.i. and at the later time was not always significantly different from controls. Mice immunized 4 weeks earlier with nonliving vaccines in mineral oil with t trehalose dimycolate (TDM) and muramyl dipeptide (MDP) demonstrated patterns of protection similar to those obtained following the 6 week vaccination-challenge interval with strain 19. Vaccination with cell envelopes derived from strain 2308 produced equivalent protection at 1 week p.i. whether administered in phosphate-buffered saline, incomplete Freund adjuvant, or the TDM and MDP adjuvant. Equivalent protection also followed vaccination with strain 2308 killed whole cells, cell envelopes, or outer membrane proteins in phosphate-buffered saline or in the TDM and MDP adjuvant. The TDM and MDP adjuvant alone induced nonspecific resistance, which peaked at 1 day p.i. and was still present at 1 week p.i., although by this time its magnitude was significantly less than the protection induced by antigen combined with the adjuvant. These data, together with the results of antibody assays and passive and adoptive transfer studies, suggested that protection at 1 week p.i. could be accounted for largely by an effect of O antibodies, with T cell-mediated immune responses having a subsidiary role.  相似文献   

5.
J Lin  L G Adams    T A Ficht 《Infection and immunity》1996,64(10):4396-4400
Western blot (immunoblot) analysis of sera from cattle vaccinated with Brucella abortus S19 exhibit an elevated serologic response to Hsp62, the GroEL homolog (BaGroEL). Serologic screening of individual cows vaccinated with B. abortus S19 revealed no correlation between the immune response to BaGroEL and protection against a challenge with virulent organisms. The humoral immune response to BaGroEL was restricted to a region of the mature protein which mapped to amino acids 317 to 355 and may represent a useful diagnostic tool for monitoring exposure to B. abortus. Immunity to a challenge with virulent B. abortus S2308 was not observed in the BaGroEL vaccinated mouse model.  相似文献   

6.
A single vaccination of mice with a complex of porin and smooth lipopolysaccharide (porin-S-LPS) extracted from virulent Brucella abortus 2308 provided significant protection (P less than 0.01 to P less than 0.001) against challenge with the same strain, equivalent to that achieved by vaccination with living attenuated B. abortus 19. The porin-S-LPS vaccine given without adjuvant or in several adjuvants (trehalose dimycolate and muramyl dipeptide; the pluronic polymer L-121 and muramyl dipeptide; or complexed with Quil A in immunostimulating complexes) provided equivalent protection. In contrast, one vaccination with porin complexed with rough LPS (porin-R-LPS) from a rough mutant of strain 2308 provided no protection with any adjuvant tested. In one experiment, two inoculations with the porin-R-LPS resulted in a low level of protection, probably owing to priming of the animals for production of O-polysaccharide-specific antibodies. However, one vaccination with rough-strain porin covalently bound to purified O polysaccharide conferred protection equal to that obtained with natural complexes of porin-S-LPS or with living strain 19. A synthetic vaccine containing long chains of O polysaccharide was more effective than one prepared with short chains. Protective vaccines caused the formation of increased concentrations of circulating O-polysaccharide-specific antibodies, although there were individual exceptions to the quantitative association between O-polysaccharide-specific antibodies and protection. Antibodies specific for porin or R-LPS were found in negligible quantities in vaccinated mice. These results provide additional evidence that the O polysaccharide will constitute an essential component of an effective subcellular vaccine against B. abortus and that O-polysaccharide-specific antibodies play an important role in protective immunity in brucellosis.  相似文献   

7.
Null cyclic beta-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic beta-1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response.  相似文献   

8.
Vaccination of BALB/c mice with live Brucella abortus RB51, a stable rough mutant, produced protection against challenge with virulent strains of Brucella abortus, Brucella melitensis, and Brucella ovis. Passive-transfer experiments indicated that vaccinated mice were protected against B. abortus 2308 through cell-mediated immunity, against B. ovis PA through humoral immunity, and against B. melitensis 16M through both forms of immunity. Live bacteria were required for the induction of protective cell-mediated immunity; vaccination with whole killed cells of strain RB51 failed to protect mice against B. abortus 2308 despite development of good delayed-type hypersensitivity reactions. Protective antibodies against the heterologous species were generated in vaccinated mice primarily through anamnestic responses following challenge infections. Growth of the antigenically unrelated bacterium Listeria monocytogenes in the spleens of vaccinated mice indicated that nonspecific killing by residual activated macrophages contributed minimally to protection. These results encourage the continued investigation of strain RB51 as an alternative vaccine against heterologous Brucella species. However, its usefulness against B. ovis would be limited if, as suggested here, epitopes critical for protective cell-mediated immunity are not shared between B. abortus and B. ovis.  相似文献   

9.
The Brucella AMOS PCR assay was previously developed to identify and differentiate specific Brucella species. In this study, an abbreviated Brucella AMOS PCR test was evaluated to determine its accuracy in differentiating Brucella abortus into three categories: field strains, vaccine strain 19 (S19), and vaccine strain RB51/parent strain 2308 (S2308). Two hundred thirty-one isolates were identified and tested by the conventional biochemical tests and Brucella AMOS PCR. This included 120 isolates identified as B. abortus S19, 9 identified as B. abortus strain RB51, 57 identified as B. abortus biovar 1, 15 identified as B. abortus bv. 2, 1 identified as B. abortus bv. 2 (M antigen dominant), 7 identified as B. abortus bv. 4, and 22 identified as B. abortus S2308 and isolated from experimentally infected cattle. The Brucella AMOS PCR correctly identified each isolate as RB51/S2308, S19, or a field strain of Brucella.  相似文献   

10.
M G Stevens  S C Olsen    G W Pugh  Jr 《Infection and immunity》1995,63(8):3199-3205
Mice vaccinated with Brucella abortus 19 (S19) or RB51 (SRB51) had spleen cells which proliferated in response to proteins of 32, 27, 18, and < 18 kDa but not in response to proteins of 106, 80, and 49 kDa from B. abortus 2308 (S2308) following vaccination and challenge infection with S2308. Spleen cells from mice vaccinated with S19 but not with SRB51 had increased proliferation in response to S2308 lipopolysaccharide (LPS) following challenge infection with S2308. We previously reported that mice vaccinated with S19 or SRB51, which were analyzed in the current study, have increased resistance to infection with S2308 and that only mice vaccinated with S19 produce antibody to S2308 LPS (M. Stevens, S. Olsen, G. Pugh, Jr., and D. Brees, Infect. Immun. 63:264-270, 1995). The results from our current and previous studies support the contention that vaccination of mice with S19 or SRB51 induces protection from infection with S2308 by cell-mediated immune responses to the same immunodominant (32, 27, 18, and < 18 kDa) protein antigens of S2308. In addition, the absence of S2308 LPS-responsive spleen cells and antibody to S2308 LPS in mice vaccinated with SRB51 suggests that immune responses to LPS have no role in SRB51-induced protective immunity.  相似文献   

11.
znuA is known to be an important factor for survival and normal growth under low Zn(2+) concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella abortus. Using the B. melitensis 16 M genome sequence, primers were designed to construct a B. abortus deletion mutant. A znuA knockout mutation in B. abortus 2308 (DeltaznuA) was constructed and found to be lethal in low-Zn(2+) medium. When used to infect macrophages, DeltaznuA B. abortus showed minimal growth. Further study with DeltaznuA B. abortus showed that its virulence in BALB/c mice was attenuated, and most of the bacteria were cleared from the spleen within 8 weeks. Protection studies confirmed the DeltaznuA mutant as a potential live vaccine, since protection against wild-type B. abortus 2308 challenge was as effective as that obtained with the RB51 or S19 vaccine strain.  相似文献   

12.
Vaccination against Brucella infections in animals is usually performed by administration of live attenuated smooth B. abortus strain S19 and B. melitensis strain Rev1. They are proven effective vaccines against B. abortus in cattle and against B. melitensis and B. ovis in sheep and goats, respectively. However, both vaccines have the main drawback of inducing O-polysaccharide-specific antibodies that interfere with serologic diagnosis of disease. In addition, they retain residual virulence, being a cause of abortion in pregnant animals and infection in humans. To overcome these problems, one approach is to develop defined rough mutant Brucella strains lacking O antigen of lipopolysaccharide. B. abortus rough strain RB51, a rifampin-resistant mutant of virulent strain B. abortus 2308, is used as a vaccine against B. abortus infection in cattle in some countries. However, RB51 is not effective in sheep, and there is only preliminary evidence that it is effective in goats. In this study, we tested the efficacies of six rifampin-resistant rough strains of B. melitensis in protecting BALB/c mice exposed to B. melitensis infection. The protective properties, as well as both humoral and cellular immune responses, were assessed in comparison with those provided by B. melitensis Rev1 and B. abortus RB51 vaccines. The results indicated that these rough mutants were able to induce a very good level of protection against B. melitensis infection, similar to that provided by Rev1 and superior to that of RB51, without inducing antibodies to O antigen. In addition, all B. melitensis mutants were able to stimulate good production of gamma interferon. The characteristics of these strains encourage further evaluation of them as alternative vaccines to Rev1 in primary host species.  相似文献   

13.
This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). Intramuscular injection of plasmid DNA carrying the SOD gene (pcDNA-SOD) into BALB/c mice elicited both humoral and cellular immune responses. Animals injected with pcDNA-SOD developed SOD-specific antibodies which exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. In addition, the DNA vaccine elicited a T-cell-proliferative response and also induced the production of gamma interferon, but not interleukin-10 (IL-10) or IL-4, upon restimulation with either recombinant SOD or crude Brucella protein, suggesting the induction of a typical T-helper-1-dominated immune response in mice. The pcDNA-SOD (but not the control vector) induced a strong, significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308; the level of protection was similar to the one induced by B. abortus vaccine strain RB51. Altogether, these data suggest that pcDNA-SOD is a good candidate for use in future studies of vaccination against brucellosis.  相似文献   

14.
Immune and pathologic responses were measured for 20 weeks after infection of mice with Brucella abortus 19, RB51, or 2308. Live bacteria and bacterial antigens of 19 and RB51 persisted in spleens for 10 and 4 weeks after infection, respectively, whereas 2308 bacteria and bacterial antigens persisted for at least 20 weeks. Small germinal centers and profound lymphoid depletion occurred in spleens of mice during the first 4 weeks of infection with strain 19 or 2308; however, mice infected with strain RB51 had much larger germinal centers but no lymphoid depletion. At 4 weeks, only spleen cells from RB51-infected mice proliferated when incubated with 2308 bacteria. Large germinal centers in the spleen and spleen cell proliferative responses to 2308 did not appear in strain 19-infected mice until 6 weeks or in strain 2308-infected mice until 10 weeks. Similar proliferative responses to 2308 occurred in mice infected with strain 19 or RB51 at 6 weeks and in mice infected with strain 19, RB51, or 2308 at 10 weeks. However, at 20 weeks, spleen cell proliferative responses to 2308 occurred in mice infected with strain 19 or 2308 but not in mice infected with strain RB51. Mice infected with strain RB51 had lower and less persistent antibody titers to 2308 than did mice infected with strain 19 or 2308. Collectively, these results indicate that RB51-infected mice have less persistent immune responses to 2308 than do mice infected with 19 or 2308. The shorter duration of the responses probably resulted because RB51 is considerably less pathogenic and is cleared more rapidly from mice than are 19 and 2308.  相似文献   

15.
Deletion of the BCSP31 gene of Brucella abortus by replacement.   总被引:3,自引:6,他引:3       下载免费PDF全文
The 31-kDa salt-extractable immunogenic protein, BCSP31, was deleted from several Brucella abortus strains by replacement with a marker gene encoding resistance to the antibiotics kanamycin and neomycin. The BCSP31 gene replacement plasmids, constructed with ColE1-derived vectors, were introduced by electroporation into B. abortus strain 19 (S19), into a rough variant of B. abortus S19, and into B. abortus S2308, and antibiotic-resistant transformants were isolated. B. abortus S19 is an attenuated strain used as a vaccine for prevention of bovine brucellosis in the United States, and B. abortus S2308 is a commonly used challenge strain. The antibiotic-resistant isolates were all obtained by recombination; none were spontaneous mutants. Loss of the gene encoding BCSP31 and presence of the marker gene were confirmed by Southern analysis. Vector sequences were either absent or linked to the genome, indicating that ColE1-derived plasmids are not maintained in B. abortus. Survival of B. abortus mutant strains in the macrophagelike cell line J774 and in HeLa cells was examined and shown to be indistinguishable from that of the parental strain.  相似文献   

16.
Immune responses and resistance to infection with Brucella abortus 2308 (S2308) were measured in mice following vaccination with B. abortus 19 (S19) or the lipopolysaccharide (LPS) O-antigen-deficient mutant, strain RB51 (SRB51). Live bacteria persisted for 8 weeks in spleens of mice vaccinated with 5 x 10(6) or 5 x 10(8) CFU of SRB51, whereas bacteria persisted for 12 weeks in mice vaccinated with 5 x 10(6) CFU of S19. Mice vaccinated with 5 x 10(6) or 5 x 10(8) CFU of SRB51 had increased resistance to infection with S2308 at 12, 16, and 20 weeks after vaccination, but the resistance was lower than that induced by vaccinating mice with 5 x 10(6) CFU of S19. Spleen cells obtained from mice vaccinated with S19 or SRB51 generally exhibited similar proliferative responses to S2308 bacteria or bacterial proteins (106 to 18 kDa) following challenge of mice with S2308 at 12, 16, or 20 weeks after vaccination. Mice vaccinated with S19 had antibody to S2308 bacteria and S2308 smooth LPS at 4, 8, and 12 weeks after vaccination. In contrast, mice vaccinated with either dose of SRB51 did not produce antibody to S2308 smooth LPS. In addition, only mice vaccinated with the highest dose of SRB51 (5 x 10(8) CFU) had antibody responses to S2308 bacteria, although the responses were lower and less persistent than those in mice vaccinated with S19. Collectively, these results indicate that SRB51-vaccinated mice have similar cell-mediated immune responses to S2308 but lower resistance to infection with S2308 compared with S19-vaccinated mice. The lower resistance in SRB51-vaccinated mice probably resulted from a combination of rapid clearance of SRB51 and an absence of antibodies to S2308 LPS.  相似文献   

17.
We constructed infectious but replication-deficient Semliki Forest virus (SFV) particles carrying recombinant RNA encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). The recombinant SFV particles (SFV-SOD particles) were then evaluated for their ability to induce a T-cell immune response and to protect BALB/c mice against a challenge with B. abortus 2308. Intraperitoneal injection of mice with recombinant SFV-SOD particles did not lead to the induction of SOD-specific antibodies, at least until week 6 after immunization (the end of the experiment). In vitro stimulation of splenocytes from the vaccinated mice with either recombinant Cu,Zn SOD (rSOD) or crude Brucella protein resulted in a T-cell proliferative response and the induction of gamma interferon secretion but not interleukin-4. In addition, the splenocytes exhibited significant levels of cytotoxic T-lymphocyte activity against Brucella-infected cells. The SFV-SOD particles, but not the control virus particles, induced a significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308. These findings indicated that an SFV-based vector carrying the SOD gene has potential for use as a vaccine to induce resistance against B. abortus infections.  相似文献   

18.
Cattle vaccinated with Brucella abortus rough strain RB51 (SRB51) produced small amounts of serum immunoglobulin G (IgG) but no IgM antibody to smooth strain 2308 (S2308) bacteria and produced no IgG or IgM antibody to S2308 lipopolysaccharide (LPS). Western immunoblot analysis revealed that antiserum from SRB51-vaccinated cattle contained IgG antibody that reacted with S2308 proteins of 84 to <20 kDa. However, antiserum from the vaccinated cattle did not contain agglutinating B. abortus antibody in the tube agglutination test for brucellosis. These results suggest that SRB51-vaccinated cattle produced no antibody to S2308 LPS, although they did produce nonagglutinating IgG antibody that reacted with S2308 bacteria and bacterial proteins of 84 to <20 kDa.  相似文献   

19.
Cu-Zn superoxide dismutase (SOD) deletion mutants of Brucella abortus S2308, a virulent strain, and S19, a vaccine strain, were generated by gene replacement. A deletion plasmid, pBA delta sodknr, was constructed by excising the Cu-Zn SOD gene (Cu-Zn sod) from a 2.3-kb B. abortus DNA fragment of plasmid pBA20-1527 and inserting a 1.4-kb DNA fragment encoding kanamycin resistance into the Cu-Zn sod excision site. The deletion plasmid was introduced into B. abortus by electroporation, and Southern blot analysis confirmed that the antibiotic resistance fragment had replaced Cu-Zn sod in kanamycin-resistant colonies. The survival and growth of Cu-Zn SOD mutant strains were compared with that of the parental strains in HeLa cells and in the mouse macrophagelike cell line J774. The survival and growth of the Cu-Zn SOD mutant strains were similar to those of their respective parental strains in HeLa and J774 cell lines. The kinetics of infection with these strains were examined in BALB/c mice. The splenic levels of the S19 Cu-Zn SOD mutant recovered from intraperitoneally infected BALB/c mice were approximately 10-fold lower than those of the parental strain through 26 days postinfection. Thereafter, infection sharply declined in both groups, and by 105 days postinfection, no organisms were detected. The splenic levels of the S2308 Cu-Zn SOD mutant were lower than those of wild-type S2308-infected mice. The spleen weights of mice infected with the S2308 Cu-Zn SOD mutant were consistently lower than those of wild-type S2308-infected mice. These results suggest that the antioxidant enzyme Cu-Zn SOD plays a role in the survival and pathogenicity of B. abortus in vivo.  相似文献   

20.
Previous findings indicate that Brucella antigens and those from nonpathogenic alphaproteobacteria (NPAP) are cross-recognized by the immune system. We hypothesized that immunization with NPAP would protect mice from Brucella infection. Mice were immunized subcutaneously with heat-killed Ochrobactrum anthropi, Sinorhizobium meliloti, Mesorhizobium loti, Agrobacterium tumefaciens, or Brucella melitensis H38 (standard positive control) before intravenous challenge with Brucella abortus 2308. Cross-reacting serum antibodies against Brucella antigens were detected at the moment of challenge in all NPAP-immunized mice. Thirty days after B. abortus challenge, splenic CFU counts were significantly lower in mice immunized with O. anthropi, M. loti, and B. melitensis H38 than in the phosphate-buffered saline controls (protection levels were 0.80, 0.66, and 1.99 log units, respectively). In mice immunized intraperitoneally with cytosoluble extracts from NPAP or Brucella abortus, protection levels were 1.58 for the latter, 0.63 for O. anthropi, and 0.40 for M. loti. To test whether the use of live NPAP would increase protection further, mice were both immunized and challenged by the oral route. Immunization with NPAP induced a significant increase in serum immunoglobulin G (IgG), but not serum or fecal IgA, against Brucella antigens. After challenge, anti-Brucella IgA increased significantly in the sera and feces of mice orally immunized with O. anthropi. For all NPAP, protection levels were higher than those obtained with systemic immunizations but were lower than those obtained by oral immunization with heat-killed B. abortus. These results show that immunization with NPAP, especially O. anthropi, confers partial protection against Brucella challenge. However, such protection is lower than that conferred by immunization with whole Brucella or its cytosoluble fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号