首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that UVC irradiation of benzo[a]pyrene diol epoxide (BPDE)-adducted DNA (BPDE/UVC) induces an increase in mutation frequency in the supF gene greater than the calculated additive value derived from either treatment alone, with a greater absolute increase in the level of BPDE signature transversions. Possible explanations were that (i) the BPDE adducts are photoactivated to a more mutagenic lesion or (ii) the presence of UV-induced DNA damage enhanced the mutagenicity of BPDE adducts elsewhere on the DNA. In the present study, to determine which of these mechanisms is responsible for the enhanced mutagenicity of the combined treatment, plasmid pSP189 containing supF was treated with UVC radiation before BPDE treatment (UVC/BPDE). If BPDE adducts were being modified by UV irradiation to more mutagenic species, then reversing the order of exposure would be predicted to lower the mutation frequency and the number of transversions. Conversely, if merely the presence of UV damage influences the mutagenicity of BPDE adducts (or vice versa), the observed mutagenicity should be independent of the order of exposure. Previously, treatment with BPDE/UVC increased the mutation frequency by >400% over the calculated additive value derived from the individual BPDE and UV exposures. In the present study, treatment with UVC followed by BPDE increased the mutation frequency by only approximately 60%, compared with the corresponding calculated additive value. However, whilst this shows that the order of treatment affects the mutation frequency, there was little change in the percentage of base substitutions in the two spectra. Hence, whilst the change in mutation frequency is consistent with UVC directly enhancing the mutagenicity of the BPDE adducts, the similarity in the types of mutations induced by BPDE/UVC and UVC/BPDE suggests that the mechanism may not be that simple.  相似文献   

2.
In previous work, we established that treatment with melphalan (L-phenylalanine mustard) produced a predominance of A.T-->T.A transversions in the Simian virus 40 (SV40)-based shuttle vector pZ189 during replication in human 293 cells. Mutations were induced with varying doses (4-12 microM) melphalan in the aprt gene of the hemizygous Chinese hamster ovary (CHO) cell line D422 to determine whether a similar mutation spectrum would be observed in an endogenous gene. DNA sequence alterations were determined for 39 spontaneous and 41 melphalan-induced independent mutant clones. Other than a predominance of transversions in both systems, the spectrum of melphalan-induced aprt mutations bears little resemblance to the spectrum observed in the supF gene of the shuttle plasmid pZ189. In aprt, mutations at G.C base pairs (bp) predominated (29 of 41 base substitutions). Significantly enhanced mutagenesis was observed at 5' G-G-C 3' and 5' G-G-C-C 3' sites in the aprt gene. Almost half of the melphalan-induced base substitutions occurred at 5' G-N-C 3' sequences, which are believed to be potential interstrand crosslink sites.  相似文献   

3.
Using purified photolyases for pyrimidine (6-4) pyrimidone photoproducts [(6-4)PP] and cyclobutane pyrimidine dimers (CPD), the effects of photoreactivation on mutagenesis were examined in the supF gene on a plasmid transfected into repair-deficient SOS-induced Escherichia coli host cells. More than 95% of CPD and (6-4)PP were removed from plasmid DNA by treatment with CPD photolyase and (6-4)photolyase, respectively. In each photolyase treatment, base substitutions at dipyrimidine sequences were predominantly observed. Of the single base substitutions observed after CPD photoreactivation, 83% were A:T-->G:C transitions at 5'-TT-3' sites. After (6-4)photolyase treatment, 81% were G:C-->A:T transitions at 5'-CC-3' and 5'-TC-3' sequences. Thus, the major mutagenic photoproducts of single-base substitutions were CPD at 5'-CC-3' or 5'-TC-3' sites and (6-4)PP at 5'-TT-3' sites. Tandem double mutations occurred mainly at 5'-CC-3' sites and were CPD-photoreactivated, suggesting that CPD at 5'-CC-3' was responsible for tandem double mutations. After photoreactivation of both CPD and (6-4)PP, single-base substitutions were primarily G:C-->A:T transitions at 5'-CC-3' or 5'-TC-3' sites and A:T-->G:C transitions at 5'-TT-3' sites, and secondarily G:C-->T:A transversions at 5'-CC-3' sites, G:C-->C:G transversions at 5'-CC-3' sites and A:T-->T:A transversions at 5'-TT-3' sites, which were essentially the same as those observed after photoreactivation of CPD alone, (6-4)PP alone and without photoreactivation. Thus, these transversions were not derived from unknown UV adducts but from incompletely repaired CPD and (6-4)PP.  相似文献   

4.
Arsenite, an ubiquitous human carcinogen, has been shown to enhance the cytotoxicity, mutagenicity and clastogenicity of UV light in mammalian cells. Arsenite may exert its co-genotoxic effects by inhibiting DNA repair. Results from alkaline sucrose gradient sedimentation show that arsenite did not accumulate UV-induced DNA strand breaks in Chinese hamster ovary (CHO) K1 cells as aphidicolin plus hydroxyurea (HU) did. These data indicate that arsenite did not inhibit the activity of DNA polymerase alpha in UV repair. Treatment with arsenite before UV irradiation slightly reduced the DNA strand breaks accumulated by cytosine beta-D-arabinofuranoside (AraC) plus HU. This effect implies that arsenite only slightly inhibited the incision of UV-induced DNA adducts. The low molecular weight DNA accumulated by post-UV incubation with AraC plus HU shifted to high molecular weight upon the incubation of cells in drug-free medium, but this shifting was prohibited by the presence of arsenite. This suggests that arsenite inhibited the rejoining of DNA strand breaks. When a pulse-chase labelling procedure was applied on UV-irradiated cells, the chain elongation of nascent DNA was strongly inhibited by post-incubation with arsenite. These data show that arsenite inhibited post-replication repair in UV-irradiated cells. Therefore, the steps inhibited by arsenite in UV-induced DNA repair in CHO K1 cells are different from human fibroblasts in which the inhibition of excision of pyrimidine dimers by arsenite was reported to be the major target.  相似文献   

5.
We recently reported the kinetics of mutation induction by UVB in the skin epidermis and dermis of transgenic Muta trade mark mice [Ikehata and Ono, Mutat Res 508:41-47, 2002]. In the present study we determined the complete DNA sequence of the lacZ transgene in 208 mutants isolated from the dermis and epidermis of UVB-irradiated and control mice. The resulting mutation patterns for the dermis and epidermis were similar, although two CC-->TT tandem substitutions, one of the signature mutations for UV insult, were detected only among the UVB-induced epidermal mutants. The spectra of the UVB-induced and control mutations were both dominated by C-->T transitions (83% and 62%); however, the C-->T transitions from irradiated mice occurred almost exclusively in dipyrimidine sites, while those from control mice preferred CpG sites. Thus, the mutation spectrum detected for the irradiated skin tissues was different from the background spectrum and UV-specific, confirming the utility of the transgenic system for UVB-induced mutation studies in vivo. An analysis of the bases adjacent to the mutated cytosines from irradiated mice revealed that the dipyrimidine sites preferred for UVB-induced mutation were 5'-TC-3' > 5'-CC-3' > 5'-CT-3'. Among mutants from irradiated mice, C-->T transitions were recovered frequently at dipyrimidine sites associated with CpG. We showed that CpG sites in the lacZ transgene of Muta trade mark mice were heavily methylated in both the epidermis and dermis. Thus, CpG methylation could contribute to the UVB-induced recurrent or hotspot mutations in the mammalian genome.  相似文献   

6.
A C-terminal 183 amino acid-truncated mutation of the mouse Xpg gene (XpgDeltaex15) gives rise to a partial deficiency in nucleotide excision repair in homozygously affected cells. We studied the effect of this mutation on UVB-induced mutagenesis in mouse skin, using transgenic mice harboring lambda-phage-based bacterial lacZ genes as a mutational reporter. UVB increased the lacZ mutant frequency in the epidermis moderately in the homozygous mutant mice, but significantly higher than in the wild-type or the heterozygous mice, whereas background mutant frequencies were not appreciably different among the three mouse genotypes. Ninety-eight lacZ mutant sequences isolated from the UVB-exposed epidermis of the XpgDeltaex15-homozygous mice were analyzed and compared with mutant sequences from the wild-type mice. The spectra of the mutations in the two mouse genotypes were not significantly different, and they were highly UV-specific. There were frequent C --> T transitions at dipyrimidine sites and several CC --> TT tandem mutations, although the UV-specific mutations occurred more frequently at CpG sites in the mutant mice. The distribution of the mutations observed in the lacZ transgene and the preferred sequence context of the UV-specific C --> T mutations (5'-TC-3' > 5'-CC-3' > 5'-CT-3') in the Xpg-mutant mice were similar to those found in the wild-type mice. Despite these similarities, we detected a previously unrecognized type of the UV-induced mutation only in the Xpg mutant (6/98 in the mutation spectrum of the mutant vs. 0/76 in the wild-type; P = 0.035), which is characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We propose that this putative new class of mutation, which we refer to as a "triplet mutation", is characteristic of UV-induced mutation in an excision-repair-deficient background.  相似文献   

7.
We have established a new transgenic mouse mutagenicity assay for the efficient detection of point mutations and deletions in vivo (Nohmi et al. [1996] Env. Mol. Mutagen. 28:465-470). In this assay, the gpt gene of Escherichia coli is used as a reporter for the detection of point mutations. Treatment of mice with ethylnitrosourea (ENU, 150 mg/kg) enhances by several-fold the mutant frequency of gpt in bone marrow. Here, we report the mutation spectra of the gpt gene recovered from bone marrow of ENU-treated and untreated transgenic mice. In the gpt mutants rescued from ENU-treated mice, more than 90% of the mutations were base change mutations; the predominant types were A:T to T:A transversions and G:C to A:T transitions. On the contrary, in the mutants rescued from untreated mice, 54% were base substitutions and the remainders were short deletions and insertions. Among untreated mice, the most frequently observed base substitution was G:C to A:T transitions (7/14 mutants). Three of these occurred at 5'-CpG-3' sites. Interestingly, the mutation spectra of the gpt gene were different from those of the gpt gene in ENU-treated and untreated E.coli, whereas they were similar to those of the lacZ and lacI genes in ENU-treated and untreated other transgenic mice or cultured mammalian cells. We also report the establishment of homozygous transgenic mice that have transgene lambdaEG10 DNA in both chromosome 17 of C57BL/6J mouse.  相似文献   

8.
Big Blue™ Rat-2 cells were evaluated for mutagenesis and mutational spectra (spontaneous and ethylnitrosourea [ENU]-induced). Survival, mutant frequency, population doubling time, and kinetics of mutant increase (to 120 hr) were determined. Exposures were 100, 200, 400, 600, and 1,000 μg ENU/ml. The spontaneous mutant frequency was similar to that previously reported in vivo, i.e., 5 × 10−5. Dose-related increases in mutant frequency were observed following ENU treatment. Kinetics (time course, of mutant frequency increase, population doubling, and mutational spectra were investigated following treatment at 1,000 μg ENU/ml. Among 39 spontaneous mutants, 26 independent mutations were found as follows: nine (34.6%) G:C → A:T transitions (five at CpG sites), six (23%) G:C → T:A transversions, three (11.5%) G:C → C:G transversions (two at CpG sites), two (7.7%) frameshifts, five (19%) deletions or insertions, and one (3.8%) complex (deletion + insertion) mutation. Among 46 ENU-induced mutants, 37 independent mutations (all base substitutions) were found as follows: 15 (40.5%) G:C → A:T transitions (four at CpG sites), five (13.5%) A:T → G:C transitions, four (10.8%) G:C → T:A transversions, 11 (30%) A:T → T:A transversions, and two (5.4%) A:T → C:G transversions. Nearly 50% of the base substitutions in the ENU-treated cells were at A:T base pairs, in contrast to the spontaneous mutants where none was found. Both the spontaneous and the ENU-induced mutational spectra were similar to that reported in vivo and for other cells. An important aspect of the experiment is that all mutations sequenced following ENU treatment (1,000 μg/ml) occurred under conditions which our experiments show corresponded to very little mitotic activity. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Knockout mutations in both alleles of the Xpa gene give rise to a complete deficiency in nucleotide excision repair (NER) in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of Xpa null mutation (Xpa(-/-)) on damage induction, repair, and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpa(-/-) and wild-type mice. Neither photolesion was removed in the Xpa(-/-) epidermis by 12 hr after irradiation whereas removal of 64PPs was observed in the epidermis of wild-type mice. Irradiation with 200 and 300 J/m(2) UVB increased the lacZ mutant frequency in the epidermis of Xpa(-/-) mice, but the induced mutant frequencies were not significantly different from those previously determined for wild-type mice. One-hundred lacZ mutants isolated from the UVB-exposed epidermis of Xpa(-/-) mice were analyzed and compared with mutant sequences previously determined for irradiated wild-type mice. The distribution of the mutations along the lacZ transgene and the preferred dipyrimidine context of the UV-specific mutations were similar in mutants from the Xpa(-/-) and wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in a dominance of C --> T transitions at dipyrimidine sites; however, Xpa(-/-) mice had a higher frequency than wild-type mice of two-base tandem substitutions, including CC --> TT mutations, three-base tandem mutations and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We conclude that the triplet mutation is a UV-specific mutation that preferably occurs in NER-deficient genetic backgrounds.  相似文献   

10.
The study of hprt mutations in cynomolgus monkey T-lymphocytes is part of our effort to understand the mechanisms of mutagenesis in vivo. This primate model allows us to study mutations and their kinetics at the molecular level under well-controlled conditions using recently developed techniques for selection of mutant T-cells and polymerase chain reaction (PCR) amplification of hprt cDNA, which is directly sequenced. This is the first report of the sequence of the coding region of the cynomolgus monkey hprt gene and PCR/DNA sequence analysis of seven spontaneous mutant T-cell clones, as well as 23 mutant clones isolated 63 and 601 days after treatment with ethylnitrosourea (ENU, 77 mg/kg, intraperitoneal). cDNA was reverse transcribed from hprt mRNA directly from a lysate of about 2-4 x 10(3) cells, and a 700 bp fragment including the coding region was amplified by PCR and sequenced. Of the seven spontaneous mutants, only one point mutation (GC----AT transition) was detected, and the other six failed to amplify by PCR, possibly due to functional deletions. Of the 14 mutant clones isolated 63 days after ENU treatment, nine base substitutions were detected in ten clones: four transitions (three AT----GC and one GC----AT) and five transversions (four AT----TA and one AT----CG). Of the nine mutants isolated 601 days after ENU treatment, six single base substitutions were detected in six clones (five AT----TA and one AT----CG transversions), and one mutant had a large deletion or insertion. No changes were detected in three clones (one Day 63 and two Day 601 clones). In summary, only one of 15 single base substitutions isolated after ENU treatment was a GC----AT transition mutation and the rest were transitions and transversions at AT sites.  相似文献   

11.
A multiplex PCR procedure for analysis of genomic DNA mutations in the mouse hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene was developed and then used with other established methods for the coincident identification of large- and small-scale genetic alterations in the Hprt gene of mutant T-cell isolates propagated from sham- and 1,3-butadiene (BD)-exposed mice and rats. The spectra data for RT-PCR/cDNA analysis and multiplex PCR of genomic DNA from Hprt mutants were combined, and statistical analyses of the mutant fractions for the classes of mutations identified in control versus exposed animals were conducted. Under the assumption that the mutant fractions are distributed as Poisson variates, BD exposure of mice significantly increased the frequencies of (1) nearly all types of base substitutions; (2) single-base deletions and insertions; and (3) all subcategories of deletions. Significantly elevated fractions of G:C-->C:G and A:T-->T:A transversions in the Hprt gene of BD-exposed mice were consistent with the occurrence of these substitutions as the predominant ras gene mutations in multiple tumor types increased in incidence in carcinogenicity studies of BD in mice. BD exposure of rats produced significant increases in (1) base substitutions only at A:T base pairs; (2) single-base insertions; (3) complex mutations; and (4) deletions (mainly 5' partial and complete gene deletions). Future coincident analyses of large- and small-scale mutations in rodents exposed to specific BD metabolites should help identify species differences in the sources of deletion mutations and other types of mutations induced by BD exposures in mice versus rats.  相似文献   

12.
O6-Alkylguanine-DNA alkyltransferase (AGT) is responsible for repairing the O6-alkylguanine lesion in DNA. There is wide variation in the levels of AGT between organ and cell types, which appears to correlate with cell and tissue type sensitivity to the mutagenic and carcinogenic effects of alkylating agents. In order to investigate the role of AGT in modulating the frequency and types of mutations induced in one type of normal human parenchymal cells, we examined the types and frequency of mutations in the hypoxanthine (guanine) phosphoribosyltransferase (hprt) gene in 116 mutants derived from two N-ethyl-N-nitrosourea (ENU)-treated normal human skin keratinocyte cell lines. O6-Benzylguanine (O6-BZ; 5 μM × 2 hours) was used to specifically inhibit AGT activity before ENU treatment (0 to 5 mM × 1 hour). O6-BZ increased both the cytotoxic and mutagenic effects of ENU by 1.8- and 3- to 5-fold, respectively. In both treatment groups, most of the mutations were base substitutions (72%). The proportion of GC to AT transitions in the O6-BZgroup (14/31) was twice that in the group treated with ENU alone, consistent with the loss of AGT activity in these cells. There was no strand specificity of GC to AT and AT to GC transitions in both groups. Base transversions accounted for 28% of total base substitutions. A lower than expected proportion of AT to TA transversions were observed in both cell lines, which decreased in the O6-BZ pretreated group. A strand bias was observed for GC to TA and AT to TA transversions. Most of the G to A and G to T base substitutions had one or more purines flanking 3′ to the mutated deoxyguanosines. There were more deletion mutants with the deletion of exon 1, 4, 6, and 8 in the BZ group than in the control group. These data, characterizing the mutational spectra of ENU in normal human keratinocytes treated in vitro, indicate that GC to AT and AT to GC transition mutations predominate in these cells depleted or not depleted of AGT. Environ. Mol. Mutagen. 29:168–179, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
14.
Big Blue mice harbor a recoverable transgene in a lambda/LIZ shuttle vector. In the standard assay, in vivo mutations are measured in the bacterial lacI gene using a labor-intensive color plaque assay. Applying a simpler assay [Jakubczak et al. (1996): Proc Natl Acad Sci USA 93:9073-9078], we measured mutations in the lambda cII gene portion of the transgene. Spontaneous clear plaque mutants were analyzed from liver, lung, and spleen of five untreated mice. Of 314 mutants, 182 (58%) had independent mutations, 74 (23.5%) appeared clonal, and 58 (18.5%) showed no cII mutations. Of 182 independent cII mutations, 156 (85.7%) were base substitutions, 20 (10.9%) were frameshifts, and 6 (3.2%) were multiple substitutions and one deletion. G:C --> A:T transitions were the predominant base substitution (78% of these at CpG sites). The major mutation hotspot, a six G run and its 3' flanking T at bases 179 to 185, comprised 18.7% of the independent mutations. Other hotspots were positions 103, 196, and 212. The in vivo cII spectrum had a significantly higher proportion of G --> A and G --> T mutations and fewer frameshifts than reported in vitro. The cII and published lacI spectra are similar, though G --> A transitions and deletions were fewer in the cII gene. The cI gene was sequenced in 48 mutants with no cII mutations and most had cI mutations: 81.3% base substitutions and 18.7% frameshifts. We conclude that the cII/cI system is insensitive to deletion events, but is useful for detecting point mutations.  相似文献   

15.
The mutagenicity of peroxyl radicals, important participants in lipid peroxidation cascades, was investigated using a plasmid-based mutational assay system. Double-stranded pSP189 plasmids were incubated with a range of concentrations of the water-soluble peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Following replication in human Ad293 cells, the plasmids were screened for supF mutations in indicator bacteria. Exposure to peroxyl radicals caused strand nicking and a decrease in transfection efficiency, which was accompanied by a significant increase in supF mutants. Each of these effects was abolished in the presence of the water-soluble vitamin E analogue Trolox. Automated sequencing of 76 AAPH-induced mutant plasmids revealed that substitutions at G:C base pairs were the most common changes, accounting for 85.5% of all identified mutations. Of these, most comprised G:C-->T:A transversions (53.5%), with lesser contributions by G:C-->A:T transitions (23.9%) and G:C-->C:G transversions (22.5%). Collectively, these data confirm our previous findings concerning the spectrum of mutations produced upon bacterial replication of peroxyl radical-damaged phage DNA and extend them by showing that such damage has mutagenic consequences during replication in more complex eukaryotic systems.  相似文献   

16.
The use of transgenic rodents is becoming increasingly widespread in genetic toxicology. In an effort to centralize and standardize the information regarding mutations in rodents bearing the lacZ transgene, we have created a computerized database that contains published information about DNA sequence alterations on over 100 mutants. Information on the literature citation, mutagenic conditions, organs from specific animals, mutation frequency in each organ, specific mutation, amino acid change, and other data are provided for each mutant. We have also produced a software package for the analysis of the lacZ database. Routines have been developed for the analysis of single base substitutions, including programs to 1) determine whether two mutational spectra are statistically different, 2) determine whether mutations show a DNA strand bias, 3) determine the frequency of transitions and transversions, 4) display the number and kind of mutations observed at each base in the coding region, 5) perform nearest-neighbor analysis, and 6) display mutable amino acids in the lacZ protein. The software runs only on IBM-compatible machines running Microsoft Windows. The software and lacZ database are freely available via the Internet ( http://sunsite.unc.edu/dnam/mainpage.html ). These programs simplify the analysis of the rapidly increasing information about lacZ mutation. The programs permit the facile comparison between different lacZ data sets as well as the identification of mutational patterns that may be of importance to experimenters studying the mechanisms of mutation and mutational spectra in transgenic animals. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Ikehata H  Kudo H  Masuda T  Ono T 《Mutagenesis》2003,18(6):511-519
We studied the kinetics of mutation induction in skin epidermis and dermis of UVA-irradiated transgenic Muta mice and analyzed the sequence changes in 80 lacZ transgene mutants from the irradiated epidermis. The mutant frequency increased linearly in both the epidermis and dermis up to 240 kJ/m2 UVA, twice as efficiently in the epidermis as in the dermis, without provoking any inflammatory reactions in the exposed skin. The 83 mutations detected in the UVA-exposed epidermis were dominated by C-->T transitions (88%), found almost exclusively at dipyrimidine sites, and specified by four occurrences of CC-->TT tandem substitutions, suggesting that UV-specific photoproducts induced in DNA have a major role in the genotoxicity. No T-->G transversions, which have been considered as a UVA signature mutation, and few mutations suggesting the relevance of oxidative damage were recovered in the present study. An analysis of the bases adjacent to the mutated cytosines revealed that the 3'-cytosine of dipyrimidine sites is the preferred target of UVA-induced C-->T transition. Moreover, C-->T transitions were induced at dipyrimidine sites associated with CpG much more frequently by UVA than by UVB, forming hotspots at several of these sites. These results suggest that UVA contributes more to the formation of recurrent or hotspot mutations at methylated CpG sites in the mammalian genome than UVB, since methylation of the CpG motif is observed entirely in the lacZ transgenes and is known to enhance the formation of cyclobutane pyrimidine dimers by longer wavelength UV.  相似文献   

18.
The influence of DNA repair on the specificity of ethyl methanesulfonate (EMS) mutagenesis in a plasmid-borne copy of the Saccharomyces cerevisiae SUP4-o gene was investigated. Isogenic yeast strains that are repair-proficient (RAD) or defective for nucleotide excision (rad1), postreplication (rad18) or recombinational repair (rad52) were treated with EMS. Compared to the RAD wild-type, the maximum SUP4-o mutation frequency was 2-fold greater in the rad1 background whereas it was approximately 50% less in the rad18 and rad52 strains. The majority (779/788) of SUP4-o mutations characterized by DNA sequencing were single base pair changes, primarily (> 91%) G.C-->A.T transitions in the RAD, rad1 and rad18 strains. In the rad52 background, only 57% of the substitutions were G.C-->A.T transitions with transversions at G.C pairs accounting for almost all of the remaining changes. Comparisons of the distributions of single base pair substitutions in SUP4-o revealed that there was no excision repair-dependent bias for G.C-->A.T events to occur at sites flanked by a 5' or 3' A.T pair as observed previously for EMS mutagenesis of the lacIgene in Escherichia coli (Burns et al., 1986). These transitions also did not occur more often at sites where the guanine was flanked by a 5' purine than by a 5' pyrimidine. However, they exhibited a small preference for sites having the guanine on the transcribed strand in the RAD and rad52, but not rad1 or rad18, strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The frequency of 6-thioguanine resistant (TGr) mutants induced in human G0 phase T-lymphocytes by 200 cGy of gamma irradiation is greatly enhanced by incubation with cytosine arabinoside (ara-C) after irradiation. The mutant frequency increased with increasing incubation time in ara-C for up to 2 hr. This mutation induction required a phenotypic expression time of 5-8 days mass culture growth, similar to that found with mutants induced by 300 cGy of irradiation alone. Southern blot analysis of 40 isolated mutant clones revealed 8 independent mutations by T-cell receptor (TCR) gene rearrangement patterns. Four of these eight showed hprt gene structural alterations (0.50). An alternative method to allow phenotypic expression was developed to minimize the isolation of hprt/TCR sibling mutants. The use of in situ expression in the microtiter dish wells resulted in the isolation of 17 independent mutations in 19 mutant clones. Ten of these 17 mutations showed hprt structural alterations (0.59). The high fraction of mutations involving structural alterations detected by Southern blot analysis is consistent with the known induction of chromosome aberrations by irradiation plus ara-C treatment. We propose that both the increase in Mf and the increase in the incidence of hprt gene structural alterations are due to the accumulation of strand breaks in repairing regions of DNA under these conditions of ara-C induced inhibition of repair. We further propose that upon release of the ara-C inhibition, these repairing regions can interact to yield both gene mutations and chromosome aberrations.  相似文献   

20.
Spontaneous thioguanine-resistant mutants were derived from populations of finite-life-span, diploid human fibroblasts by means of a fluctuation analysis. cDNA was prepared from mutantHPRT mRNA and amplified by the polymerase chain reaction, and the sequence of the product was analyzed. Exon deletions, which very likely arose from mutations in the intron splice site consensus sequences, were found in 10 of the 37 mutants examined (27% of the total). Among the 28 mutations in the coding sequence, base pair substitutions predominated (89%). With the exception of one base pair involved in a tandem mutation, all base pair substitutions resulted in alterations in the predicted amino acid sequence of the protein. In addition there were three frameshift mutations, consisting of the deletion of one or two base pairs. Although mutations occurred throughout the coding sequence, 50% (14/28) were found in the 5 portion of exon 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号